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L bounds via flow interchange techniques
and applications to variational Mean Field Games

Hugo Lavenant and Filippo Santambrogio

May 16, 2017

Abstract

We consider minimization problems for curves of measure, with kinetic and potential energy and a congestion
penalization, as in the functionals that appear in Mean Field Games with a variational structure. We prove L*
regularity results for the optimal density, which can be applied to the rigorous derivations of equilibrium conditions
at the level of each agent’s trajectory, via time-discretization arguments, displacement convexity, and suitable
Moser iterations. Similar L™ results have already been found by P.-L. Lions in his course on Mean Field Games,
using a proof based on the use of a (very degenerate) elliptic equation on the dual potential (the value function)
¢, in the case where the initial and final density were prescribed (planning problem). Here the strategy is highly
different, and allows for instance to prove local-in-time estimates without assumptions on the initial and final data,
and to insert a potential in the dynamics.
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1 Introduction

The problem of optimal density evolution with congestion is a very natural question where an initial distribution
po of mass (particles, individuals. . .) is given, and it has to evolve from time # = O to time t = T by minimizing an
overall energy. This typically involves its kinetic energy expenditure and a cost depending on congestion effects,
i.e. on how much it is concentrated along its trajectory. Then, at time ¢ = T, either the final configuration pr is
prescribed, or a final cost depending on pr is also considered.

When pr is fixed and no congestion effect is present, the only quantity to be minimized is the kinetic energy
and this boils down to what is usually known as the dynamic formulation of the optimal transport problem, studied
by Benamou and Brenier in [7]. From the fluid mechanics point of view, this model corresponds to that of particles
of a pressureless gas moving without acceleration in straight lines, and without interaction with each other. From
the geometric point of view, this variational problem consists in looking for a geodesic in the Wasserstein space W,
(for references on optimal transport and Wasserstein spaces, see [32, 30]). Inserting congestion effects corresponds
to looking at deformed geodesics, i.e. curves which are optimal for other criteria which do not involve only
their length (weighted lengths, length + penalizations...), and to add pressure terms in the corresponding gas
equations. For instance, in [10, 4] geodesics in the Wasserstein space for different weights, minimizing energies
of the form § E(p(1))|p,| dt were considered, including cases where E penalized congestion. Yet, the case which is
now the most studied is the one where a penalization on congestion is added to the kinetic energy, thus minimizing
§(|o:/* + E(p(1))) dt, as it was done in [13]. Since this is the kind of problems this paper will be devoted to, it is
important to clarify precisely its form. We can either look for a curve p : [0, 7] — P(Q) which minimizes

T T
pr | P ars [ EG)ar+ or) (L1
0 0

with pg prescribed (here |g,| is the metric derivative, i.e. the speed of this curve for the distance W», see Section
2.2), or look for a pair (p, v) minimizing

T T
pHJ f lp,|v,|2 dt+J E(p,) dt + ¥(pr) (1.2)
0 92 0

under the same constraint on py and a differential constraint d,0; + V - (o,v,) = 0. Here Q c R? is a bounded and
connected domain and the continuity equation is satisfied in the weak sense on [0, 7] x R¢ (which corresponds to
imposing no-flux boundary conditions on 0Q), The equivalence between the two formulations essentially comes
from [7] and from the characterization of absolutely continuous curves in the Wasserstein space studied in [3].The
functional E usually takes the form of an integral functional such as

Blp) 1= || flp() dx + | Vixpla) ax

for a convex function f and a given potential V (where we identify measures with their densities; for the definition
for measures which are not absolutely continuous, see Section 2.3). The final penalization ¥ can be either a
functional of the same form of E, or a constraint which prescribes pr.

The interest for this minimization problem, which is already very natural in itself, has increased a lot after
the introduction in 2006 of the theory of Mean Field Games (MFG) (introduced essentially at the same time by
Lasry and Lions, [20, 21, 22], and by Huang, Malhamé and Caines [18]). In the easiest version of these games, we
consider a population of agents where everybody chooses its own trajectory, solving

min J (% +V(x(t) + g(p,(x(t)))) dt + ¥(x(T)), (1.3)

0

with given initial point x(0). Here g is a given increasing function of the density p, at time z, i.e. an individual
cost for each agent penalizing congested areas. The difficulty in the model is that every agent optimizes given the
density of all agents p;, but this density depends on turn on the choices of all the agents. An equilibrium problem
arises, and we look for a Nash equilibrium in this continuum game (with infinitely many negligible players, who
move continuously in time in a continuous space). This can be translated into a system of PDEs

—awp + 5 = V(@) + g(p),
afp -V (pVgD) = 07
¢(T,x) =¥(x), p(0,x) =po(x).



This forward-backward system is composed of a Hamilton-Jacobi equation for the value function ¢ of the above
optimization problem where the density p appears at the right-hand side and of a continuity equation for p which is
advected by the vector field v = —V. Taking the gradient of the HJ equation gives a formula for the Lagrangian
acceleration

ove + (Vv - Vv, = V(V + g(o1)),

where g(p;) plays the role of a pressure to be added to the potential V, as it is typical in compressible fluid
mechanics. Alternatively, the same equilibrium problem can be formulated in terms of a probability measure Q on
the set H'([0, T]; Q) of paths valued in Q, defining p, = (e,)+Q (where ¢, : H'([0,T]; Q) — Q is the evaluation
map at time f), and requiring (eo)#Q = po and that Q-a.e. curve is optimal for (1.3) with this choice of p,. For a
general introduction to mean field games, other than the papers by Lasry-Lions and Huang-Malhamé-Caines, the
reader can consult the lecture notes by Cardaliaguet [15], based on the lectures given by P.-L. Lions at College
de France between 2006 and 2012 ([24]). In particular, for the simple model which is the object of this paper,
and which is deterministic and first-order (no random effect in the motion of the agents, and no diffusion in the
equations), we also refer to [16].

The remarkable fact is that this class of equilibrium problem has a variational origin, and one can find an
equilibrium by minimizing (1.2) choosing E(p) := { f(p) + V(x)p with f = g (for a review on variational mean
field games and on these questions, we refer to [8]). The optimality condition on the optimal (p, v) will indeed
show that we have v = —V¢ where ¢ solves the HJ part of (1), thus getting a solution of the system. The same can
also be formally formulated in terms of probabilities Q on the set of path.

Yet, these considerations are essentially formal and not rigorous, so far. Indeed, the difficulty is the following:
the function A(z, x) := V(x) + g(p,(x)) is obtained from the density of a measure, and hence it is only defined a.e.
Integrating it on a curve, as we do when we consider the action Sg h(t, x(r)) dt in (1.3) has absolutely no meaning!
Of course, it would be different if we could prove some regularity (for instance, continuity) on p,. The question
of the regularity in mean field games is a very challenging one and deserves high attention. In [17] a stategy to
overcome this difficulty, taken from [2], is used: indeed, it is sufficient to chose a suitable representative of 4 to
give a precise meaning to the integral of /4 on a curve, and the correct choice is

h(t, x) := limsup h,(1, x) := J[B( )h(t,y) dy;

r—0

to prove that Q is concentrated on optimal curves for R it is then enough to write estimates with /4, and then pass to
the limit as » — 0. This requires an upper bound on #,, and the natural assumption is to require that the maximal
function Mh := sup, h, is L' in space and time. Thanks to well-known results in harmonic analysis, 2 € L' is
not enough for this but # € L™ for m > 1 is instead enough. Once integrability of M#h is obtained, then one can
say that the optimal measure Q is concentrated on curves which minimize in (1.3) in the class of curves x(-) such
that Sg Mh(t,x(t)) dr < +oo. These curves are almost all curves in a suitable sense, thanks to the integrability
properties of Mh in space-time, but they are in general not all curves.

It is interesting to observe that the strategy of [17] and [2] was first used in the framework of variational models
for the incompressible Euler equation, in the sense of Brenier [11, 12]. Indeed, the problem of incompressible
evolution has many similarities with the one of evolution with congestion effects, with the only difference that
instead of penalizing high densities there is a constraint p = 1. Also, the precise mean field game studied in [17]
is of very similar nature, since it included the constraint p < 1. Moreover, the techniques used in [17] to prove
this extra summability of 4 come from the incompressible Euler framework: they are techniques based on convex
duality taken from [12] and later improved in [1], which allow, in this case, to prove h € LZZUL,((O, T); BV (Q)).
In the framework of more standard mean field games (i.e. with density penalization instead of constraints), the
same technique (presented in more generality on some simpler examples in [31]) has been used in [29] to prove
H' regularity results on the density p.

In the present paper, we present L™ bounds on the optimal p. For applications to MFG, whenever L results
are available, it is possible to avoid all the assumptions on the maximal function Mh and obtain optimality in the
larger class of all competing curves. This explains the interest of these results for MFG, but of course the reader
can easily guess that they are interesting in themselves for the variational problem.

The question of the L™ regularity of p was already studied, in the MFG framework, by P.-L. Lions (see the
second hour of the video of the lecture of November 27, 2011, in [24]), but the analysis was limited to global
results when both pg and pr are fixed and L™, and no potential V is considered. The technique was essentially



taken from degenerate elliptic PDEs (note that adapting from global to local results would be very difficult, without
strong assumptions on the degeneracy and growth of the corresponding equation). Here what we do is different.
The technique is based on the time-discretization of (1.1) in the form

MW o 1ym o) S
min {Z T Y TE (o) + Wlowe) ¢ (1.4)
k=1 k=1

where T = T/N. The interesting fact is that, as a necessary optimality condition, each measure py, with 0 < k < N
minimizes

W3 (pg—1)e:p) W3 (Pgt1)r0)
p > + o +7E(p),

which is very similar to what we see in the so-called Jordan-Kinderlehrer-Otto scheme for the gradient flow of the
functional E (see [19] and [3]). The main difference is that we have now two Wasserstein terms, one referring to
the distance to the previous measure and one to the next one. Techniques from the JKO scheme can be used, and
in particular the so-called flow-interchange technique (introduced in [25]). Essentially, this technique consists in
evaluating how much decreases another energy U along the gradient flow of E. In the JKO framework, it is usually
used to obtain estimates of the form

Ulpre) = Upgs1ye) = TJ. (something positive) ,

which allows to say that U is decreasing and to obtain integral estimates on the right hand side (r.h.s.) above.
In this variational framework, which corresponds to a second-order-in-time equation, instead of monotonicity we
obtain convexity:

U(pg—1yc) + Ulp@s1)r) — 2U (oxr)

72

> f (something positive)

(more precisely: the integral term in the r.h.s. is nonnegative if V = 0 and extra lower-order terms appear in
presence of a potential V). This allows for instance to obtain convexity in time of all the quantities of the form
S o (x) dx when V = 0 (a similar technique was used with similar results by the first author in [23]). A global L™
result if pg, por € L* are fixed is then easy to deduce in this case (actually, we will not even state it explicitly in
this paper). Moreover, using the structure of the right-hand side and with tedious iterations inspired by Moser [27],
we are also able to provide interior L regularity independent of the boundary data, and regularity on intervals of
the form [#;, 7] under some assumptions on the penalization ¥. This very result is, by the way, the natural one for
MFG applications, and improves upon the results announced in [24].

The paper is organized as follows: after this brief introduction Section 1 also contains a short summary of
the main ideas of the proof, so that the reader does not get lost in the technical details. Then, in Section 2 we
summarize the preliminaries about curves and functionals on the Wasserstein space, and give a precise statement
for the variational problem we consider and the results we prove, distinguishing into two cases depending on the
convexity of the congestion penalization f (in terms of lower bounds on f”). In Section 3 we present and prove the
estimates that are obtained in this framework via the flow interchange technique. These estimates allow to bound
increasing L™ norms of the solution, and in Section 4 we explain how to iterate in order to transform them into
L% estimates on the limit of the discretized problems. This involves a technical difficulty, as one needs a reverse

1/p
Jensen inequality in time (passing from § [|o,]7,, dt to (S||p,||[zz1 dt) ); this can be fixed because we already

proved a convexity-like property for ¢t — ||| |f/'3'fn but is quite technical. In Section 5 we detail how to pass to the
limit from the time-discretization to the continuous problem, and in the Appendix we give a proof of the reverse

Jensen inequality.

1.1 Structure of the proof

As the structure of the proof of L* bounds may be hidden behind the technical details, we sketch in this subsection
the formal computations on which our main results rely. Let us consider the simplest case, the one where there
is no interior potential, and let us not worry about the temporal boundary terms for the moment. The variational
problem reads

min{f;p#dwf | 100 axar 2o < p:10.7) Pl o =p—o}.
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First, we consider the time-discretization in (1.4) and, we apply the flow-interchange technique that we mentioned
before (and that will be detailed later, see Section 3) to the functional U = U,,, where

when m > 1 (U (p) can be defined as the Boltzmann entropy of p, and the normalization constants are chosen for
coherence with this case). The flow interchange technique will allow to obtain an estimate of the form

Um(p k—1 ‘r) + Um(p k -r) - 2Um(pk‘r) —
. D > C(m) f F o) Vel = 0. (15)

T

This gives a discrete-in-time convex behavior for the quantity U,,(o;). In the case f = 0, this is basically a
restatement of McCann convexity principle [26]. It is easy to see that, if pg, pr € L™ (which is an assumption on
po and on W), then automatically the same L™ bound is satisfied by all measures p,. If py, pr € L™, the same easily
passes to the limit as m — oo thus providing L* bounds.

Moreover, the flow interchange applied to the last time step k = N (with Nt = T), gives a result of the form

Um(pN‘r) - Um(p(Nfl)‘r)

T

< b(m)Up(pn:), (1.6)

where the constant b(m) depends on the penalization . This acts as a sort of Neumann condition for the function
t — U,,(p;) and allows to obtain the bound on U,,(p,) with the only assumption py € L™, with no need to assume
the same for pr. However, this can only be adapted to the limit m — o0 in the case where ¥ has the form
¥(p) := §g(o(x)) dx for a convex g, without potential terms, so that b(m) = 0. Otherwise, the dependence of
b(m) upon m prevents from letting m — .

Our paper includes L™ and L® results which do not require assumptions on pg, and which will be, of course,
only of local nature on (0, T']. Our proof will look like Moser’s proof of regularity for elliptic equations [27], as it
will rely on a fine analysis of the growth (when m — +00) of quantities of the form S;: p/". Indeed, one can guess
from (1.5) that we may write (at the limit when 7 — 0)

& _
2 Un(er) >J Vo0 £ (1) (1.7)
r Q

To estimate more precisely the r.h.s. of (1.7), a natural assumption is f”(s) = s* (with @ which could be
negative, of course): if this is the case, one can check that the integrand of the r.h.s. is larger than |V(p,(m+1+a)/ 2) |?

(up to a constant depending polynomially in nz). Using the Sobolev injection H' < L>¥/(4=2) one can conclude
(neglecting the 0-order term of the H' norm ofp,(mHJra)/z), with 1 < B < d/(d — 2), that

d? (m+1+a) /8
Clm) gz Unlp) > { | o/

In the case @ > —1, we see that the r.h.s. is larger than Ug,, (p,)l/ﬁ . In other words, we have obtained a control of
Upn(p) in terms of U,,(p). Such a control can be iterated. If we take a positive cutoff function y which is equal to
1on [T, —&,T, + €] and which is null outside [T} — 2&, T, + 2¢], multiply (1.7) by y and integrate the left hand
side (L.h.s.) by parts twice, we can say that

Tr+2¢

Tr+e&
J Upm(p:) /P dt < C(m, &) f Un(p;) dt,

T —e& T)—2¢

where the constant C(m, £) grows not faster than a polynomial function of m and e~!. We have to work a little bit
more on the Lh.s. because we want to exchange the power 1/8 and the integral sign, and unfortunately Jensen’s
inequality gives it the other way around. To this extent, we rely on the following observation: as the function Ug,,
is convex (this can be seen in (1.7)) and positive, it is bounded on [T , T,] either by its values on [T}, T; — €] or
on [T, T, + ], thus we have a "reverse Jensen’s inequality"

T, 1/8 T> — T )\/B T, Tr+e
( f Upm(0r) dt> J-T)” <J Upm(pr)'/E dt + f Ulgm(p,)l/ﬁ) .
T

T &€ Ti—e
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Combining this inequality with the estimation we have on the r.h.s., we deduce that

( f " Ul dt> " Clm, &) f T e .

T T, —2¢

where the new constant C(m, &) has also a polynomial behavior in m and £~'. This estimation is ready to be

iterated. Indeed, setting m, := B'mg and &, = 2 "&o, given the moderate growth of C(m, ¢), it is not difficult to

conclude that
Tr+¢e, l/mn
lim sup (J Un, (1) dt) < +00.

n—+a0 Ti—é&y

As the Lh.s. controls the L* norm of p on [T}, T>] x Q, this is enough to conclude that p is bounded locally in
time and globally in space.

Let us comment the technical refinements and generalization of the above argument that are used in the present
article:

e As we do not have enough time regularity to differentiate twice w.r.t. time, we decided to work with a time
discretization of the problem. Hence, instead of(1.7) we use (1.5).

e If we add an interior potential, the r.h.s. of (1.7) contains lower order terms that are controlled by the term
involving f”. However, the sign of the Lh.s. is no longer known and the function U,, is no longer convex but

rather satisfies )
d
EU,,,(,D,) + w?Un(p) =0,

where w grows linearly with m. In particular, the "reverse Jensen inequality" becomes more difficult to prove,
but it is still doable.

e With assumptions on the final penalization, the regularity can be extended to the final time. More precisely,
if we assume that the final penalization is given by the sum of a potential term and a congestion term, then
formally (and this can be proven by taking the limit 7 — 0 of (1.6)),

d
—Un(p)| < bm)Un(pr), (1.8)

t=T

where the constant b(m) depends on the potential and can be taken equal to 0 if there is no potential. This
inequality enables to control the value of U, at the boundary + = T by its values in the interior. Thus the
same kind of iterations can be performed and gives L* regularity up to the boundary.

e If @ < —1, we only have a control of Uy, by Up(;n41+4q)- Thus we must start the iterative procedure with
a value m such that m < B(m + 1 + @), i.e. we must impose a priori some L™ regularity on p (with a m
which depends on « and S, the latter depending itself only on the dimension of the ambient space). Such a
regularity is imposed by assuming that py (which is fixed) is in L™(Q) and that the boundary penalization
in t = T is the sum of a potential and a congestion term. Indeed, if this is the case, the boundary condition
(1.8) combined with the interior estimate (1.7) shows that if 7 is small enough (given the potentials and the
congestion function f), the L™ norm of p on [0, T] x Q must be bounded.

2 Notation and presentation of the optimal density evolution problem

In all the sequel, Q will denote the closure of an open bounded convex domain of R¢ with smooth boundary. To
avoid normalization constants, we will assume that its Lebesgue measure is 1. The generalization to the case
where Q is the d-dimensional torus is straightforward and we do not address it explicitly. The space of probability
measures on Q will be denoted by P(Q). The Lebesgue measure restricted to Q, which is therefore a probability
measure, will be denoted by £. The space P(Q) is endowed with the weak-* topology, i.e. the topology coming
from the duality with C(Q) (the continuous functions from Q valued in R).



2.1 The Wasserstein space

The space P(Q) of probability measures on Q is endowed with the Wasserstein distance: if y and v are two
elements of P(Q), the 2-Wasserstein distance W, (i, v) between y and v is defined by

Wa(u, v) := \/min {f |[x —y]2dy(x,y) : yeP(Q x Q) and mo#y = u, mi#y = v}. 2.1
QxQ

In the formula above, 7y and 71 : Q x Q — Q stand for the projections on respectively the first and second
component of Q x Q. If T : X — Y is a measurable application and u is a measure on X, then the image measure
of u by T, denoted by T#u, is the measure defined on Y by (T#u)(B) = u(T~'(B)) for any measurable set B < Y.
It can also be defined by
| a) a0 = [ alr) duto),
Y

X

this identity being valid as soon as @ : ¥ — R is any integrable function. For general results about optimal
transport, the reader might refer to [32] or [30]. We recall that W, admits a dual formulation: for any u, v € P(Q),

Wa(u,v) = \/max{ftpd;ﬂrfcpc dv : (,OEC(Q)}, (2.2)

where ¢¢(y) := inf,cq(|x — y|*> — ¢(x)) for any y € Q. A function ¢ € C(Q) which is optimal in (2.2) is called a
Kantorovitch potential for the transport from u to v. The following result, giving the derivative of the Wasserstein
distance, can be found in [30, Propositions 7.18 and 7.19].

Proposition 2.1. Ler y, v € P(Q) and assume that u is absolutely continuous w.r.t. L and that its density is strictly
positive a.e. Then there exists a unique Kantorovitch potential ¢ for the transport from u to v. Moreover, ¢ is
Lipschitz and if fi € P(Q) n L*(Q), then

o R0 = 2t ep) — WG
i :

=L¢d(ﬁ*#)-

We recall that W, defines a metric on P(Q) that metrizes the weak-* topology. Therefore, thanks to Prokhorov
Theorem, the space (P(Q), W») is a compact metric space. We also recall that (P(Q), W») is a geodesic space. If
u and v are probability measures such that g admits a strictly positive density w.r.t. L, then there exists a unique
constant-speed geodesic p : [0, 1] — P(Q) joining u to v and it is given by

p(1) = (Id — 1Vo)#yu,

where ¢ is the unique Kantorovitch potential for the transport from u to v.

We will need to define functionals of the form u € P(Q) — §, h(i) dL. To this extent, we rely on the following
proposition (see [30, Chapter 7]; see also [9] for the most advanced results on the semicontinuity of this kind of
functionals on measures)

Proposition 2.2. Let h : [0, +0) — R be a convex function bounded from below. Let ' (+) € (—o0, +m0] be
the limit of W' (t) as t — +c0. Then, the functional

peP(Q) — L h(p™) + I (+00)p""8(Q), (2.3)

(where p =: p“° L + p*"8 is the decomposition of p as an absolutely continuous part p L and a singular part p*™8
w.rt. L) is convex and L.s.c.
In particular, we will make a strong use of the following functionals.
Definition 2.3. For any m > 1, we define u,, : [0, +00) — R for any t > 0 through
tlnt+ 1 ifm=1

U (t) = m ) .
w1y 7"

7



For any m = 1, the functional Uy, : P(Q) — R is defined, for p € P(Q), via

un(p) if p is absolutely continuous w.r.t. L

400 else

One can notice that u” () = "2 for any m > 1 and any ¢ > 0, hence the functions u,, are convex for all m. One
can also notice that U is (up to an additive constant) the entropy w.r.t. L. Moreover, some useful properties of U,,
are summarized below.

Proposition 2.4. Foranym > 1,
1. One has m*U,, > 1.
2. The functional U,, is convex and L.s.c.

3. The functional Uy, is geodesically convex: it is convex along every constant-speed geodesic of (P(Q), Wa).

Proof. The first point derives from Jensen’s inequality. The second point is an application of Proposition 2.2. To
prove the third point, recall that Q is convex: thus it is enough to check that the functions u,, satisfy McCann’s
conditions (see [26] or [32, Theorem 5.15]), which is the case. m]

2.2 Absolutely continuous curves in the Wasserstein space

We will denote by I the space of continuous curves from [0, T'] to P(Q). This space will be equipped with the
distance d of the uniform convergence, i.e.

d(p',p?) := max Wa(p' (1), 0% (1))
1€[0,T]

Following [3, Definition 1.1.1], we will use the following definition.

Definition 2.5. We say that a curve p € T is 2-absolutely continuous if there exists a function A € L*([0, T]) such
that, forevery 0 <t < s < T,

Wa(pr, ps) < f A(r) dr.
t
The main interest of this notion lies in the following theorem that we recall.

Theorem 2.6. Ifp € I is a 2-absolutely continuous curve, then the quantity

. W2 (Pt+h»Pt)
= lim —=
4] p 7
exists and is finite for a.e. t. Moreover,
T N W2
. t—1> Pt
J |p:|> dt = sup sup 2 M 2.4
0 N22 0<n<n<.<ty<T j—p [tk — lk—1

Proof. The first partis just [3, Theorem 1.1.2]. The proof of the representation formula (2.4) can easily be obtained
by adapting the proof of [5, Theorem 4.1.6]. O

The quantity |o,| is called the metric derivative of the curve p and heuristically corresponds to the norm of the

derivative of p at time 7 in the metric space (P(Q), W»). Thus, the quantity Sg |0/)? dt behaves like a H' norm. In
particular, we have the following.

" . T . , )
Proposition 2.7. The functionp € I — So |0/|? dt is Ls.c., convex, and its sublevel sets are compact.

Proof. The lower semi-continuity and convexity are a consequence of the representation formula (2.4) (because
the square of the Wasserstein distance is a continuous convex function of its two arguments, see [30, Chapter 7]).
Moreover if p € I is a curve with finite action and s < ¢, then, again with (2.4), one can see that W, (py, ;) <

Sg |0:]? d£ 4/t — s. This shows that the sublevel sets of Sg |o;|* dt are uniformly equicontinuous, therefore they
are relatively compact thanks to Ascoli-Arzela’s theorem. As we know moreover that the sublevel sets are closed
(by the lower semi-continuity we just proved), we can conclude that they are compact. O



2.3 Continuous and discrete problems
In all the sequel, we will make the following assumptions:

1. Recall that Q is the closure of an open convex bounded domain with smooth boundary.

2. We assume that f : [0, +00) — R is a strictly convex function, bounded from below and C? on (0, +c0).
We define the congestion penalization F by, for any p € P(Q),

Flp) = L F() + f (+o0)p™ (),

where p =: p? L + p*"¢ is the decomposition of p as an absolutely continuous part p® (identified with its
density) and a singular part p*¢ w.rt. £. Thanks to Proposition 2.2, we know that F is a convex Ls.c.
functional on P(Q).

3. We assume that V : Q — R is a Lipschitz function.

4. We assume that ¥ : P(Q) — Ris a L.s.c. and convex functional, bounded from below.

We will consider variational problems with a running cost of the form p — E(p) := F(p) + §, V dp, while ¥ will
penalize the final density, and the initial one will be prescribed.

Definition 2.8. We define the the functional A : " — R by

Alp) := JO %|p,|2 dt+f0 E(p,) dt +¥(pr).

We state the continuous problem as

min{A(p) : peT, po=po}. (ContPb)
A curve p that minimizes A will be called a solution of the continuous problem.

Proposition 2.9. Let us assume that there exists p € T with py = pg such that A(p) < +o0. Then the problem
(ContPb) admits a unique solution.

Proof. The functional A is the sum of 1.s.c., convex and bounded functionals. Moreover, as A(p) > Sg $lo* di—C
(where C depends on the lower bounds of f, V and W), we see (thanks to Proposition 2.7) that the sublevel sets of
A are compact. The existence of a solution to (ContPb) follows from the direct method of calculus of variations.
To prove uniqueness, we need to prove that (A is strictly convex. If p! and p? are two distinct minimizers of A,

we define p := (p' + p?)/2. As p! and p? are distinct, by continuity there exists 71 < T, such that p! and p? differ
for every t € [Ty, T,]. In particular, for any ¢ € [T}, T,], by strict convexity of F, F(p) < (F(p') + F(p?))/2.
Thus,

T 1 (T 1 (T

f F(p,) dt < = f F(p!)dt + = f F(p?) dt.

0 2 Jo 2 Jo
As all the other terms appearing in A are convex, one concludes that A(p) < (A(p')+A(p?))/2, which contradicts
the optimality of p' and p°. O

In order to get the L* bounds, we will consider two different cases (strong and weak congestion), depending on
the second derivative of f. This allows to quantify how much F penalizes concentrated measures.

Assumption 1 (strong congestion). There exists @ = —1 and Cy > 0 such that f"(t) = Ct* for any t > 0.

Assumption 2 (strong congestion-variant). There exist « > —1, ty > 0 and Cy > 0 such that f"(t) = Cst* for
anyt = .

In particular, integrating twice, we see that under either of the above assumptions, for p € P(Q) we have U, 2 (p) <
CtF(p) + C, where C is a constant that depends on f (but not on p). One can also see that f'(+00) = +00. The
function u,, is the typical example of a function satisfying Assumption 1 with « = m — 2. To produce functions
satisfying Assumption 2 but not Assumption 1, think at f(r) = +/1 + #* (if we try to satisfy Assumption 1 we need
a < 0 for large ¢, and @ > 2 for small 7) or at f(¢) = (r — l)fL (the difference between these two examples is that
in the first case on could choose an aribtrary #, > 0, while in the second it is necessary to use 7y > 1).



Assumption 3 (weak congestion). There exist @ < —1, to > 0 and C; > 0 such that f"(t) = C1* for any t > 1.
For example, f(r) := /1 + ¢ satisfies f”(t) = Cyt* fort > 1 with @ = —3.

Assumption 4 (higher regularity of the potential). The potential V is of class C"' (it is C' and its gradient is
Lipschitz) and VV - n = 0 on 0Q, where n is the outward normal to Q.

We will see that only Assumption 1, where we require a control of f” everywhere, allows to deal with Lipschitz
potentials, while in general we will need the use of Assumption 4. The condition VV - n > 0 on 0Q can be
interpreted by the fact that the minimum of V is reached in the interior of : it prevents the mass of p to concentrate
on the boundaries.

Assumption 5 (final penalization). The penalization VY is of the following form

J glor) + J W dpr if pr is absolutely continuous w.r.t. L
Q Q

+o0 if pr is singular w.r.t. L,

Y(or) =

where g : [0,+0) — R is a convex and superlinear (i.e. g'(+00) = 400) function, bounded from below, and
W : Q — R is a potential of class C"' satisfying VW - n = 0 on 0.

The mains results of this paper can be stated as follows.

Theorem 2.10 (strong congestion, interior regularity). Suppose that either Assumption 1 holds or Assumption 2
and 4 hold, and that A(p) < +0 for some p € T with py = pg. Let p be the unique solution to (ContPb). Then for
any 0 < T, < Ty < T, the restriction of p to [Ty , T2] belongs to L* ([T, T2] x Q).

Theorem 2.11 (strong congestion, boundary regularity). Suppose that either Assumption 1 holds or Assumption 2
and 4 hold, and that Assumption 5 holds as well, and that A(p) < +00 for some p € T with py = pg. Let p be the
unique solution to (ContPb). Then, for any 0 < Ty < T, the restriction of p to [T, T belongs to L*([T1,T] x Q).

Theorem 2.12 (weak congestion case). Suppose Assumptions 5, 3 and 4 hold and that A(p) < +00 for some
p € T with py = po. We assume that the prescribed initial measure pq satisfies pg € L™ with mg > d|a + 1|/2 and
F(po) < +o0, and that T is small enough (smaller than a constant that depends on f, g, V, W and py). Let p be the
unique solution to (ContPb). Then p € L™ ([0,T] x Q) and for any 0 < Ty < T, the restriction of p to [Ty, T]
belongs to L* ([T, T] x Q).

The rest of the paper is devoted to the proof of these theorems. In particular, we will always assume in the
sequel that there exists p € T" with py = pg such that A(p) < +oo0. In order to prove these theorems, we will
introduce a discrete (in time) variational problem that will approximate the continuous one. For this problem, we
will be able to show the existence of a unique smooth (in space) solution and write down the optimality conditions.
From these optimality conditions, we will be able to derive a flow interchange estimate whose iteration will give
uniform (in the approximation parameters, and in p) L? estimates.

Let us introduce the discrete problem here. We will use two approximations parameters:

e N + 1 > 2 will denote the number of time steps. We will write 7 := T /N for the distance between two time
steps. The set TV will stand for the set of all time steps, namely

TV := {kt; k= 0,1,...,N}.

We set I'y = P(Q)TN ~ P(Q)N*! (ie. an element p € Ty is a N + 1-uplet (09, Pz - - - s Pirs - - > p1) OF
probability measures indexed by TV). A natural discretization of the action of a curve is

J'T l|p 2~ i W3 (0(k—1)rs Pir)
o 27 “ 21 '

e We will also add a (vanishing) entropic penalization (recall that U; denotes the entropy w.r.t. £). It will
ensure that the solution of the discrete problem is smooth. The penalization will be a discretized version of

T
/1 f Ul (p[) dt,
0

where A is a parameter that will be sent 0.

10



Let us state formally our problem. We fix N > 1 (7 := T/N) and 4 > 0, and we set 1y = A if Assumption 5 is
satisfied, Ay = 0 otherwise. We define AN : 'y — R by

N w2 N-1
AV (p) = Z W + Z 7 (E(pkr) + AU1(pxr)) + P(or) + AvUi(or).

k=1 k=1

This means that in the case of Assumption 5 we penalize pr by {, g(or) + AUi(or) + §, W dpr, while we do
not modify the boundary condition otherwise (the reason for not always adding AU (pr) lies in the possibility of
having a prescribed value for pr with infinite entropy). In all the cases, we enforce strictly po = pg. The discrete
minimization problem reads

min{AY(p) : pe T, po =po}, (DiscrPb)

and a p € T'y which minimizes A" will be called a solution of (DiscrPb).

Theorem 2.13. For any N = 1 and any A > 0, the discrete problem (DiscrPb) admits a solution.

Proof. The functional AN is a sum of convex and L.s.c. functionals, bounded from below, hence it is itself convex,
L.s.c. and bounded from below. Moreover, the space I'y = P(Q)V*! is compact (for the weak-* convergence).
Thus, to use the direct method of calculus of variations, it is enough to show that AN”l(p) < 400 for some p € I'y.

This is easy in this discrete framework: just take pr, = Lif k€ {1,2,...,N — 1}, po = po and py, equal to an
arbitrary measure p such that ¥(p) + AyU; (p) < +00. o

Remark 2.14. We did not adress the uniqueness of the minimizer in the above problem since we do not really care
about it, but indeed it also holds. Indeed, the strict convexity of F (or the term AU, that we added) guarantees
uniqueness of pir for all k < N — 1. The uniqueness of the last measure (which cannot be deducted from strict
convexity for an arbitrary functional ¥, as we do not always add a term of the form AU, (pr)) can be obtained from

the strict convexity of the last Wasserstein distance term p — W22 (p,p(N_])T), as p(n—1)r is absolutely continuous
(see [30, Proposition 7.19]).

In all the following, for any N > 1 and A > 0, we denote by p** € T'y the unique solution of (DiscrPb) with
parameters N and 1. Moreover, In all the sequel, we fix 1 < 8 < d/(d — 2). It is well known that the space H'(Q)
is continuously embedded into L?#(Q). Moreover, in the case where the assumptions of Theorem 2.12 are satisfied,
we choose § in such a way that

ﬂ€1m0>|a+1|. (2.5)

3 Flow interchange estimate

3.1 Interior flow interchange

In this subsection, we study the optimality conditions of (DiscrPb) away from the temporal boundaries. We fix for
the rest of the subsection N > 1,0 < 4 < 1 and 0 < k < N, and we use the shortcut p := ,52’7’”. Let us also denote

U= ﬁl(\]tfl)r and v := /_)1(\1,;11)7' As pM is a solution of the discrete problem, we know that 5 is a minimizer (among
all probability measures) of

W) + W)
p 2T

+7 (F(p) + AU (p) + LVdp) :

In particular, we know that U, (p) < 400, thus g is absolutely continuous w.r.t. £.

Lemma 3.1. The density p is strictly positive a.e.

Proof. For 0 < & < 1, we define p; := (1 — &)p + €£L. As L is a probability measure, we know that p, is a
probability measure too. Thus, using p. as a competitor, we get

W3 (1, p) + W3 (p,v)
27

Wf (ks pe) + Wg (P> V)
27

AU (p) — Ui (ps)) < + 1E(p:) — —1E(p).

11



We estimate the r.h.s. by convexity (as W22 and F are convex) to see that

2 2 v 2 2
Ui(p) — Ui(ps) < = (W( ’L);WZ(L’ )+TE(£)—W( );W(p )TE(,E)).

Thus, there exists a constant C, independent of &, such that U; (p) — U, (p.) < Ce. This can be easily seen to imply
(see for instance the proof of [30, Lemma 8.6]) that p is strictly positive a.e. O

We can then write the first-order optimality conditions.

Proposition 3.2. The measure p (or more precisely its density w.r.t. L) is Lipschitz and bounded away from 0 and
o0. Moreover, let us denote by ¢, and ¢, the Kantorovitch potentials for the transport from p to respectively u and
v. Then the following identity holds a.e.:

M (f”(p )Vp-l—VV 0. 3.1)

Proof. Letp € P(Q) n L*(Q) and for 0 < & < 1 define p, = (1 — &)p + . We use p, as a competitor. We use
Proposition 2.1: as p > 0 a.e., the Kantorovitch potentials ¢, and ¢, for the transport from p to respectively u and
v are unique and

i Walp) = WiGpe) + W3(p.v) = Wiloev) _ f P+ o
£—0 272 N a

@ —P)-

T

The term involving V is straightforward to handle as it is linear. Hence, by optimality of p we get

), (% 2 V) (6 5) < limint 20 = AV(pe) ~ FP) = 0,(2) (3:2)

‘1'2 e—0 E

F(pe) + AUi(ps) — F(p) — AU (p J'fﬁ (1-&)p+ep] - fA[P]

& &

The integrand of the integral of the r.h.s. converges pointewisely, as £ — 0, to (f'(p) + AInp)(p — p). Moreover,
as the function f) is convex, we see that for 0 < e < 1,

Ll(1—&)p + &p] — fa]p]

&

< fa(B) — fa(P).
Asp e L*(Q) and F(p) + AU, (p) < +0, the r.h.s. of the equation is integrable on Q. Thus, by a reverse Fatou’s

lemma,
f F(p:) + A1 (ps) — F(p) — AU, (D)

lim sup

e—0 &€

<[ 0@+ amp) - ).
Combing this equation with (3.2), we see that {, 2 d(5 — p) > 0 with

Qu + @y
T

h = + f'(p) + Alnp + V.

We know that % is finite a.e., thus its essential infimum cannot be +0o. Moreover, starting from gf’(p) = f(p) —
£(0), we see that SQ hp > —oo. Taking probability measures p concentrated on sets where # is close to its essential
infimum, we see that the essential infimum of 4 cannot be +00 and that & coincides with its essential infimum p-a.e.
As p > 0 a.e., there exists C such that we have a.e. on

Qu + Py

f'(p) +Anp = C = ——

. 4 (3.3)

As fis C! and increasing, it is easy to see that f’ + A In is an homeomorphism of (0, +00) on (—o0, +00) which is
bilipschitz on compact sets. As the function C — (¢, +¢y) /7> —V takes its values in a compact set and is Lispchitz,
we see that p is bounded away from 0 and oo and is Lipschitz. With all this regularity (recall that f is assumed to
be C? on (0, +00)), we can take the gradient of (3.3) to obtain (3.1). O
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Theorem 3.3 (Flow interchange inequality). For any m > 1, the following inequality holds:

Um(/-l) + Um(V) - 2Um(,5)
) .

T

| 19ptr i+ | (v vt <
Q Q
Proof. We multiply pointewisely (3.1) by 5"~!Vp and integrate over Q. Dropping the entropic term, we easily get

— —\ =m— P —m— 1 = =m—
| 1wt @+ | 55 Ve <~ | 95 (Ve + Vel

To prove the flow interchange inequality, it is enough to show that

_L(Vp VQ)p" ™ < Un(n) — Un(p),

as a similar inequality will hold for the term involving ¢,. To this purpose, we denote by p : [0, 1] — P(Q) the
constant-speed geodesic joining p to . We know that it is given by

ple) = (1d - 1V, )#5.

By geodesic convexity of U, the function t — U, (po(¢)) is convex. Hence,

Un(p) = Un(p) = Un(p(1)) — Un(p(0))
Un(p(t)) — Un(p(0))

= limsup
t—0 t
m 1)) — Unm Y
— lim Supj Un(0(1)) — tn ()
t—0 Q !

. (p() = P)u,, (D)
U
J (Pl — tVpu(x)]) — uy, (P[x])
Q

= lim sup
t—0

t p(x) dx,

where we also have used that u,, is convex. It is clear that for a.e. x € Q,

i P = 1¥,(0)) — (L)

t—0 t

= — (Vo - Ve )un(p)] ().
Moreover, we have the uniform (in 7) bound

0, (P[x — 1V (0)]) — wy, (P[x])

t

] < BVl 9

At this point, one can remember that u”,(x) = x~2. Moreover, as p is bounded away from 0 and oo and Lipschitz,
the r.h.s. of the equation above is finite. Thus, by dominated convergence,

J uy, (plx — 1V, (0)]) — wy, (P[x])
Q

lim sup

t—0

: plx) dx = — | (5p- Ve, )5 o

From the result of Theorem 3.3 we need to deduce estimates on improved L™ norms. To this aim, we treat in a
slightly different way the cases of weak and strong congestion even if the result are similar. The main issue is to
control the term involving VV.

Corollary 3.4 (Strong congestion case). Suppose that Assumption 1 holds. Then, for any m > a + 2 one has

Unly) + Un(v) = 2Un(p) szUm(ﬁ)] »

Upn(p)'P < Cm? [

where C > 0 depends only on f,V and Q.

13



Proof. Let us start from the case of Assumption 1. In this case, we recall that C is the constant such that f”(¢) >
Cyt® for any t > 0. We transform the term involving VV in the following way:

| o wvigt = [ ) v
Q

> __J |ﬁa/2Vp|2 m—1 _ J |p—a/2VV|2 m—1
_ 7_J. |Vp|2/—)m71+w _ LJ‘ |VV|2,(_)m7170

2 Jo 2Cr Jo

) [VV[Em?
> V5 2-m—1+a 0 Um 5).

L | worp S Un(d)

For the last inequality, we have used the fact that

(m—1—a)/m
Jﬁm*‘*% <J ﬁ”’) <Jﬁ”’ < m*Un(p),
Q Q e

which is valid because | < m — 1 — @ < mand £(Q) = 1. Thus, using Theorem 3.3, we get
Cf —12-m—1+a = =\ Am— m—Ilra
S [ rwereree < [ vkt - | vt
Q Q
Un(u) + Uy 20, vV|?
o [Unll) £ U0) Z2000) VI o T
72 2Cf

We are interested only in the large values taken by p. Let us introduce p := max(1, p). This function is larger than
p and 1 and its gradient satisfies |Vp| = |Vp|15>1. Thus,

f |VAm/22_ _J |V |2Am 2 - _J |V | AT — 1+w< f |Vp|2 —m— 1+a

(the last inequality is true since Vp = 0 on the points where p > p, and the first inequality is exactly the point
where we exploit the fact p > 1, which explains the use of p instead of p). On the other hand, if we use the injection
of H'(Q) into L*(Q) for the function 5"/, we get (with Cq a constant that depends only on Q),

()" <en ], )

As PP < pPmand p < 1 + p, we see that

1/8 1/8
Q
( f |Vp|2 m— 1+a J.pm_i_])
Q

1
< CQm2< J |Vp|2 —m— 1+Q+2Um(,5))

< Cm? [Um( ©) + Um(z) —2Ux(p) + Cm2U(p) ]

Notice that to go from the second to the third line, we have used the fact that 1 < {, 5™ < m*U,,(p). To conclude,
it remains to notice that, as mf > B > 1, that we can control (uniformly in m) U,z(p) by SQ P™. Indeed

(1) > gt

Thus, up to a change in the constant C, we get the result we claimed. O
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Corollary 3.5 (Weak congestion case). Suppose Assumption 3 and 4 both hold. Then, for any m > 1 such that
B(m+ a+ 1) = 1 one has

Um(/-l) + Um(V) - 2Um(ﬁ)
2

+CmU,(p) =20

T

and
Um(,u) + Um(V) — 2Um(p)

Uﬁ(erlJra) (ﬁ)]/ﬁ < cm? [ + CmUm(p)] + CZ‘SH_H_Q,

T
where C depends only on f,V and Q.

Proof. We use an integration by parts to treat the term involving VV. Recall that n denotes the exterior normal to
Q.

1
| @ vprt = | i) v
Q m Jo
1

1
= —J (VV -n)p" — —J AVp™
m Joa m Jjo

— AV |cmUn(p),

A\

where we have used the assumption VV - n > 0 on 0Q. Thus, using Theorem 3.3, we get (recall that /" () > C1*
but only for ¢t > #j)

C_ff Vp|?p" 1T < Cff Vo5 £ (p) (3.4)
{p=10} Q
Un + U,(v) —2U,(p _
< [ W) T(ZV) ®) |AvaomUm(p)]. 3.5)

This gives us the first inequality of the corollary. In a similar manner to the strong congestion case, we introduce
p := max(ty, p). This time we notice that

A(m a m2 —12 =m—1+a
J. |Vp( +1+ )/2|2 < TJ. |V,0|2,0 1+ )
Q {p=10}

Thus, if we use the injection of H'(Q) into L% (Q) with the function p"+1+)/2,

1/p
(J ﬁﬁ’(erlJra)) < Co (J |Vﬁ(m+l+a)/2|2 +J ﬁm+1+w) .
Q Q Q

Then, we proceed as in the proof of the strong congestion case, but this time m + 1 + @ < m and p"+!T <
pntita | frtita.
0 :

p
1/p 1/p
<J /—)B(m+1+a)> < <J ﬁﬁ’(erlJra))
Q Q

2
< CQ <m_J |V'5|2pm—1+a+f pm+1+a+tg1+l+a)
4 {p=1} Q

m2
< CQ (TJ. |Vﬁ|2pm—l+a+J. pm+tgt+1+a)
{p=1} Q

2

< cm? [ + chm(p)] +Ceprtite,

T

Notice that if 7o < 1, we can control 7' by m*U,,(p) (as we did in the strong congestion case), but in the general
case this is not possible and we have to keep an explicit dependence in #y. To conclude, we notice that, thanks to
(2.5), one has B(m + 1 + @) = m > my and thus

1/8
—B(m+1+a 1 _
<Lpﬂ e )> > i yyp Ui+ 0)' 0
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The last case is a combination of the previous two cases.

Corollary 3.6 (Strong congestion case-variant). Suppose that Assumption 2 and 4 both hold. Then, for any m = my

one has
Um(/-l) + Um(V) - 2Um(ﬁ)
2

+CmU,(p) =0 (3.6)

T

and
Um(:u) + Um(y) _ 2Um(p)

Upn(p)'F < Cm? [ + CmUm(p)] +Cy, (3.7)

T
where C depends only on f,V and Q.

Proof. We begin with the same computations as in Corollary 3.5. We can obtain the same result as in (3.4), but on
the set {p > o} we can use @ > —1 to write

_12-m Un(p) + Up(v) = 2Un(p _
[ rwptar < ¢ | PeU O Z 2B v ().
{p=10} T

With p := max(ty, p) we get
[ wee<ct |

{p=10}
and the conclusion comes from the same Sobolev injection, with the function 5/, and similar computations as in

the previous cases. O

Remark 3.7. For simplicity, inequality (3.6) and (3.7) will be used by replacing the term mU,,(p) with m*U,,(p),
so as to allow a unified presentation with the inequality obtained in Corollary 3.4. Notice also that Corollary 3.4
is basically giving us the same inequality as (3.7), as long as we set to = 0.

3.2 Boundary flow interchange

In the case of Assumption 5, we can derive some estimate right at the point 7 (k = N). We will only sketch
the proof, at it mimicks the proof of the interior case and these computations are well-known in the case of the
applications to the JKO scheme. We know that, with p = p]}]”l and u 1= [)?”_AT, the measure p is a minimizer (among

all probability measures) of
W2 (1,
pH#+G (p) + AU (p Jde
-

Let us remark that it correspond to one step of the JKO scheme: it is in the context of such variational problems
that the flow interchange was firstly used, see [25]. In any case, with these notation, we obtain:

Proposition 3.8. Suppose Assumption 5 holds. Then, for anym > 1,

Um(:u) - Um(p) >

T

—(m = 1)[AW ] Un(p).

Proof. Following the same strategy than in Lemma 3.1 and Proposition 3.2, we know that p is bounded away from
0 and o0, is a Lipschitz function, and that

thﬂ
-

+<g (')+§>Vﬁ+VW=O

a.e. on Q, where ¢, is the unique Kantorovitch potential for the transport from p to u. Thus, if we multiply by
P"'Vp, we get, by the same estimation than in Theorem 3.3 (we drop both the entropic penalization and the

congestion term),
M > J (VW-Vﬁ)ﬁm_l.
T Q

It remains to perform an integration by parts, using the sign of VW - n on 0(, to conclude that

Um(:u) - Um(p) > _l

T m

f AWE" > —(m — 1)|AW| o Up (). 0
Q
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4 Moser-like iterations

Corollaries 3.4, 3.5 and 3.6 allow us to control the L or LU+ norm of j in terms of its L norm. The strategy
will consist in integrating w.r.t. to time and iterating such a control in order to get a bound on the L™ ([T, T2] x Q)
norm of p™** that does not depend on A and N and to control how this bounds grows in m. For any N > 1 and any
0 < A < 1, recall that p™ is a solution of the discrete problem (DiscrPb).

Definition 4.1. Foranym > 1 andany 0 < T < T, < T, we define Ly 7, as

1/m
m I ~N,A
Ly 7, = h.rflaérif_,o ( 2 TUn (0] )) .

T\ <kt<T,

The quantity L7 ;. can be seen as a discrete counter part of (up to a factor 1 /(m(m — 1))"/™) the L' norm of the

restriction to [T , T>] of the limit (whose existence will be proven in the next section) ofﬁW when N — +o0 and
A—0.

4.1 The strong congestion case
First, we integrate w.r.t. time the estimate obtained in Corollary 3.4.

Proposition 4.2. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold. Then there exists two
constants Cy and C (depending on f,V,T and Q) such that, for any 0 < ¢ < Cy/mandany0 < T; < T <T
suchthat [Ty —e, T, + €] < (0,T), and anym > a + 2,

5 m3 5 1 1/m

m

Ly r, < [Cz—g (m + ;)] max (L’;'] gTz+.5’t0) .
As pointed out in Remark 3.7, in the case where Assumption 1 holds, we set o = 0.

Proof. Let us recall that in Corollary 3.4 and Corollary 3.6 with Remark 3.7, we have proved (if we explicit the
dependence in N and A) that for any N > 1,1 > O and any k € {1,2,...,N — 1}, one has

_N.A N2
Um(p(kfl) )+ Un (p k+1) —2Un(py;")

U[S’ (pN/l)l/,B < Cm2 >

+Cm* UL (YY) | + Cry. .1

T

Let us take y : [0,T] — [0, 1] a positive C*! cutoff function such that y () = 1if r € [T} — &/3,T> + &/3] and
x(t) = 0if t ¢ [Ty — 2¢/3, T + 2&/3]. Such a function y can be chosen with |[y” |, < 54/£2. We multiply (4.1)
by 7y (k7) and sum over k € {1,2,..., N — 1}. After performing a discrete integration by parts, we are left with

N—1 N—1

Z Ty (kT)Uns (pr) /P < CLt + Cmi? Z U (pr") [sz +
k=1 k=1

72

SEDLEUCELE )

Given the bound on the second derivative of y, and if T < £/3, we get

1
2 TU ﬁ(pN’])l/ﬁ < C 4+ Cm? <m2 + —2> Z TUm(p]]::/l)
Ti—ef3skr<Trte/3 & T\ —e<kr<Tr—¢

The Lh.s. is not exactly (L’"B

1/m

as we would like to exchange the sum and the power 1/8. Unfortunately,
Jensen’s inequality gives the inequality the other way around. To overcome this difficulty, we will use the fact that
the function k — Uﬁm(pka) is almost a convex function of k. More precisely, we will use the "reverse Jensen

inequality", whose proof is postponed in Appendix A.

17



Lemma 4.3. Let (u])icz be a family of real sequences indexed by a parameter . We assume that there exists
w = 0 such that for any k € Z and any 7, one has u;. > 0 and
T T T
Uy Uy — 2up
2

+ wul = 0. 4.2)
.

Then, for any T\ < T, and any n < n/(8w), there exists 1o (which depends on w), such that, if T < 19, then

1/8
1) (T, =Ty + 1) +1/8
( Z TM;;) <C(w+ )T ) Z T(ul)l/ﬁ,

T <ki<T, n T\ —n<kt<Tytn

where C is a universal constant.

To use this lemma, we observe that u; := Uyg (pka) satisfies (4.2) with w*> = Cm? (thanks again to Corollary 3.4
and Remark 3.7). Thus, if we take C; small enough, we have ¢/3 < 7/(8w) as soon as ¢ < C;/m. If 7 is small
enough, we can exchange the sum and the power 1/ to get

/

1/B
B (Cm 4+ 1)(T + 1)'+1/8 B
(2, owirty) <t Y

T\ <kt<T, T\ —&/3<kt<T,+¢&/3

m [, 1 _N,A
<G (m + ;) n+ Y tUnEY |-

T —e<ktr<Tr+e&

Notice that we have put the constant Com3e~! (m? + £72) also in factor of fy'» as it is anyway larger than 1 as soon
as & is small enough. Then we take the power 1/m on both sides, use the identity (a + b)'/" < C max(a'/™, b'/™)
and send N — 400 and 4 — 0 to get the result. O

In other words, on a slightly larger time interval, the I norm is control by the L™ norm. We just have to iterate
this inequality.

Proposition 4.4. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold. For any 0 < T} <
T, < T, there exists C (that depends on T, T, T, f,V and Q) such that

: m a+2
limsup L7, 7, < C max (Lo,r ,to) .
m—+00

Proof. Let gy > 0 be small enough such that 0 < 71 —goB/(B—1) < To +&oB/(B—1) < landgy < Cy/(a+2)

(where C is the constant defined in Proposition 4.2). For any n € N, let us define

+00 0 +00 0
T} := Tlfzﬁ and T} := TZJFZE’
k=n k=n
and set m,, := (@ + 2)B". Using Proposition 4.2, as we have |T/*! — T7| = g™ < C;/m, fori € {1,2}, we can

say that, with [, := max (L'}’{Z’T;, to

3 1 ]/mn
h+1<[nmx{LCb—Tl—(mﬁ+—————5>}] I,
gB~" (20B7")

< [Cﬂ6n]ﬁ7”/(a+2) ln.
One can easily check, as 8 > 1, that
+o0 —
H [Cﬂén]ﬁ /( +2) < _"_w’
n=0

thus we get that

supl’T""T <suplL o< supl, < Cly = Cmax (L ’3 0s 0 ] < Cmax LgTz,to .
1,72 T7.T3 T0.T 3
neN neN neN rr2
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To conclude, we notice that, if m > 1 and m,, = m, one has (using Jensen’s inequality)

n (mn(mﬂ B 1))1/%1 my,
T\, T, == (m(mi 1))1/,,, T\.T,’

thus sending m — 400 (hence n — +00) we conclude that

ll:lm Jsrlg) Ly 7, < sug Ly (4.3)
—_ ne O

a+2
LO

As we will see later, the fact that L7~ is finite is a consequence of the fact that the solution p of the continuous

problem (ContPb) satisfies Sg F(p,) dt < +c0.

4.2 Estimates up to the final time

In this subsection, still supposing that either Assumption 1 holds or Assumptions 2 and 4 both hold, we exploit
Assumption 5 to extend the L* bound up to the final time r = T. We will prove a result similar to Proposition 4.2,
but this time up to the boundary.

Proposition 4.5. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold, and that Assumption
5 also holds. Then there exists two constants C; and C, (depending on f,T,V,g, W and Q) such that for any
0<e<Ci/mandany0 < T < T with0 < T| — &, then foranym > a + 2,

3 m 1 1/m
L[;TT < [Cz— (; +m? + ;)] max (L’;’]_&T,to) .
Again, we recall (Remark 3.7) that if we are under Assumption 1, we take #o = 0.

Proof. Let usrecall that equation (4.1) holds forany N > 1,4 > Oand k€ {1,2,...,N—1}. Wetake y : [0,T] —
[0, 1] a positive C!! cutoff function such that y () = 1if € [T1 —&/3,T] and x(t) = 0if t € [0, T; —2&/3]. Such
a function y can be chosen with |x”| o, < 54/&%. We multiply (4.1) by 7y (k) and sum overk € {1,2,...,N — 1}.
After performing a discrete integration by parts, we are left with (now a boundary term is appearing):

Z kT U ﬁ N/l)l/ﬁ<

. ( Um(pl}/,/l) _ Um(ﬁy’ﬁ ) . Z - (pw [C 2, xkt + )+ x(kt — 7) 2X(k‘l')]> +Ce.

T2

With the help of Proposition 3.8 and Corollary 3.4 or Corollary 3.6, and as y(T) = 1, we are able to write (provided
that 7 < &/3)

1
Y tUmlp) < cnr (mUm@?*w["’z*—z] > TUm@ff)) +on.
&

T\ —¢/3<kt<T T\ —e<kr<T

To transform the boundary term U, (ﬁ]}”) into an integral term, we use the following lemma, whose proof is also
postponed in Appendix A.

Lemma 4.6. Let (u])icz be a family of real sequences indexed by a parameter . We assume that there exists
w = 0 such that for any k € Z and any 7, one has u;, > 0 and (4.2). We also assume that there exists b > 0 such
that for some N € Z,

.
N1« buyt.
T

Then, there exists Cy and C, universal constants and 1o (which depends on w and b), such that for any n <
min{n/(32w), n/(32b)} and any T < 1, then
C
wy<— > (4.4)

n kN—n<kt<kN
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and for any T; < N,

1/ _ 1+1/8
( 2 TM£> <G w+ DI =T+ 1) Z T(u;)'/ﬁ. 4.5)

T1<kt<Nt n T\ —n<ktr<Nt

We are in the case where this lemma can be applied because of Corollary 3.4 or Corollary 3.6 and Proposition 3.8
with uj = U, (p]]:’r”) w = Cm and b = Cm. Thus, if ¢ < C/m, we can guarantee that we can use equation (4.4) of
Lemma 4.6 (with &€ = 7)), thus

1
Z tUnus(py)VP < Ct + Cm? [g +m* + ;] Z U (Pr).

T\ —&/3<kt<T T\ —e<kt<T

Then we use equation (4.5) of Lemma 4.6 (but this time with u; = Upg, (pkNT’A)) to exchange the sum and the power
1/B on the Lh.s. to conclude that

1/8
~N,A m’ [m 2 1 _N,A
Z TUmﬁ(ka ) < C; ; +m” + ; tgq + Z TUm(ka ) .

T1<kr<T T —e<kt<T

Again, we have put m*s~! (me™! + m? + £72) in factor of fy'» which is legit because this factor is larger than 1 for
& small enough. Taking the power 1/m on each side, using the identity (a 4 b)'/" < C max(a'/™, b'/™), and letting
N — 400 and 4 — 0, we get the result. O

It is then very easy to iterate this result, which looks exactly like Proposition 4.2. Thus, the proof of the
following proposition, which is exactly the same as Proposition 4.4, is left to the reader.

Proposition 4.7. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold, and that Assumption
5 also holds. Then, for any 0 < Ty < T, there exists C (that depends on T, T, f,V and Q) such that

limsup L7, ; < C max (Lg;z, to) .
m——+00
4.3 The weak congestion case

The scheme is very similar in the weak congestion case, even though the iteration is not as direct as in the strong
congestion case. Moreover, we will directly prove an L* bound up to t = T, because, as we will see, Assumption
5 will be needed anyway to initialize the iterative process. The proofs will be less detailed in this case: the reading
on the two previous subsections is advised to understand this one.

Proposition 4.8. Suppose Assumptions 3, 4 and 5 hold. Then there exist constants C| and C, (depending on f,V, T
and Q) such that, for any 0 < € < C;/mand any 0 < Ty < T such that 0 < Ty — g, then for any m = my,

Blnt1+) m*? (m 1y w \mlntita)
LT| T < CZT Z +m + ; max |:(LT1 —S,T) . t():l .
Proof. The proof starts the same way: starting from Corollary 3.5, we write

~N,A _N,A _N,A
Um(p(kfl)r) + Um(p(kJrl)-r) = 2Un(pys")

2

Ug(mi1+a) (PP < Cm? + CmU, (YY) | + Ciptt™e. (4.6)

Because of Assumption 5, we can also write, tanks to Proposition 3.8, that

Un(Py*) = Un(py)

- > —(m— 1) AW Un(p} ).
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We use the same cutoff function y that in the proof of Proposition 4.5. We multiply (4.6) by 7y (k7), perform a
discrete integration by parts and end up with

Un (pN’A) - Um(pN’jT) 1
Z TU,B(erler) (pkNT,/l)l/ﬁ < Cm2< T r + [m + ;] 2

T1—&/3<kt<T

rUm(p,T;”)> + Cprtite

T T1—e<kr<T

I
< Cm? (mUm(ﬁ]TV’”) + [m + ;] > rUm(ﬁin)> +Cprtive,

T1—e<kr<T

We also use Lemma 4.6 but this time with w?> = Cm (this is Corollary 3.5) and b = Cm. The frequency w?
is smaller than in the strong congestion case (where it was of the order m?) because we have made stronger
assumptions on the potential V, though this is not important as we only use the fact that w grows not faster than a
polynomial of m. With this lemma we can both transform the boundary term into an integral term and exchange
the sum and the power 1/8: there exists C; such thatif 0 < & < C;/m and if 7 is small enough,

1/B
_ (ym+ 1)T'HVE _
( Z TU[;(mHm)(pka)) <C——mm Z TUpins1+a) (P )P

E
T\ <kt<T T\—&/3<kt<T

5/2 1
<c— (ﬂ +m+ ;) (fg’“” + Z TU,,,(,EQQ’B) :

€ € T)—e<kr<T

We take the power 1/(m+ 1+a) on both sides, use the fact that (a+b)"/("+1+®) < C max(a!/(n+1+a) pl/(nt1+e))
and let N — 400,14 — 0 to get the result. O

We proceed the same way by iterating the inequality, even though this expressions are slightly more complicated.
Let us underline that the condition (2.5) on 3 is precisely the one that ensures that 8(m + 1 + @) > m as soon as
m = my: it is only thanks to this condition that the iteration of Proposition 4.8 will give useful information.

Proposition 4.9. Suppose Assumptions 3, 4 and 5 hold. Then, there exists y < +00 such that, forany0 < Ty < T,
there exists C (that depends on T1, T, f,V and Q) such that

y
limsupLy » < C (max [LSI,OT’ to])

m—+00

Proof. As we know, thanks to our normalization choices, that Lg"’T > 1, it is not restrictive that assume that 7y > 1

(indeed, if this is not the case, Assumption 3 is still valid with fo = 1 and the content of Proposition 4.9 does not
change).

Once we have chosen &y < 8T/(8 — 1), we define T} by the same formula as in the proof of Proposition 4.4.
We also define m, by recurrence: for any n € N, we take m,+1 = B(m, + 1 + ). Thus, we have the explicit
expression

m, = (mo + (¢ + 1)%),8” —(a+ 1)[%.

In particular, (m,).en diverges exponentially fast to +00 as n — +00. Using Proposition 4.8 and as 1y > 1, we get

1/(my+14+a
o P ( m o] > e [(L )'""/<mn+1+a> t]
wrt o S| G2 my + ——— max " J 1o
T 0B \ &S (g08~")2 T

1/(my+a+1) my,/(m,+a+1)
< [Cﬂ“"/z] max ([L’"” to]) )

T;I,T’

Denoting by Z, := In (max [L'}l,l’fj, to]), we see that

11n Cy m,
+ + L.
2mp+a+1) my+a+1 my+a+1

ln+] < C3
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Given the exponential asymptotic growth of (71, ),en, We leave it to the reader to check that is enough to conclude
that limsup,_, , I, < ylo + Cs for some y < +00 and C4 < +00. Taking the exponential gives

limsup L™ < C o wl)
lmESNup T;',T X max 0.7 t() .
n

To conclude, we use again (4.3), which is valid independently of Assumption 1 or Assumption 3. O

However, in the weak congestion case, the fact that L:)"OT < +oo will require a little bit more of work and relies
on the particular form of the boundary conditions.

Proposition 4.10. Suppose Assumptions 3, 4 and 5 hold. Then there exists Ty, (Which depends on f,V,¥ and Q)
such that, if T < Tpax,
Ly < +co.

Proof. Again we will use the almost convexity of Uy, (6"*!). Indeed, we rely on the following lemma, which has
the same flavor as the "reverse Jensen inequality" and whose proof is postponed in Appendix A.

Lemma 4.11. Leta > 0, b = 0 and w > 0 and set Tpax = min{n/(32w),n/(32b)}. Then there exist some
constants C < 40 and 19 > 0 (all depending on a,b and w) such that for any T < Tyar, any N > 1/1
(7 := T/N) and for any sequence (u; )i € Z of strictly positive numbers satisfying (4.2) for k € {1,2,...,N — 1},

and such that ”6 = aand

ut, | —ut
N—1 N -
f = —buN»

one has u; < C foranyk € {1,2,...,N}.

We use this lemma with u; = Uy, (pkNT’A). Equation (4.2) is satisfied with w?> = Cmy (Corollary 3.5); one can take

_ — 1 —m
0= Un ) = UnF0) = o [ ™

and we take b = (mg — 1)|AW/| (cf. Proposition 3.8). Thus, one can conclude that if 7 < Tiax, then Uy, "Q’T”])

is bounded independently on N. This is enough to conclude that L. is finite. O

5 Limit of the discrete problems

In this section, we will see that the solutions p¥! of the discrete problems (DiscrPb) converge to the solution p of
the continuous one (ContPb) when N — 400 and 4 — 0. Then, using the results of the previous sections, we will
be able to show the L* bound on p.

5.1 Building discrete curves from continuous one

In our construction we will need to work with curves with finite entropy. This is easy under Assumption 1 of 2, but
requires an approximation in the case of Assumption 3. Hence, we will show that in this case we can approximate
curves in I' by curves in I' with finite entropy. In order to do this, we will use the heat flow, whose definition and
some useful properties are recalled below. For any s > 0 and any u € P(Q), let us define O,y := u(s), where u is
the solution of the Cauchy problem

Ou = Au in (0, +00) x Q
Vu-n=0 on(0,+0) x 0Q
lin& u(t) =p inP(Q)

—

In the equation above, n stands for the normal vector to the boundary 0Q. Provided that the boundary 0Q of
Q is smooth, it is well known (see for instance [6, Section 7] and [28]) that this Cauchy problem is well-posed
and admits a unique solution. Because of the no-flux boundary conditions, ®u € P(Q) for any s > 0. Let us
summarize the properties of the heat flow that will be useful to us.
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Proposition 5.1.

1. There exists C (only depending on Q) such that for all u € P(Q) and any s > 0,
D] o < Cs™42 4 1.

2. Ifh : R — R is any convex function bounded from below, p € P(Q) n L'(Q), and s > 0,

| pl@p)) ax < | Hlpeo) ax

If h is not superlinear, the same stays true for any p € P(Q) by replaing the integral §, h[p(x)] dx with the
expression in (2.3).
3. Ifuandv e P(Q), and s = 0,
Wo(Ouu, @gv) < Wa(u, v). 5.1

4. Let u € P(Q) with Uy (i) < +00. Then the curve s — ®gu is 2-absolutely continuous and for any s = 0,
| 100w ar = v) - (@40 (52
0

Proof. The first point is a classic L — L! estimate for the heat equation, see for instance [6, Section 7].

To prove the second point in the case of p € L', let us denote by K,(x,y) the heat kernel (see [6, Section 7]).
Using in particular Jensen’s inequality and the fact that SQ K:(x,y) dx = 1 for any y and ¢ (because L is invariant
under the heat flow),

[ rt@pen o= [ ([ ko) o) o
< LXQ K;(x,y)h(p(y)) dy dx

- f Hp()] dy.
Q

The proof in the case where % is not superlinear and p is not absolutely continuous is obtained by writing p =:
p% L + p*™s. Observing that #'(c0) is the Lipschitz constant of i, we have

| ri@pn o |

h[(@p™)(x)] dx < K (0) f |D,0""8|(x) dx = h'(00)p* "% (Q).
Q Q

The proofs of the third and last points rely on the fact that the heat flow is the gradient flow of the entropy U, in
the Wasserstein space and can be found in [3, Theorem 11.2.1]. m]

Proposition 5.2. Suppose Assumption 5 holds and that pq is such that U;(pg), F(po) < +0, and let p € T with
00 = po- Then, for any & > 0, there exists p € T with py = py and C < +00 such that A(p) < A(p) + € and
Ui(p;) < Cforanyte[0,1].

Proof. Without loss of generality, we assume A(p) < +o0. The idea is to use the heat flow to regularize solutions.
But we cannot apply the heat flow uniformly, as we would loose the boundary condition pg = pg. Consequently,
forany 0 < s < T, we define p* € P(T') by

@,(po) fo<r<s
p(1) = t—s . .
D, (p T T ifs<t<T

— S

In other words, we take the curve ®,p, squeeze it into [s,T], and use the heat flow to join pg to p, on [0, s]. In
particular, 5 = po = po and pj. = ®spr. From U(pg) < +c0 and the fact that U, is decreasing along the heat
flow (see Proposition 5.1), U, (p;) is bounded by U, (po) if € [0, s] and by a constant C, (depending only on s
and Q) if 7 € [s, T]. Hence, for any s > 0, there exists C < 400 such that U;(p;) < C forany ¢ € [0, 1].
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It remains to show that A does not increase too much because of our regularization process. Using the second
point of Proposition 5.1, one can see that

(T — s)

J; F(p}) dt + G(p}) < sF(po) + J; F(p,) dr + G(pr).

To handle the action of p°, we remark thanks to the third point of Proposition 5.1 and the representation formula
(2.4) that applying uniformly the heat flow decreases the action. Hence, performing a affine change of variables on
[s. 7],

T s . T T .
[P a= [ oip ar 2 [ joipa
0 0 T—sJo

T (.
< Uilpn) = Un(@up0) + 7 | 1o a.
=

By lower semi-continuity of U; and as U (po) = U (po) is finite, one concludes that
T T
lim supf 165 dr < J lo:|? de.
s—0 0 0

Finally to handle the term involving the potentials, one uses, by continuity of the heat flow, that p; converges
to p, for any 7 € [0, 1] as s goes to 0. As Sg |p¢|? dr is uniformly bounded, the family (5*)o< <7 is uniformly
equicontinuous, hence p* converges uniformly to p as s — 0. This allows us to write

T T
lim[f JVdﬁfdt—l—JWdﬁ;]:J. J.Vdp,dt—i-J.der.
=01 Jo Jo Q 0o Jo Q

Gluing all the inequalities that we have collected, we see that lim sup,_,, A(5°) < A(p). Hence, it is enough to
take p := p* for s small enough. O

Now, let us show how one can sample a continuous curve to get a discrete one that approximates it.

Proposition 5.3. Let p € T with py = pg be such that Sg Ui(p;) dt < +o0 and A > 0 be fixed. For any N = 1 we
can build a curve pV € Ty with pf)v = po in such a way that

T
lim sup AV (pV) < A(p) + AJ Ui(p;) dt + AU (7).
N—+o0 0

We recall that Ay = 0 by default except if Assumption 5 holds.

Proof. We can assume A(p) < +00. The idea is to sample p on a grid translated w.r.t. TV. We start with the
following observation.

T—1

+ N—1
|3 Flore + a0pier) a5 = | (Flp) + a0 (00)
0 k=1 0

< JT (F(p,) + AU, (p,)) dt + Cr,

0

where C depends only on the lower bounds of F and U,. Therefore, there exists sy € (0, 7) such that

N— T
03 (Flpressy) + Ui (pressy)) < f (F(p)) + AUL(py)) + C.
k=1

Let us define pV € I'y by sampling p on the grid translated by sy: for any k € {0, 1,..., N},

00 if k=0
oV =< pr ifk=N
Pkersy f1<k<N-—1

24



As the boundary values are left unchanged and given the choice of sy, it is clear that
2

! NA/ N T] ) N W ](\;c l)‘r’pk‘r)
() + 2 [ oo+ anviton)) — o) = [ L=y D
0 0

= 2T

The r.h.s. of the above equation is delicate to evaluate because of the non uniformity of the grid near the boundaries.
Recall that if # < s then W3 (o;, p,) < (s — 1) §; |0|* dr, hence

2 _
NoW; (k l)‘r’ka) W22(p07pT+SN) \ 1W§(P(k—1)r+swpkr+s,v) W%(P(k—l)rﬂwPT)
2, 2 - 2 + 2, 2 * 2
=1 T T =2 T T
T+ sy J\T-HN ) J\k‘r-HN ) — sy T 1 -
< o]~ dr + 5 el dr N 5 lod|” dt
2t Jo t 2 k—1)r+s, 2 t 20 Jrrigy 2 t
T+ Sy T—7+sy 1 T 1
<f lod? dt+J. Sl dt+f Slod de
0 T+5N 2 T—74+sy 2

T 21'
< f ~|o:)? dt + f 2|,<'>,|2 dr.

In particular, we have used 7 + sy < 27 and 7 — sy < 7. Letting N — +00 (hence 7 — 0), we end up with

N WS P (T
. (k NPkt f 1. 2
lim su E — < — dz,
N—>+O<I>)k=1 2t 0 2|pt|

and this is enough to conclude. O

Corollary 5.4. Under the assumptions of Theorems 2.10, 2.11 or 2.12, there exists C < +00 such that, uniformly
inN = 1and A€ (0,1], one has
ﬂN’/l (pN,/l) g C.

Proof. If we are under the assumptions of Theorems 2.10 ot 2.11, we take p € T such that A(p) < +00. As
Ui < CyF + C, we see that Sg Ui(p;) df < +oo. If we are under the assumptions of 2.12, we take p € T such

that A(p) < +oo and regularize it thanks to Proposition 5.2. For this regularized curve, one has Sg Ui(p;) dt +
AU, (pT) < —+o00.

In any of these two cases, we construct p as in Proposition 5.3 and define C := supy; A" (p"), then we
use the fact that AV (pN1) < AN (V) < C. O

5.2 Solution of the continuous problem as limit of discrete curves

We will build a suitable interpolation of the discrete curves p™** that will converge to some continuous curve 5 as

N — 400 and 2 — 0, and we will show that p is a solution of (ContPb).

As the order in which the limits N — 400 and 4 — 0 are taken does not matter, we will do them in the same
time. We take two sequences (N, )nen and (4, )en that go respectively to 40, and 0 (the second one being strictly
positive). We will not relabel the sequences when extracting subsequences. Moreover, to avoid heavy notations,
we will drop the index n, and lim,,_,;,, will be denoted by limy_, + o 1—0. We will need to define two kind of
interpolations: one filling the gaps with constant-speed geodesics, and the other one by using piecewise constant
curves.

Definition 5.5. If N > 1 and A > 0, we define p™* € T as the curve such that p¥* coincides with pN* on TV,
and such that for any k € {0, 1,..., N — 1}, the restriction of ™ to [kt , (k + 17)] is the constant-speed geodesic

L N N

joming p,” to p(k_H)T.

As ,5,]:’;” is absolutely continuous w.r.t. £ for any k € {1,2,...,N — 1}, the constant-speed geodesic between
[)kNT’A and [)](\;(’i])T is always unique. From the characterization of constant-speed geodesics, one has, for any k €

(0,1,...,N 1},
. 2/=NA =N.A
(k+1) 1ax W; )
kTt 2

kr Pty
27

2
’ dt =

L1
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Summing these identities over &,

’2 N Wz(P(k ]).ﬁpi\{r/l)

T

]'N/l

— MY dr =y —mM— 5.3
jozp, D - (5.3)

In other words, the continuous action of the interpolated curve p™* is equal to the discrete action of the discrete
curve pN A

Definition 5.6. If N > 1 and A > 0, we define p™* : [0, T] — P(Q) as the function such that ' coincides with
PNt on TV, and such that for any k € {0,1,...,N — 1}, the restriction of ™ to [k, (k + 17)) is equal to ﬁkNT”l.

The curve 5™ is not continuous as it might admit discontinuities at every point in V. Let us underline that the
following identity trivially holds:

N—1

T—1
> T<F(p,ff)+f Vdﬁ?’r”l) =J <F(,5f“) +J d~’“> dr (5.4)
=1 Q 0 Q

Proposition 5.7. Under the assumptions of Theorems 2.10, 2.11 or 2.12, there exists p € T such that p* and pN*
converge uniformly to p as N — +0o0 and 1 — 0.

Proof. Let us denote by C the constant given in Corollary 5.4. As all the terms in A are bounded from below
and given identity (5.3), one can see that there exists C; such that

J. E
0 2
uniformly in N > 1 and A € (0, 1]. Thus, by compactness of the sublevel sets of the action (Proposition 2.7), one
concludes of the existence of p € I such that p™* converges uniformly (up to extraction) to 5 as N — 400 and

A — 0. Moreover, one can see that for any # € [0, 7] and any N > 1, by setting k to be the largest integer such that
kT < t, one has

AN, A

2
pt‘

dt < C

Wa (B, ) = Wa (o). o) < W L AW‘ ds < /2Cy7.

This allows to conclude that 5¥4 also converges uniformly to p as N — 400 and A — 0. O

Proposition 5.8. Under the assumptions of Theorems 2.10, 2.11 or 2.12, the curve p is the solution to the contin-
uous problem (ContPb).

Proof. Taking the limit N — +00 and 4 — 0 in (5.3), as the action is L.s.c., we end up with

54
Tl|; ) (pk l)T’pk‘r

0,” dt < 11m1nf _
0 2 N—+00,1-0 [— 27

Then, to handle the terms with the potential and the congestion, one can notice that for any ¢ € [0, T], by lower
semi-continuity of F' and the convergence of ﬁfl 1o py,

_ 5, < limi <N, 5N
F(pt)+LVdpt yminf F(5,) + QVdp,

Thus, using Fatou’s lemma, as F, V and U; are bounded from below, one has for any 7y > 0,

T—19 Tz
J. F(pr) +J Vdp, | < liminf f F(pi“) +J. Vdﬁﬁv,/l dr
0 Q N—+00,1—0 J o

N—1
= liminf Y7 <F(p§jﬁ) +J Vdﬁ,ﬁ”) dr
Q

N 00,4—0
—reA=0 T
N—1

< liminf T <F(p§jﬁ) + J Vgt + AU, ‘,T;”)) .
Q

N—>+00,1-0
—red0 T
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In the equation above, 7y is arbitrary thus it is still valid for 7o = 0. As moreover the boundary penalization ¥ is
Ls.c. and the entropic penalization Ay U, (or) is positive, one is allowed to write that

A@p) < liminf AN (V).

N—+00,1—0

Let us assume by contradiction that there exists p € I such that A(p) < A(p). Using, if needed, Proposition
5.2, we can assume without loss of generality that A(p) < A(p) and Sg Ui(p;) dt + AyU,(pr) < +0o0. Using
Proposition 5.3, for any N > 1, we can build p" € 'y in such a way that

T
lim sup AY (pV) < A(p) + AJ Ui(p;) dt + AU, (7).
N—+o0 0

Taking the limit 4 — 0, one can see that

limsup AV (oY) < Alp) < AP) < liminf  AV(N).
N—+00,1—0 N—+00,1—0

Taking N large enough and A small enough, we conclude that AV (p") < ANA(pN1), which is a contradiction
with the optimality of p*1. o

5.3 Uniform bounds on p

To conclude and prove the Theorems 2.10, 2.11 and 2.12, it is enough to show the L* bounds on p, which of
course we will prove using the discrete solutions p™1. The key is the following proposition.

Proposition 5.9. Let 0 < T} < T, < T. Then forany0 < T{ < Tyandany T, < T, <T (orT;y, =T, = T in the
caseT, =T),

m

esssup |5;(x)| < limsup L7, .
72

T <t<T,xeQ m—+00

Proof. We rely on the well-known identity

T, 1/m T, 1/m
esssup  |p,(x)| = limsup (J J or dt) = lim sup (J U (pr) dt> .
T\ <I<T», xeQ m—+o \J1, Jo m—+a0 \J7,

For a fixed m > 1 and for 7 > 0 small enough, one has

T
J Un(p)de< > tUn(p").

U T|<kr<T},

When sending N — o0 and A — 0, by lower semi-continuity of U,, and by convergence of 3 to p, we know that

7 .
J Un(p;) dt < liminf J Un (M) dt

T, N—+0,1-0 J7.
. ~N,
< lminf, 2 (i)
Tl’ék‘rgTé
Taking the power 1/m on each side and by definition of L{;-l],»Té’ one gets
T 1/m

(J. Un(pr) dt) < L’}’I,’T;.

T, 2
It is enough to take the limit m — +0c0 to get the announced inequality. O

We can now conclude the desired bounds:

27



Proof of Theorem 2.10. Combining Proposition 5.9 and Proposition 4.4, it is enough to show that Lg;z < +o0.
Because of Assumption 1 or 2, we know that U,;» < C1F + C, with C; > 0. Hence, in order to conclude that
Lg}z < 400, it is enough to use Corollary 5.4, which provides a constant C < +0o0 such that for any N > 1 and
any 1 € (0, 1] we have

N-1

2 TF (p,f'f) <C. mi

k=1
Proof of Theorem 2.11. We combine Proposition 5.9 and Proposition 4.7, as we saw that Lg’;z < 400 (in the proof
of Theorem 2.10). m|
Proof of Theorem 2.12. 1t is enough to combine Proposition 5.9 with Propositions 4.9 and 4.10. O

A Reverse Jensen inequality

In this section, we prove Lemma 4.3 (the "reverse Jensen inequality") as well as Lemmas 4.6 and 4.11, whose
proofs were postponed in order not to overload the key arguments of the paper. In all the sequel, we consider a
family of sequences (u} )icz indexed by a parameter 7 > 0. We assume that there exists w > 0 such that for any
k € Z, one has u; > (0 and

Uy Uy — 2up
2

+ wul = 0. (A.1)
.

This inequation is a discrete counterpart of the differential inequality u” +w?u > 0. Let us remark, by the positivity
of ug, that we can assume without loss of generality that w > 0, even though the proofs are considerably simpler
if w = 0: the constants would be better, and the strategy of the proof would be slightly different. The key point to
handle i is to compare it with explicit sequences realizing the opposite inequality in (A.1).

Definition A.1. For any T > 0, let T° be the set of sequences (vi)iez, of the form vy = A cos(2wkt + §).

Lemma A.2. There exists o > 0 such that for any T < 1o, if (v )xez € T and k is such that vi > 0 then

Vel + Vie1 — 2n
2

+ Wt <0
T

Proof. This is a consequence of the trigonometric identity

Vi1l + Vk—1 — 2V, cos(2wt) — 1
G kz 1 £ + W = (2—( 2) + w* ) v
T T
cos(Qwt) — 1 ) )
and the fact that 2————— + w” ~ —3w" as 7 goes to 0. O
T

We also note the following properties on the sequences in 7 7, that we do not prove and leave to the reader as

an exercise.

e if ky < k; are fixed with |k; — ki|tw < 7/8 and 7 is small enough, then for every fixed positive values
ai,ay > 0 there exists a unique sequence in 7 with v, = a; and v, = a,. Moreover, such a sequence
(vi)kez is such that there exists an open interval I of the form either (kot, k17) or (ko7, k37), with length at
least 71/ (8w), with v; > 0 for all the indices k such that k7 € I.

e ifkj < Nand b > 0 are fixed and |N — k|t < min{r/(8w),n/(8b)} and 7 is small enough, then for
every a > 0 there exists a unique sequence in 77 with v, = a and (vy — vy—1)/7 = bvy. Moreover,
such a sequence (vg)iez is such that there exists an open interval I of the form (kot, k;7) with length at least
min{n/(32w), 7/(32b)}, with v; > 0 for all the indices k such that k7 € I.

Note that, for the purpose of Lemma A.2 and of the subsequent observations other choices of v, were possible,
such as vy = Acos((1 + &)wkt + &) for some € > 0, but we chose &€ = 1 for simplicity in the next computations
(more generally in this appendix we have not been looking for the sharpest constants). Indeed, all these results are
not surprising: at the continuous level v solves v/ + 4w?v = 0 and most of the discrete results are just an adaptation
of this property. The important point is the following comparision principle between (u[)rez and (vi)iez.
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Lemma A.3. Ler ki < kp such that |k, — ki|tw < 7n/8 and assume T < 7. Let v € T the unique element of T*
such that vy, = u;l and vy, = u . Let ko (resp. k3) be the largest (resp. the smallest) index smaller that k; (resp.
larger than k) such that v, < 0 (resp. Vig+1 < 0).

Then u;, < vy for any ki < k < ky and u, > vy for any ko < k < ky and any ky < k < k3.

In other words, u" is below v between k; and k, and above outside k; and k, (as long as v = 0).

Proof. The fact that there exists only one v € 77 such that vy, = u, and v, = Uy, has been already observed
above. Let us define wy = u — v. By (A.1) and Lemma A.2,

Wil + Wi — 2w
Sl AR L Pwp >0 (A2)
-
for any kg < k < k3 and wy, = wy, = 0. We want to prove wy < O for every k1 < k < kp. We consider

the piecewise affine interpolation w of the values wy: a function which is affine on each interval [k7, (k + 1)7]
and is equal to wy at the point k7. The condition (A.2) translates on w as differential inequality in the sense of
distributions:
W+ W Wbk = 0. (A3)
k
Let us assume by contradiction that there is an open interval I — (k;7, ko7) on which w > 0, with w = 0 on 1.
We denote by |I] the length of such an interval, and we have |I| < |k, — k;|7. By multiplying the above inequality
by w and integrating by parts we get

f W|* = —Jw”w <o Y Tlwl
1 1

Then, we observe that we have, for each k s.t. kt € I,

1 1
wks—fw’g— IJWZ.
il <5 | 1W< 3101 1

The reason for the factor 1/2 in the above inequality is the possibility to choose to integrate w' on an interval at the
right or at the left of k7, and to choose the one where the integral of [#| is smaller. This implies

1
J |W’|2 < 0)27' #{k ckt e I}Z|k2 — k1|TJ |W’|2_
! 1

Since {k : kr e I} < {k : ki < k < ky}, we have #{k : kT € I} < |k, — k;| and the contradiction comes from the
assumption wrtlk, — k| < /8 < 2.

In order to prove wy, = 0 for kg < k < ky, we first observe that (A.2) for k = k;, now that we know wy, +1 < 0,
implies wi,—1 > 0. If for some k with kg < k < k; we had w; < 0, then we could find an open interval
J < (kot, k17) where w > 0 with w = 0 on 0J. We then apply the same approach as above, thus obtaining

1
f WP < ot #lkkre J}—|J|J. 2.
J 4 J

It is important to not that J is contained in an interval of positivity of a function of the form A cos(2wt + 6),
whose length is 77/(2w); the number of points of the form k7 contained in an interval of such a length is at most
n/(2wt) + 1 but for k = ky, k, the point k7 does not belong to the open interval J. Hence #{k : kt € J} < n/(2wr),
and we have a contradiction since 7> < 16. m]

We provide now a variant in the case where on the interval (k; 7, k7) we impose a different boundary condition
on the right end side.

Lemma Ad4. Let ki < N and b > 0 such that |N — k||t < min{n/(8w),n (8b)} and assume T < 1¢. Suppose
(uy — un—1)/7 < buy. Let v € T7 the unique element of T* such that vy, = uy, and (vv — vy—1)/T = bvy. Let ko
be the largest (resp. the smallest) index smaller that kysuch that vi,— < 0.

Then u;, < vy forany ky < k < N and up > v; for any ko < k < k.
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Proof. The argumentis very similar to the one in Lemma A.3. We first define wy = ux—vy, as well as the piecewise
affine interpolation w of the values wy, which satisfies again (A.3), but also w/(T') < bw(T), where T = Nr.

Then, we assume by contradiction that there is an open interval I  (k;7, N7) on which w > 0. If w = 0 on 0/
(i.e., on both points on the boundary), the argument is really the same. Otherwise, we can assume I = (¢, T'), with
w(r) = 0. By multiplying by w and integrating by parts we get

W2 = w(T)W(T) — fw”w <HIP+a? Y il
1 k : krel

7] <f|w’| < 4/|1|f|w'|2.
I I

We do not have anymore the factor 1/2 because w only vanishes at one end, now. This implies

Then, we use that on / we have

JWP <1 (wZT#{k:kTe1}+b)J|w/|2.
1 1

Since #{k : kt € I} < |N — k| and |I| < |N — k|, using the assumptions on [N — k| we have
2
P < (T (z) J-/z’
[we<(G+G)) [

f+(f)2<l+l<1 O
8 8 2 4 '

With the two lemma above, we are able to deduce some Harnack-type inequality, which means that we can
control the values of a u satisfying (A.1) in the interior of an interval with the values of u outside the interval.

This is a contradiction, since

Lemma A.5. Let k| < kp such that |ky — ki |tw < n/8 and assume T < 1. Let ko (resp. k3) be the smallest (resp.
largest) integer smaller than k, (resp. larger than ky) such that (ky — ko)tw < /8 (resp. (k3 — ka)tw < 7m/8).
Then one has

sup u; < Cmax < inf wu;, inf u[) ,

ki <k<ks ko<k<k ky<k<ks

where the constant C is universal.

Proof. Given the symmetry of the property we want to prove w.r.t. to time reversal, we can assume that Uy, < up .
Letv € 77 be the unique element of 777 such that vy, = u and vi, = u; . We know that it can be written in the
form vy = Acos(ktw + §) with A > 0. In particular, A > |v| for any k € Z. Up to a time translation, we can
assume that 6 = 0 and k; < 0 < k,. By the hypothesis uj < u; , and |k> — ki|tw < /8, we can even say that
|k2| < |k1]; thus, one has ko7 < 7/(16w). In particular, for any k, < k < k3, we can say more than v; > 0:

vk = A cos (2wksT)
= Acos 2kywt + 2(ks — ko) wt)

>cos(ﬂ+ﬂ)s [ve|
SR T aREM
1

= =S

/Ck}é;'v}(/L

with C = cos(37/8)~! < +oco. Thus, by using the comparison between u” and v (Lemma A.3), one can say that,
for any ky < k < k3,

1
sup  uy,

up = —
C k<k't<k,

which easily implies the claim. O

We also provide the same type of lemma but where a different condition is imposed on the right end side,
namely a Neumann-type boundary condition.
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Lemma A.6. Let ky < N and b > 0 such that [N — ki |t < min{n/(32w),n/(32b)} and assume T < 7¢. Suppose
(uy—un—1)/7 < buy. Let ko be the smallest integer smaller than ky such that (ki —ko)T < min{n/(32w), /(32b)}.
Then one has
sup u, < C inf u,
ki ngiw k kosksky

where the constant C is universal.

Proof. The strategy of the proof is the same than for Lemma A.5. We take v to be the unique element of 7 such
that vy, = u and (vw — vy—1)/7 = bvy. We know that v is of the form vi = A cos(2krw + 6). Up to a time
translation, we can assume that N7 = 0 and take § € (—n/2,7/2). Starting from (v — vy—1)/7 = bvy and using
well known factorization formulas, one ends up with

b = —2wtan(6) + O(wr).

Thus, if 7 < 79, one can say that arctan(—b/w) < 6 < arctan(—b/(4w)). Hence, using the fact that arctan(z) +
arctan(1/t) = —n/2 (if t < 0) and that min{nz/4,7/4} < arctan(¢) < ¢ (if r > 0), one concludes that

m'n{ 7r+7rw ﬂ}<6<min 7r+4w0
1 - = s x x -5 ) .
2 4b° 4 2 b

In other words, ¢ cannot be too close to —n/2, the point where the cosine vanishes. Given the information that we
have on k; and kj, one can check that

6 — 2wtky = 6 — 2wtk) — 2wt (ko — ki)

. T w7 . oW
>mm{——+ —}—2mm{ }

24 4 16" 16b
> min 75+@ i
- 2 8’ 8

As, for every kg < k < N, one has
Acos(6 — 2wtky) < v < Acos(6),

it is easy to conclude that

~ 4
?quosksN Vk < cos(min{—7% + 52,0}) <c
infy,<k<v vk cos(min{—% + %2, 3})

where the value of C can be estimated by noting that if w/b « 1 both the numerator and the denominator are of the
order of w/b and if w/b is not small the denominator is far from 0 and the numerator is bounded by 1. This proves
that C is a universal constant. It remains to use Lemma A.4 to transfer the above inequality into an information on
u'. O

To conclude, we can prove the Lemmas 4.3, 4.6 and 4.11 that we used throughout the paper, by using the above
results. To prove Lemma 4.3, we cut the interval [T, T,] into several pieces of length of order 1/w, on each piece
we use the Harnack inequality to exchange the sum and the power 1/B3, and we use rough comparisons to put the
pieces together.

Proof of Lemma 4.3. Let M be the smallest integer larger than 8w(T> —T)/m+ 1. We cut the interval [T , 7] into
M closed intervals Iy, I, . . ., Iy of equal length (all equal to (T, — T1)/M < n/(8w)). Let us choose an interval I;,
we can use Lemma A.5 to write

1/
(2 ) < (1] + )V sup(uh) /¢

k : kel krel;

<C(|I;|+T)1/ﬁ< inf  (uf)"# 4+  inf (u;)'/ﬁ)

T —n<kr<T} Ti<kt<Ti+n

Il +7)'f
<C(| | T) Z (u;(')l/ﬁ’
n k: kreli+n
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where I; + n denotes the set of real numbers which are at a distance at most 7 of I;. Then we put together the
estimate for each /;:

( D m;>]/ﬁ< (i > m;>l/ﬁ

T\ <kt<T> i=1k: krel;

M 1/8
< Ml/ﬁZ ( 2 TM;)

i=1 \k: krel;

<cmr (=1 RS /8
< T +7 - 2 Z T (uk)
n i=1k: kreli+n

M(T, — T, + Mz)'/#
<C (T> 1 7) 2 T(ul)l/ﬁ
n T —n<kr<T,+n
+ 1)(Ty — Ty + 1) +1/8
cclet B n] v (),

T1—n<kr<Ty+n

where we have used the fact that Mt < 1 if 7 < 79 (where 7y depends on w) and also that M can be estimated by
a constant times w + 1. O

Proof of Lemma 4.6. For the first part, we apply Lemma A.6 with k; = N. With the choice of 7, one has (k; —
ko)t < min{n/(32w), n/(32b)}. Thus, one can write that

uy <C inf  u,
N T—p<kr<T K
which is enough to to conclude as the r.h.s. is bounded by the mean of uf, for T —n < kr < T.
For the second part (which is a variant of Lemma 4.3, but with Neumann boundary conditions on one side), we

can say with the help of Lemma A.6 that with &, the smallest integer smaller than N such that [N —k; |7 max{w, b} <
n/32,

1/8
( Z Tul) <|T—kt+7"% sup (uf)"P

kr<kr<T ki t<kr<T

<CIT -kt + T|1/ﬁk inf  (uf)VP

1T—n<kr<kit

1
< C|T—k1T+T| /ﬁ Z l/ﬁ

()
n kt—n<kr<kt

Then, we combine this estimate with the interior estimate Lemma 4.3 (with T, = T — k;7) to end up with the
announced result. O

Proof of Lemma 4.11. We apply Lemma A.6 with k; = 0. Thus if 7 = kN < min{n/(32w),7/(32b)}, one has

sup u; < Cujy = Ca.
0<kr<T

Thus, the Lh.s. is bounded by a constant which does not depend on N. O
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