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Introduction

In precision medicine, the discovery of causal genes and efficient drug targets is challenged by the complexity of the genotype-phenotype relationship. A key milestone in this challenge is the ability to understand how cell behaviour arises from the synergistic effect of local molecular interactions [START_REF] Vidal | A unifying view of 21st century systems biology[END_REF]. Accordingly, cells are envisioned as a web of macromolecular interactions constituting the "interactome" from which phenotype changes are explained by perturbations of molecular interactions [START_REF] Vidal | Interactome networks and human disease[END_REF]. At the molecular level, the phenotypic changes are assessed by the measure of the state of some molecules, called biomarkers, that are defined as observable and objective characteristics of biological processes. They are used to assess the shift between normal and pathological conditions [START_REF] Strimbu | What are Biomarkers?[END_REF] and to predict the appropriate treatment [START_REF] Csermely | Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review[END_REF]. Inferring, from the interactome, the molecular causes of phenotypic switches assessed by biomarkers will thus constitute the root for the development of efficient therapies, by predicting the actions at the molecular level directing cells from a diseased toward a healthy state.

In cancer, cells acquire phenotypes with characteristic cancerous hallmarks such as uncontrolled proliferative activity, apoptosis resistance and invasiveness [START_REF] Hanahan | Hallmarks of cancer: The next generation[END_REF]. These phenotypes are caused by multigenic mutations altering molecular interactions. Therefore, a preliminary issue concerns the definition of the effects of mutations on the interactome. In [START_REF] Zhong | Edgetic perturbation models of human inherited disorders[END_REF], the authors relate mutations to their network effect and introduce the notion of edgetic perturbations of molecular networks: nonsense mutation, out-of-frame insertion or deletion and defective splicing are interpreted as node or arc deletions whereas missense mutation and in-frame insertion or deletion can be modelled as node or arc addition. Moreover, in [START_REF] Creixell | Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling[END_REF], the authors classify mutations according to the way they affect signalling networks and distinguish mutations that constitutively activate or inhibit enzymes and mutations that rewire the network interactions. The effect of mutations on molecular networks can thus be described as elementary topological actions of deletion or insertion of nodes and arcs. Symmetrically, targeted therapies switch cancer cells phenotype toward growth arrest and apoptosis. Their actions can also be interpreted as network rewiring [START_REF] Csermely | Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review[END_REF]. A phenotypic switch following mutations or targeted therapies is therefore considered as the observable trait of a dynamical system reprogramming caused by topological network actions (TN-action).

The inference of TN-actions would provide major insights for etiological investigation of disease, molecular pathogenesis and drug targets prediction by assimilating them to the effects of causal gene mutations (a.k.a, drivers) or actions of drugs. In this endeavour, it is worth noticing that generate-and-test method checking the TN-actions exhaustively is often pointless. Indeed, assuming that an expected phenotypic switch results from the application of a specific gene action up to m amongst n genes, then the number of trials1 equals m k=1 n k . For example, the number of trials for targeting up to 10% on 100 genes exceeds 19 billions2 . Hence, automatically inferring the TN-actions from observable effects is essential to meet this challenge. By considering biomarkers as the entry point of the inference, the issue thus refers to an inverse problem (ie., causes discovery from effects) deducing the sufficient TN-actions from biomarker-based properties variation at stable states.

In this article, we introduce a theoretical framework for TN-action based system reprogramming formalized by Boolean control network. Based on this framework, we develop an algorithm inferring the causal TN-actions that reprogram a Boolean network, redirecting its dynamics to fulfil an expected property. The article is organised as follows: first, we define the Boolean control network framework (Section 2), then we present the inference of causal actions represented by control parameters based on abduction principle (Section 3) and finally, we show its application in breast cancer (Section 4).

Boolean control network

In this section we first review the main theoretical elements used in this article, namely: propositional logic, Boolean network and then we introduce Boolean control network.

Propositional logic

A propositional formula is inductively constructed from atoms composed of constants ( False/0, True/1) and variables V , unary negation operator ¬, and binary logical operators (e.g., ∧/conjunction/and, ∨/disjunction/or). A literal is either an atom or its negation. Given a formula f , V (f ) denotes the set of variables occurring in f . For example, let f α be the propositional formula representing the exclusive or between atom x 1 and the negation of atom x 2 , f α = (x 1 ¬x 2 ), the variables are V (f α ) = {x 1 , x 2 } and the literals are x 1 and ¬x 2 . Let X ⊆ X be a subset of variables f ↓X is the restriction of a formula f to the literals involving the variables of X .

A cube syntactically denotes a conjunction of literals and a clause a disjunction. In this article, cubes and clauses will be assimilated to literal sets when needed. A disjunctive normal form (dnf) of a formula is a disjunction of cubes (ie., i ji l ji ) whereas a conjunctive normal form (cnf) is a conjunction of clauses (ie., ji l ji ). Any formula can be transformed in dnf or in cnf. For example, a dnf of f α is (

x 1 ∧ x 2 )∨(¬x 1 ∧ ¬x 2 ) and a cnf is (¬x 1 ∨ x 2 )∧(x 1 ∨ ¬x 2 ).
Let an interpretation I : V → {0, 1} be a mapping assigning a truth value to each variable 3 , a model of a formula f , I |= f , is an interpretation such that the formula is evaluated to True and a satisfiable formula admits a model at least. For example, f α is satisfiable because the interpretations

I 1 = {x 1 = 1, x 2 = 1} and I 2 = {x 1 = 0, x 2 = 0} are both models of f α . Formula f 1 entails formula f 2 , denoted by f 1 |= f 2 , if and only if any model of f 1 is also a model of f 2 (ie., f 1 |= f 2 def == ∀I : I |= f 1 =⇒ I |= f 2 )
. Hence, the entailment defines a partial order on formulas.

A minterm C I of an interpretation I is the unique cube such that

V (I) = V (C I ) fulfilling I |= C I . For the example C 1 = x 1 ∧ x 2 and C 2 = ¬x 1 ∧ ¬x 2 are
the minterms of I 1 and I 2 respectively. A cube C entailing a formula f is said an implicant of f and it is prime if it ceases to be one when deprived of any literal. Considering the example, C 1 , C 2 are both prime implicants of f α with I 1 and I 2 as model respectively, thus entailing f α : C 1 |= f α , C 2 |= f α . Notice that by contrast to a minterm, an implicant does not necessary involve all the variables of the formula (e.g., x 1 is an implicant of (x 1 ∨ x 2 ) ∧ (x 1 ∨ x 3 )).

3 A mapping will be described x = v instead of x → v for the sake of simplicity.

Boolean network

A Boolean network is a discrete dynamical system operating on Boolean variables X that determines the state evolution of variables x i ∈ X. It is defined as a system of Boolean equations of the form: x i = f i (x 1 , . . . , x n ), 1 ≤ i ≤ n where each f i is a propositional formula. A Boolean state of s is an interpretation of the variables (ie., s : X → B) and S X will denote the set of all states for variables of X. x 1 The model of dynamics of a Boolean network describes all the trajectories of the system by a labelled transition system. For each transition the states of agents are updated with respect to a predefined updating policy. For the asynchronous updating used in the article, one agent only is updated per transition. Hence, the labelled transition system for the asynchronous updating is -→, X, B n where the transition relation -→⊆ S X × X × S X is labelled by the updated agent, xi -→ such that:

x 1 x 2 x3 x 1 x 1 x3 x 2 x 2 x3 x1 x2 x3 F = {x1 = x2 ∨ x3, x2 = ¬x3, x3 = ¬x2 ∧ x1}
s 1 xi -→ s 2 def == s 1 = s 2 ∧ s 2 (x i ) = f i (s 1 ) ∧ ∀x j ∈ X \ {x i } : s 2 (x j ) = s 1 (x j ).
We denote -→= xi∈X xi -→. A state s 2 is said reachable from state s 1 if and only if there exists a trajectory defined by the reflexive and transitive closure of the transition relation connecting

s 1 to s 2 , s 1 -→ * s 2 .
A state s is an equilibrium for -→, if it can be infinitely reached once met, ie., ∀s ∈ S X : s -→ * s =⇒ s -→ * s. An attractor is a set of equilibria that are mutually reachable and a stable state is an attractor of cardinality 1. In Figure 1, the states 101 and 110 in grey are stable. Stable states remain identical whatever the updating policy as they comply to Definition 1:

stbl F (s) def == ∀1 ≤ i ≤ n : f i (s) = s(x i ). (1) 
An interaction graph X, portrays the causal interactions between variables of a Boolean network (cf., Figure 1). An interaction x i x j exists if and only if x i occurs as literal in a minimal dnf form of f j , ie.,

x i x j def == x i ∈ V (dnf(f j )).

Boolean Control Network

Boolean Control Network (BCN) extends Boolean network by adding control parameters that are Boolean variables, u i ∈ U without equation definition.

Hence, a BCN is defined as a function generating Boolean network parametrized by an interpretation of control parameters µ ∈ S U , called a control input: F u : S U → (S X → S X ). For example, an extension of the Boolean network in Figure 1 to a BCN by adding four control parameters u 1 , u 2 , u 3 , u 4 is:

F u1,u2,u3,u4 =      x 1 = (x 2 ∧ u 1 ) ∨ x 3 , x 2 = ¬(x 3 ∨ ¬u 2 ), x 3 = ((¬x 2 ∧ x 1 ) ∨ ¬u 3 ) ∧ u 4 (2) 
The application of a control input µ to a Boolean control network F µ therefore reprograms the dynamics. Figure 2 describes the dynamics resulting from the application4 of two control inputs

µ 1 = {u 1 = 0, u 2 = 1, u 3 = 1, u 4 = 1} and µ 2 = {u 1 = 1, u 2 = 1, u 3 = 1, u 4 = 0}.
Boolean control network provides a general framework for dynamical system reprogramming. Indeed, let F be an initial Boolean network reprogrammed into an other Boolean network G where the equations are modified, then the Boolean control network

F u = (u ∧ F ) ∨ (¬u ∧ G) behaves as F if u = 1 and as G if u = 0.
The switch between F and its reprogramming G now depends on the value of u only. This encoding can be trivially extended to address a family of dynamical systems viewed as the different outcomes of the reprogramming by triggering each particular system from a particular valuation of several control parameters, e.g.,

F u1,u2 = (u 1 ∧u 2 ∧F )∨(¬u 1 ∧u 2 ∧G 1 )∨(u 1 ∧¬u 2 ∧G 2 )∨(¬u 1 ∧¬u 2 ∧G 3 ) with G 1 , G 2 ,
G 3 as reprogramming outcomes. However, the control will be practically specified in another way in order to represent the effective control operated in the real system (Section 2.4).

Finally, a Boolean control network can be associated to a control constraint Φ : U m → B fixing the allowed control inputs.

Control-freezing category

Amongst the different possibilities to control a Boolean network, we focus on a particular category called control-freezing where the control action fixes (freezes) x 1

Fµ 1 =      x1 = x3, x2 = ¬x3, x3 = ¬x2 ∧ x1 Fµ 2 =      x1 = x2 ∨ x3, x2 = ¬x3, x3 = 1
x 1

x 2 x3 x 1 x 1 x 2 x3 x 2 x3 µ1 = {u1 = 0, u2 = 1, u3 = 1, u4 = 1} µ2 = {u1 = 1, u2 = 1, u3 = 1, u4 = 0} Fig. 2.
Modification of the dynamics by control inputs for the example of Figure 1.

the variable states to a specific value. This category models the dynamical aftermaths on Boolean network of the TN-actions on the interaction graph. We define two categories of control actions: Definition-freezing (D-freezing) that controls the definition of a variable and Use-freezing (U-freezing) controlling the use of a variable in an equation defining another variable. Therefore, D-freezing directly assigns an invariant value to variables whereas U-freezing sets locally an invariant value for their use in an equation. The immediate consequence on the interaction graph of a freezing is to totally disconnect a node from its inputs for D-freezing and to remove an arc for U-freezing. Therefore, D-freezing control models node action whereas U-freezing control represents arc action (cf., Section 4 for their interpretation in biological network). The D-freezing parameter governing the freeze of variable x i will be denoted d i and the U-freezing parameter is denoted u i,j standing for the control by freeze of the variable x i in its use in f j . Moreover, each control parameter has two distinct regimes: either it freezes the variable to a specific value or remains idle. The convention, inspired by the freezing temperature of water 0 • C, is as follows: the freezing action is triggered when the control parameter is set to 0 whereas the idle situation corresponds to 1. As the value of a parameter indicates the freezing activity (active or idle), the two possible freezing outcomes 0 or 1 are supported by two distinct parameters respectively denoted d 0 i , u 0 i,j and d 1 i , u 1 i,j . For example, by considering the following controlled equation x 1 = (¬x 2 ) ∧ d 0 1 , d 0 i will freeze x 1 to 0 if d 0 1 = 0 otherwise x 1 behaves as the negation of x 2 (See also [START_REF] Chang | Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy[END_REF]).

Control-freezing implementation to Boolean network. The implementation of the freezing control on a Boolean network extends the formulas to obtain the expected control behaviour depending on the type of control parameters: D 0 , D 1 or U 0 , U 1 . D-freezing control implementation. The D-freezing control of variable x i consists in adding a D-freezing parameter to formula f i such that setting µ(d k i ) = 0, k ∈ {0, 1} leads to freeze variable x i to k and remains idle otherwise (µ(d k i ) = 1). Formula f i is completed according to this control behaviour:

x i = f i (x 1 , . . . , x n ) ∧ d 0 i
for freezing to 0

(3)

x i = f i (x 1 , . . . , x n ) ∨ ¬d 1 i for freezing to 1 (4) 
D 0 and D 1 freezing parameters can be combined to trigger the freeze to different values. To avoid a contradictory freeze to 0 and 1 simultaneously, the constraint

Φ = d 0 i ∨ d 1
i is added ensuring the mutual exclusion of the parameter activities.

U-freezing control implementation. The U-freezing control application follows the same principles as the D-freezing control but applied on the occurrence of variables in the equations of other variables.

x j = f j (x 1 , . . . , x i ∧ u 0 i,j , . . . , x n ) for freezing to 0 (5)

x j = f j (x 1 , . . . , x i ∨ ¬u 1 i,j , . . . , x n ) for freezing to 1 [START_REF] Cantley | New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway[END_REF] Both controls can be also combined with a constraint avoiding to trigger contradictory freezing controls simultaneously (ie., Φ = u 0 i,j ∨ u 1 i,j ).

In Example (2), u 1 is assimilated to the U-freezing parameter of x 2 to 0 (u 1 = u 0 2,1 ) used in x 1 definition, u 2 can be interpreted as the U-freezing parameter of x 3 (u 2 = u 1 3,2 ), and u 3 , u 4 are the D-freezing parameters of x 3 freezing the variable to 1 and 0 respectively (u 3 = d 1 3 , u 4 = d 0 3 ). Consequently, the BCN (2) can be rewritten using the appropriate naming convention as:

F u 0 2,1 ,d 0 2 ,d 2 3 ,d 1 3 =      x 1 = x 2 ∧ u 0 2,1 ∨ x 3 , x 2 = ¬(x 3 ∨ ¬u 1 3,2 ), x 3 = (¬x 2 ∧ x 1 ) ∨ ¬d 1 3 ∧ d 0 3 (7)
The control activity is thus fully determined by the parameters assigned to 0 in a control input µ. The set of active control parameters collect these parameters to trace the control activity (ie., {u i ∈ U | µ(u i ) = 0}). In the sequel U will represent the set of the freezing control parameters indifferently and u i ∈ U a generic freezing control parameter.

The issue is to formally characterize the basic patterns specifying the changes of the observable molecular traits resulting from biological system reprogramming. Such variations will be questioned at equilibrium conditions in a twofold way: either finding a particular property in some stable states, or finding a particular property in all of them. We thus define two modalities: the possibility of meeting a property in at least one stable state (PoP) and the necessity of meeting a property in all stable states (NoP). Let p be a Boolean function on states (p : S X → B) standing for a property, the PoP and NoP inference problems are defined as follows:

Find a control input µ fulfilling the constraints of Φ such that:

∃s ∈ S X :stbl Fµ (s) ∧ p(s). (PoP) (8) 
∀s ∈ S X :stbl Fµ (s) =⇒ p(s).

(NoP)

Different control inputs may be suitable as solutions. For instance, gaining stable state 010 for Boolean network of Figure 1 with parameters defined in ( 7) can be obtained with the following control inputs:

u 0 2,1 = 0, u 1 3,2 = 1, d 1 3 = 1, d 0 3 = 1 u 0 2,1 = 0, u 1 3,2 = 1, d 1 3 = 1, d 0 3 = 0 u 0 2,1 = 0, u 1 3,2 = 1, d 1 3 = 0, d 0 3 = 0
The plurality of solutions raises the question of their interpretation for identifying the root factors causing the expected effects. The causal factors are defined as the essential actions shifting the dynamics to the objective whereas the casual factors behave neutrally and do not interfere with the objective whatever their valuation. Focusing on the active parameters, only u 0 2,1 = 0 matters for shifting the dynamics to gain 010 (first solution) since it is shared by all solutions, and without this assignment the system reprogramming fail to reach the expected objective. The other parameters becoming active are casual because they can be set to 0 or 1 without deviating the dynamics to the result.

The set of causal control parameters forms a core K * defined as a minimal active parameter set under the inclusion which is equivalent to the entailment order for cubes. Considering the example, the core K * = {u 0 2,1 } is included in all other active parameter sets.

Several cores may be found for a given problem. For example, three different cores {d 1 3 }, {u 0 2,1 }, {u 1 3,2 } enable the loss of equilibrium 110. Hence, the inference algorithm aims at finding all the cores in regards to a reprogramming query formulated by the possibility or the necessity of meeting a property at steadystate.

Abduction based core inference

Inferring a core corresponds to the determination of control parameters producing an expected effect. In logic finding causes from effects is an abduction problem. Abduction is a method of reasoning proposing hypotheses that provide the best explanation for observable facts in regards to knowledge of the problem constituting the theory [START_REF] Sanders | On the natural classification of arguments[END_REF][START_REF] Wv Quine | On cores and prime implicants of truth functions[END_REF][START_REF] Marquis | Extending abduction from propositional logic to first order logic[END_REF]. In propositional logic, a cube C is an abductive explanation of a formula f formalizing the facts with respect to another formula Φ representing the theory if and only if: C ∧ Φ |= f and C is consistent with Φ (ie., Φ ∧ C is satisfied). Finding a parsimonious hypothesis introduces the notion of minimal solution which is usually assimilated to a prime implicant. Within this framework, the possibility and the necessity of property [START_REF] Ciliberto | Steady states and oscillations in the p53/Mdm2 network[END_REF][START_REF] Cohen-Armon | DNA-Independent PARP-1 Activation by Phosphorylated ERK2 Increases Elk1 Activity: A Link to Histone Acetylation[END_REF] are formulated as abduction problems in propositional logic [START_REF] Creixell | Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling[END_REF][START_REF] Croce | Oncogenes and cancer[END_REF] by considering that p is a propositional formula. Lemma 1 demonstrates this equivalence.

Find a cube C µ such that:

(C s ∧ C µ ) ∧ φ |= (stbl Fu ∧ p); (PoP) (10) 
C µ ∧ φ |= (stbl Fu =⇒ p); (NoP) ( 11 
)
where C s and C µ are consistent with Φ, V (C µ ) = U, V (C s ) = X and the stability condition is defined as:

stbl Fu def == n i=1 (x i ⇐⇒ f i (x 1 , . . . , x n , u 1 , . . . , u m )).
In Example [START_REF] Chang | Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy[END_REF], the components of the problem for gaining state 010 (Figure 2, µ 1 ) are:

stbl Fu = x 1 ⇐⇒ x 2 ∧ u 0 2,1 ∨ x 3 ∧ x 2 ⇐⇒ ¬(x 3 ∨ ¬u 1 3,2 ) ∧ x 3 ⇐⇒ (¬x 2 ∧ x 1 ) ∨ ¬d 1 3 ∧ d 0 3 Stability condition Φ = d 0 3 ∨ d 1 3
Exclusive activity of

d 3 p = ¬x 1 ∧ x 2 ∧ ¬x 3 Minterm of s = 010
For the loss of stable state 101 (Figure 2, µ 2 ), only the property differs, now defined as: p = ¬(x 1 ∧ ¬x 2 ∧ x 3 ) corresponding to the negation of the minterm of 101.

Lemma 1. (10) and ( 11) define the PoP (8) and NoP (9) problems as abductive problems in propositional logic. (See Appendix for the proof.)

Core inference algorithm

For a formula f , the core inference consists in finding a satisfiable implicant C * fulfilling C * |= f that minimizes the number of negative control parameters (¬u i ) with respect to the inclusion. The resulting core K * is trivially deduced by collecting the negative control parameters of C * . Computing a core is an NP-Hard problem 5 . In this section, we present an algorithm adapted from the method developed for prime implicants computation in [START_REF] Pizzuti | Computing prime implicants by integer programming[END_REF] and based on 0 -1 Integer Linear Programming (0 -1 ILP). A 0 -1 ILP problem is formulated as:

Minimize h j=1 m j .y j , subject to h j=1 W i,j .y j ≤ v i , for 1 ≤ i ≤ r, y ∈ {0, 1} h .
where y is the unknown vector, and m, v vectors, W matrix are the parameters of the problem. The method, called ILP-Core, operates on a formula f in CNF and computes the set of all the cores K * . The method is based on the translation of the constraints related to core definition into 0 -1 ILP constraints such that a solution y is a binary representation of an implicant C * . The algorithm is outlined in Algorithm 1 and the main steps are fully described in the proof of Theorem 2. To properly specify the PoP and NoP resolutions, the method is called with different formulas specifying the query. Applied to PoP (10), the complete formula is passed as parameter since literals of C * contain control parameters as well as variables identifying the state. For NoP [START_REF] Croce | Oncogenes and cancer[END_REF], as C * must contain control parameters only, each clause is then restricted to control parameters by removing the literals involving state variables (ie., x i ∈ X). The constraints on control parameters Φ are already in CNF form by definition (Section 2.4).

ILP-Core(cnf(stbl

Fu ∧ p) ∧ Φ) (PoP) ILP-Core(cnf(stbl Fu =⇒ p) ↓U ∧ Φ) (NoP)

Related works

BCN was recently introduced in systems biology to provide the theoretical foundations and computational methods for investigating cell fate reprogramming and therapeutic target discovery. In [START_REF] Layek | Cancer therapy design based on pathway logic[END_REF] the authors apply a stuck-at fault model to simulate drug intervention in an acyclic growth factors pathway by a generateand-test method. stuck-at fault model mimics the defects on combinatorial logic circuit which were assimilated here to malignant mutations. Based on this model, authors identify drug actions for single mutations by correcting all possible single faults. This framework was improved by [START_REF] Kent | Application of Max-SAT-based ATPG to optimal cancer therapy design[END_REF] using a Max-SAT based method dedicated to acyclic networks in order to directly compute the control parameter values and final states. Inferring the drug targets on a network is also developed by [START_REF] Murrugarra | Identification of control targets in boolean molecular network models via computational algebra[END_REF] using algebraic techniques (Gröbner basis) in order to modify the system dynamics for creating or avoiding particular stable states. In [START_REF] Jorge | Cell fate reprogramming by control of intracellular network dynamics[END_REF], the authors propose a heuristic method with the same goal but focused on the control of key-nodes stabilizing "motifs" identifying sub-networks. Finally, we have introduced the principle of the abductive inference of cores for drug target discovery in [START_REF] Biane | Abductive network action inference for targeted therapy[END_REF] which is significantly extended here, in particular with the formalization and the generalization of the TN-actions as control freezing, and with a more efficient method for the core inference.

Our approach follows a similar orientation of these works by using BCN for modelling disease and drug actions. By comparison, the target discovery is modelled in an original way as an abductive problem. The resulting framework supports any kind of networks including cycles with actions applied on both nodes and arcs and find multiple targets qualifying the parsimonious TN-actions (cores) reprogramming the system. The proposed algorithm infers the causes of expected properties met at stable states and we formalize their query in a general setting using propositional formulas with the Necessity and Possibility modalities.

Application to breast cancer

This section shows the application of TN-actions inference for the study of breast cancer. Mainly, cancer cells differ from normal cells by their uncontrolled proliferation and apoptotic evasion. Accordingly, targeted drugs aim at inducing apoptosis or stop the proliferation of cancer cells [START_REF] Hanahan | Hallmarks of cancer: The next generation[END_REF]. We therefore developed a model (Section 4.1) focusing on the regulation of division and apoptosis. We infer the causal TN-actions leading to a loss or gain of apoptosis (Section 4.2) and then analyse the results (Section 4.3).

Aptoptosis/Cell Division Boolean network

The model focuses on the regulation of cell division and apoptosis by the EGFR signalling pathway and a BRCA1/TP53 DNA damage response module. These genes have been identified as central in the process of tumor formation in breast cancer [START_REF] Kolch | The dynamic control of signal transduction networks in cancer cells[END_REF][START_REF] Steven | BRCA1 and BRCA2: 1994 and beyond[END_REF]. The model incorporates the positive and negative interactions between nuclear TP53 and MDM2 described by [START_REF] Ciliberto | Steady states and oscillations in the p53/Mdm2 network[END_REF], the main messengers of the PI3K/AKT and MAPK signalling following EGFR activation described by [START_REF] Von Der Heyde | Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines[END_REF] and adds BRCA1 and PARP1 regulation of DNA damage. These pathways are gathered into a unique Boolean network through the lens of their role in the regulation of the G1/S transition and the triggering of apoptosis in case of DNA damage. The corresponding Boolean network 6 , constructed from published litterature and signalling pathways databases (KEGG [START_REF] Kanehisa | KEGG: new perspectives on genomes, pathways, diseases and drugs[END_REF] and Signor [START_REF] Perfetto | SIGNOR: A database of causal relationships between biological entities[END_REF]), is shown in Figure 3 and the molecular mechanism for each interaction is detailed and referenced in Appendix (see Table 2). The Boolean dynamics is bistable characterizing two cellular functions in normal cells: either (1) the cell enters division by activation of the G1/S transition and inhibition of apoptosis, or (2) it enters in apoptosis and arrest the cell cycle.

Inference query

As network reprogramming effects biomarker profile changes, it is required to 1) identify the biomarkers discriminating phenotypes and 2) define the reprogramming queries based on these biomarkers for causal genes and drug actions inference.

Since the proliferative activity of cells depends on the balance between division and apoptosis, we selected CYCLIN D1 and BAX as biomarkers as they are the key effector of the G1/S transition of cell division and initiation of apoptosis [START_REF] V Baldin | Cyclin D1 is a nuclear protein required for cell cycle progression in g1[END_REF][START_REF] Gupta | Molecular signaling in death receptor and mitochondrial pathways of apoptosis (review)[END_REF]. The pair (CYCLIN D1, BAX) distinguishes four phenotypes: apoptosis, division, quiescence (apoptosis balanced by division) and dormancy (neither apoptosis nor division) [START_REF] Spiliotaki | Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy[END_REF] through to the following signatures: (0, 1) for apoptosis, (1, 0) for division, (0, 0) for quiescence and (1, 1) for dormancy.

Since cancer cells are characterized by their inability to trigger apoptosis, the reprogramming query for the inference of causal genes corresponds to the loss of apoptosis. Conversely, as drugs induce apoptosis in cancer cells, the reprogramming query for the inference of drug actions corresponds to the gain of apoptosis. Apoptosis is formalized as a property by the minterm of (0, 1) signature: p = ¬CYCD1 ∧ BAX. The loss of apoptosis thus corresponds to the necessity of ¬p since the apoptosis must not occur in any stable state. To recover this marking, the query can be either the necessity or the possibility of p. We have tested both and the solutions providing stable states are the same.

Finally, the genetic events are modelled by control parameters as follows: the loss of expression of a gene following loss-of-function mutations or other genetic events such as gene deletion corresponds to D 0 -freezing; gene over-expression following gain-of-function mutations or other genetic events such as gene amplification are represented by D 1 -freezing; and the loss of interactions between two molecules is interpreted as U 0 -freezing. The Boolean network (Figure 3) is automatically completed with control parameters by following the rules set out

EGFR = ¬BRCA1 ERK1/2 = EGFR PI3K = ¬PTEN ∧ EGFR AKT = PI3K GSK3β = ¬AKT MDM2 = AKT ∧ TP53 TP53 = ¬MDM2 ∧ (BRCA1 ∨ ¬PARP1) PTEN = TP53 PARP1 = ERK1/2 BRCA1 = ¬CYCD1 BCL-2 = AKT BAX = ¬BCL-2 ∧ TP53 CYCD1 = (¬GSK3β ∧ ERK1/2)∨ (¬BRCA1 ∧ PARP1) EGFR ERK1/2 PTEN PI3K PARP1 MDM2 AKT TP53 BRCA1 GSK3β BAX BCL-2 CYCD1 # E G F R E R K 1 / 2 P I 3 K A K T G S K 3 β M D M 2 T P 5 3 P T E N P A R P 1 B R C A 1 B C L -2 C Y C D 1 B A X 1 1 1 1 1 0 0 0 0 1 0 1 1 0 2 0 0 0 0 1 0 1 1 0 1 0 0 1
Fig. 3. Boolean network (left) with its regulatory graph (right) representing the activatory (green) and inhibitory (red) interactions, and stable states (below).

in Section 2.4. Notice that U 1 -freezing does not seem interpretable in terms of biological events and not used here.

Analysis of the results.

We inferred the actions from combination of D 0 /D 1 -freezing on all variables (molecules) except markers and the U 0 -freezing on all interactions separately to compare them. The computed TN-actions are shown in Table 1. The TNactions for the gain of apoptosis have been inferred from the model with BRCA1deficiency (BRCA1 = 0). Applied to the loss of apoptosis with D-freezing, the method retrieves the main driver genes identified in breast cancer namely BRCA1, TP53, PI3K and EGFR [START_REF] Kandoth | Mutational landscape and significance across 12 major cancer types[END_REF][START_REF] Burga | Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice[END_REF]. Moreover, it segregates tumor suppressor genes (ie., frequently affected by gain-of-function mutations in cancers) from oncogenes (ie., frequently affected by loss-of-function mutations in cancers) [START_REF] Croce | Oncogenes and cancer[END_REF][START_REF] Lodish | Molecular cell biology[END_REF]: D 0 -frozen genes all -Health → Cancer: necessary loss of apoptosis -

node action

Single D-freezing correspond to tumour suppressors and D 1 -frozen genes to oncogenes. For the gain of apoptosis after application of BRCA1 deficiency, the single D-freezing inferred actions recover the necessity of blocking PARP1, the synthetic lethal partner of BRCA1. The pair BRCA1/PARP1 are called synthetic lethal partners because the use of PARP inhibitors in patients with BRCA1-deficiency prevents any possibility of DNA-repair resulting in permanent DNA damage inducing apoptosis of the cancer cell [START_REF] Farmer | Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[END_REF][START_REF] Livraghi | PARP inhibitors in the management of breast cancer: current data and future prospects[END_REF]. Finding such partnerships is critical for anticancer treatment [START_REF] William | The concept of synthetic lethality in the context of anticancer therapy[END_REF] but since the cancer target differs from the drug target, they are hard to recover experimentally and computationally.

BRCA1 = 0 TP53 = 0 PI3K = 1 AKT = 1 BCL-2 = 1 MDM2 = 1 Double D-freezing GSK3β = 0, ERK1/2 = 1 PTEN = 0, EGFR = 1 GSK3β = 0, EGFR = 1 Single U 0 -freezing TP53 BAX Double U 0 -
The algorithm also predicts double D-freezing actions for the necessary loss of apoptosis which suggest that overexpression of EGFR alone would not be sufficient to provoke a cancerous phenotype and must be combined with either loss of PTEN or GSK3β. The validation of such result is less obvious than the former and is based on the concomittent overexpression of EGFR and loss of PTEN/GSK3β. Work in [START_REF] Yun Lee | The impact of concomitant genomic alterations on treatment outcome for trastuzumab therapy in HER2-positive gastric cancer[END_REF] confirms the existence of a co-occurence of EGFR over-expression and loss of PTEN in 20% of the tumors of the studied population. Moreover, authors also show that PTEN loss is associated to resistance to EGFR inhibitors. Similarly in erlotinib resistant model cell lines [START_REF] Gregory M Botting | Mechanism of resistance and novel targets mediating resistance to EGFR and c-Met tyrosine kinase inhibitors in non-small cell lung cancer[END_REF] it has been observed that GSK3β was upregulated. Thus, these works suggest the existence of the predicted cooperation between these genes.

It is also predicted that EGFR inhibition would be synthetic lethal with BRCA1 mutations. This is supported by the observation that the proliferation properties of BRCA-deficient cells are sensitive to EGFR inhibition by erlotinib [START_REF] Burga | Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice[END_REF]. We found no published work suggesting that ERK1/2 inhibition in such cells would be synthetic lethal.

In summary, in the studied model the method accurately predicts cancerous genes and drug targets and segregate oncogenes from tumor suppressors. The inference also recovers cooperative gene mutations and synthetic lethal partnerships. The double freezing results provide some insights on the necessary cooperative combination of perturbations that are difficult to assess experimentally [START_REF] Wang | Widespread genetic epistasis among cancer genes[END_REF][START_REF] Patrick | Epistasis -the essential role of gene interactions in the structure and evolution of genetic systems[END_REF]. Moreover by inferring cores, the method separate causal genes to casual ones (passengers) and determine frequent drivers as well as rare ones which is more difficult to obtain by statistical analysis that prioritize genes from the frequency of their occurrence [START_REF] Vogelstein | Cancer genome landscapes[END_REF]. Usually, drivers are classified in subtypes where a specific drug target is associated for each subtype. In the proposed approach the drug target may be directly inferred from the application of the TN-actions corresponding to drivers on the initial boolean network. Finally, arc inference (U 0 -freezing) refines the results on nodes (D 0 -freezing) and, to the best of our knowledge, the resulting predictions are not experimentally confirmed.

Conclusion

In this article, we have proposed a modelling framework discovering the reprogramming actions of a dynamical system using BCN and designed a new inference method based on abduction that identifies the minimal causes reprogramming the network. A library called protaxion was developed in Mathematica to support the application on concrete cases. It has been validated on a breast cancer model and has shown that the method can retrieve driver genes and drug targets.

A perspective of this work is to include the notion of resistance in the inference. Two sorts of resistances were established: the primary arising prior to a classical treatment and the secondary which is an adaptive negative response to a treatment. As the method infers all the causes responsible for a biomarker profile shift, the primary resistance is interpreted in our framework as the variation of the input Boolean network of a patient in comparison to a generic one in which the drug targets were deduced. In this context, we need to specialize the network to a patient. The issue for the secondary resistance is more complex and necessitates to predict the further alterations of the network once a TN-action is applied. The prediction of secondary resistance requires to extend the BCN model by including the notion of temporal sequence of control inputs instead of a single control input.

Proof (Theorem 2). The proof of the Theorem lies in the translation of the different constraints related to the determination of the cores in integer linear constraints.

Translation of constraints on C * to linear constraints: The main issue of the method is to translate the required constraints applied on C * as a set of linear constraints.

Let f = C 1 ∧ C 2 ∧ . . . ∧ C r be the input formula in CNF where each C i is a clause, we define L f = r i=1 C i the set of literals appearing in f . We associate to each literal l j ∈ L f a {0, 1}-variable denoted y lj meaning that the vector y is indexed by the literals of L f . Objective function. Let N be the set of control parameters occurring negatively in L f , ie., N = {u j ∈ U | ¬u j ∈ L f }, as each core should minimize their occurrences, the objective function is the sum of these negative control parameters:

uj ∈ N y ¬uj .
Clauses defined by inequalities. By definition of abduction, if there exists an implicant C * of a formula f which is consistent with a theory, then C * is satisfiable and thus also f . A formula in CNF is satisfiable if and only if all its clauses are satisfiable and a clause is satisfiable if and only if at least one of its literal is satisfiable. Therefore, an implicant of this formula is a cube formed by taking at least one literal from each clause. This condition is formulated by a constraint for each clause, such that: ∀C i :

lj ∈Ci y lj ≥ 1
Satisfiability of C * defined by inequalities. As the implicant C * is satisfiable, it cannot contain both a literal and its negation leading to an antilogy. Let P = {v j ∈ X ∪ U | v j ∈ L f ∧ ¬v j ∈ L f } be the set of variables occurring both positively and negatively in L f , then we have the following constraints excluding at least the positive or the negative literal for the variables of P : ∀v j ∈ P : y vj + y ¬vj ≤ 1

Conversion of y into a core K * . y is a binary representation of a cube C * where y lj = 0 means that l j does not belong to C * and y lj = 1 means that l j is contained in C * , namely C * = {l i | y li = 1}. A core K * , being the set of negative control parameters in C * , is deduced from y as follows:

K * = {u j ∈ U | y ¬uj = 1}.
Exclusion of all sets including the core as further solutions. The application of the algorithm computes one solution y from which a core K * is deduced. Thus, we need to exclude it and any set including it to find other solutions. For this, we add the constraints such that a solution cannot contain exactly the same negative control parameters as the found core. Therefore the sum of the y values of the negative control parameters belonging to the core must be less than its cardinality. This linear constraint is expressed from K * as follows:

uj ∈K * y ¬uj ≤ |K * | -1.
The method is then iterated until no more core is found to finally provide the set of all cores.

Molecular mechanisms the Boolean network model

EGFR is a member of the epidermal growth factors (EGF) receptors family, it responds to extracellular stimulation at the cellular membrane. In turn, it activates the MAPK pathway (represented by ERK1/2) and the PI3K pathway. These two pathways stimulate the entry in the cell division cycle and inhibit apoptosis. To do so, ERK1/2 activates CYCLIN D1 (an effector of the G1/S transition of the cell cycle) and inhibits apoptosis through the activation of PARP1 while PI3K signalling is mediated by AKT that 1) releases CYCLIN D1 of its inhibition by GSK3β and 2) activates BCL-2, an inhibitor of BAX (an effector of apoptosis). In the case of DNA damage, a BRCA1/TP53 module is responsible for the control of cell cycle arrest and triggering of apoptosis. To do so, TP53 activates BAX, inhibits the PI3K pathways through the activation of PTEN (an inhibitor of PI3K). Conversely, TP53 is inhibited by the PI3K pathway at the level of AKT, that activates MDM2. BRCA1 is involved in an inhibitory loop with CYCLIN D1 : active BRCA1 provokes cell cycle arrest at the G1/S transition checkpoint, and avoid subsequent activation by inhibiting EGFR. Morevoer, BRCA1 has been shown to activate TP53 and its subsequent activation of BAX [START_REF] Pb Mullan | The role of BRCA1 in transcriptional regulation and cell cycle control[END_REF][START_REF] Zhang | BRCA1 physically associates with p53 and stimulates its transcriptional activity[END_REF]. Finally, PARP1, which is involved in efficient DNA repair, is activated by the MAPK pathway and subsequently inhibits TP53 and activates CYCLIN D1.

Fig. 1 .

 1 Fig. 1. Model of asynchronous dynamics and interaction graph.

Function 1 :

 1 ILP-Core(f : CNF formula ) (min m.y T , W y ≤ v) = Describe constraints on core as 0 -1 ILP problem ; // C * |= f minimizing the number of negative control parameters. K * = ∅; repeat y = Solve (min m.y T , W y ≤ v) with a 0 -1 ILP solver ; if a solution y is found then K * = Collect the negative control parameters from y; K * = K * ∪ {K * } ; Exclude all solutions K, K * ⊆ K by adding constraints to W y ≤ v ; end until No solution y is found ; return K * // the set of all cores end Algorithm Outline of the ILP-Core algorithm. Theorem 2. The ILP-Core algorithm finds all and only the cores. (See Appendix for the proof.)

Table 1 .

 1 Freezing actions causing the gain or loss of apoptosis.

			BRCA1	freezing EGFR, TP53	PTEN	arc action
			BRCA1	EGFR, BRCA1	CYCD1
			BRCA1	EGFR, BRCA1	TP53
			BRCA1	EGFR, PTEN	PI3K
			BRCA1	EGFR, GSK3β	CYCD1
		-BRCA1 mutation (Cancer) → Cell death: possible gain of apoptosis -
	node action	Single D-freezing BRCA1 = 1 PARP1 = 0 ERK1/2 = 0		Single U 0 -freezing ERK1/2 PARP1 EGFR ERK1/2 Double U 0 -freezing	arc action
		EGFR = 0	PARP1	CYCD1, PARP1	TP53

corresponding to the number of parts of size 1 to m in a set with n elements.

Exactly 19 415 908 147 835 trials.

The formulas resulting from the instantiation of the BCN by a control input are simplified.

For the sake of simplicity, the names of genes (by convention written in upper case letters) can also denominate the proteins they encode.

Appendix

Proofs Proof (Lemma 1). To prove the equivalence of PoP [START_REF] Creixell | Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling[END_REF] and NoP [START_REF] Croce | Oncogenes and cancer[END_REF] problems with Definitions [START_REF] Creixell | Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling[END_REF][START_REF] Croce | Oncogenes and cancer[END_REF] based on propositional logic, we need to demonstrate that 1) the stability condition can be formulated as a propositional formula 2) we can find an equivalent formulation for these Definitions using abduction on propositional formulas.

Stability condition defined by a propositional formula. By definition [START_REF] John P Alao | The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention[END_REF], the stability condition for a BCN involving control parameters u = (u 1 , . . . , u m ) is defined as:

As the set of equations is finite, the condition can be rephrased as:

As the equivalence p 1 ⇐⇒ p 2 is satisfied if and only if I(p 1 ) = I(p 2 ), the equality can be formulated by an equivalence, finally defining the stability condition as:

Now we examine the equivalent formulation of PoP and NoP definitions given in (8,9) using abduction on propositional formulas and leading to Definitions [START_REF] Creixell | Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling[END_REF][START_REF] Croce | Oncogenes and cancer[END_REF].

PoP defined as adbuctive problem in propositional logic. Definition (8) can be reformulated by introducing the entailment as:

where C s and C µ are the minterms of a state s and a control input µ respectively. As stbl Fµ ∧ p contains state variables and control parameters an implicant C fulfilling C ∧ φ |= stbl Fµ ∧ p can be divided into C = C s ∧ C µ . C can be possibly completed by missing variables if needed. C s is the minterm of an interpretation s ∈ S X . Therefore determining the existence of an implicant C involving the variables of X and U is equivalent of proving the existence of its interpretation (ie., (C |= f ) ⇐⇒ (∃s, s ∪ µ |= f )). Thus, the existential quantifier of s can be removed.

NoP defined as adbuctive problem in propositional logic.

( =⇒ ) Definition ( 9) of NoP can be expressed using formula entailment as:

where C s and C µ are the minterms of s and µ respectively. We define P = (stbl Fµ =⇒ p) and s -i a state s deprived of its i th component. Let C µ be a solution, for all states s there exists a state (s -i , ¬s i ) such that both fulfil the following C s ∧C µ ∧φ |= P and (C (s-i,¬si) ∧C µ ∧φ |= P respectively as the property holds for all states. By applying the consensus theorem [START_REF] Wv Quine | On cores and prime implicants of truth functions[END_REF], we deduce that C s-i ∧ C µ is also an implicant by removing s i since it appears positively and negatively in two implicants. As this simplification can be applied for all states s ∈ S x , we finally have:

By following the same reasoning for all s -i states with the deprivation of s j , j = i, we deduce the same conclusion for s -{i,j} , ∀j = i. This can be repeated until no variables exist (C ∅ ). As C ∅ = 1 by definition, we thus conclude that:

As for all s ∈ S X , C s only involves variables of X and Φ is a constraint on parameters with variables of U then V (C s ) ∩ V (Φ) = ∅. Two satisfiable cubes with distinct variables are necessary consistent. Thus, we conclude that: ∀s ∈ S X : (C s ∧ C µ ) ∧ φ |= P.

In conclusion, the solution can always be determined by focusing on control parameters only for NoP.

Boolean function

Molecular mechanisms

References EGFR = ¬BRCA1 BRCA1 inhibits EGFR through transcriptional, post-transcriptional and post-translational mechanisms. [START_REF] Burga | Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice[END_REF][START_REF] Kumaraswamy | BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function[END_REF] ERK1/2 = EGFR EGFR activation induce an increase of enzymatic activity of ERK1 and ERK2.
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