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Abstract. A major challenge in cancer research is to determine the
genetic mutations causing the cancerous phenotype of cells and con-
versely, the actions of drugs initiating programmed cell death in can-
cer cells. However, such a challenge is compounded by the complexity
of the genotype-phenotype relationship and therefore, requires to relate
the molecular effects of mutations and drugs to their consequences on
cellular phenotypes. Discovering these complex relationships is at the
root of new molecular drug targets discovery and cancer etiology inves-
tigation. In their elucidation, computational methods play a major role
for the inference of the molecular causal actions from molecular and bi-
ological networks data analysis. In this article, we propose a theoretical
framework where mutations and drug actions are seen as topological per-
turbations/actions on molecular networks inducing cell phenotype repro-
gramming. The framework is based on Boolean control networks where
the topological network actions are modelled by control parameters. We
present a new algorithm using abductive reasoning principles inferring
the minimal causal topological actions leading to an expected behavior at
stable state. The framework is validated on a model of network regulat-
ing the proliferation/apoptosis switch in breast cancer by automatically
discovering driver genes and finding drug targets.

Keywords: dynamical system reprogramming, Boolean control network, ab-
ductive reasoning, drug target prediction, etiology of cancer.

1 Introduction

In precision medicine, the discovery of causal genes and efficient drug targets
is challenged by the complexity of the genotype-phenotype relationship. A key
milestone in this challenge is the ability to understand how cell behaviour arises
from the synergistic effect of local molecular interactions [49]. Accordingly, cells
are envisioned as a web of macromolecular interactions constituting the “interac-
tome” from which phenotype changes are explained by perturbations of molecu-
lar interactions [50]. At the molecular level, the phenotypic changes are assessed
by the measure of the state of some molecules, called biomarkers, that are de-
fined as observable and objective characteristics of biological processes. They



are used to assess the shift between normal and pathological conditions [45] and
to predict the appropriate treatment [12]. Inferring, from the interactome, the
molecular causes of phenotypic switches assessed by biomarkers will thus consti-
tute the root for the development of efficient therapies, by predicting the actions
at the molecular level directing cells from a diseased toward a healthy state.

In cancer, cells acquire phenotypes with characteristic cancerous hallmarks
such as uncontrolled proliferative activity, apoptosis resistance and invasive-
ness [18]. These phenotypes are caused by multigenic mutations altering molec-
ular interactions. Therefore, a preliminary issue concerns the definition of the
effects of mutations on the interactome. In [57], the authors relate mutations to
their network effect and introduce the notion of edgetic perturbations of molecu-
lar networks: nonsense mutation, out-of-frame insertion or deletion and defective
splicing are interpreted as node or arc deletions whereas missense mutation and
in-frame insertion or deletion can be modelled as node or arc addition. More-
over, in [10], the authors classify mutations according to the way they affect
signalling networks and distinguish mutations that constitutively activate or in-
hibit enzymes and mutations that rewire the network interactions. The effect of
mutations on molecular networks can thus be described as elementary topological
actions of deletion or insertion of nodes and arcs. Symmetrically, targeted ther-
apies switch cancer cells phenotype toward growth arrest and apoptosis. Their
actions can also be interpreted as network rewiring [12]. A phenotypic switch
following mutations or targeted therapies is therefore considered as the observ-
able trait of a dynamical system reprogramming caused by topological network
actions (TN-action).

The inference of TN-actions would provide major insights for etiological in-
vestigation of disease, molecular pathogenesis and drug targets prediction by as-
similating them to the effects of causal gene mutations (a.k.a, drivers) or actions
of drugs. In this endeavour, it is worth noticing that generate-and-test method
checking the TN-actions exhaustively is often pointless. Indeed, assuming that
an expected phenotypic switch results from the application of a specific gene
action up to m amongst n genes, then the number of trials1 equals

∑m
k=1

(
n
k

)
.

For example, the number of trials for targeting up to 10% on 100 genes exceeds
19 billions2. Hence, automatically inferring the TN-actions from observable ef-
fects is essential to meet this challenge. By considering biomarkers as the entry
point of the inference, the issue thus refers to an inverse problem (ie., causes
discovery from effects) deducing the sufficient TN-actions from biomarker-based
properties variation at stable states.

In this article, we introduce a theoretical framework for TN-action based sys-
tem reprogramming formalized by Boolean control network. Based on this frame-
work, we develop an algorithm inferring the causal TN-actions that reprogram
a Boolean network, redirecting its dynamics to fulfil an expected property. The
article is organised as follows: first, we define the Boolean control network frame-
work (Section 2), then we present the inference of causal actions represented by

1 corresponding to the number of parts of size 1 to m in a set with n elements.
2 Exactly 19 415 908 147 835 trials.



control parameters based on abduction principle (Section 3) and finally, we show
its application in breast cancer (Section 4).

2 Boolean control network

In this section we first review the main theoretical elements used in this article,
namely: propositional logic, Boolean network and then we introduce Boolean
control network.

2.1 Propositional logic

A propositional formula is inductively constructed from atoms composed of con-
stants ( False/0, True/1) and variables V , unary negation operator ¬, and binary
logical operators (e.g., ∧/conjunction/and, ∨/disjunction/or). A literal is ei-
ther an atom or its negation. Given a formula f , V (f) denotes the set of variables
occurring in f . For example, let fα be the propositional formula representing the
exclusive or between atom x1 and the negation of atom x2, fα = (x1Y¬x2), the
variables are V (fα) = {x1, x2} and the literals are x1 and ¬x2. Let X ′ ⊆ X be a
subset of variables f↓X′ is the restriction of a formula f to the literals involving
the variables of X ′.

A cube syntactically denotes a conjunction of literals and a clause a disjunc-
tion. In this article, cubes and clauses will be assimilated to literal sets when
needed. A disjunctive normal form (dnf) of a formula is a disjunction of cubes
(ie.,

∨
i

∧
ji
lji) whereas a conjunctive normal form (cnf) is a conjunction of

clauses (ie.,
∧∨

ji
lji). Any formula can be transformed in dnf or in cnf. For ex-

ample, a dnf of fα is (x1 ∧ x2)∨(¬x1 ∧ ¬x2) and a cnf is (¬x1 ∨ x2)∧(x1 ∨ ¬x2).

Let an interpretation I : V → {0, 1} be a mapping assigning a truth value to
each variable3, a model of a formula f , I |= f , is an interpretation such that the
formula is evaluated to True and a satisfiable formula admits a model at least.
For example, fα is satisfiable because the interpretations I1 = {x1 = 1, x2 = 1}
and I2 = {x1 = 0, x2 = 0} are both models of fα.

Formula f1 entails formula f2, denoted by f1 |= f2, if and only if any model

of f1 is also a model of f2 (ie., f1 |= f2
def
== ∀I : I |= f1 =⇒ I |= f2). Hence, the

entailment defines a partial order on formulas.

A minterm CI of an interpretation I is the unique cube such that V (I) =
V (CI) fulfilling I |= CI . For the example C1 = x1 ∧ x2 and C2 = ¬x1 ∧ ¬x2 are
the minterms of I1 and I2 respectively. A cube C entailing a formula f is said an
implicant of f and it is prime if it ceases to be one when deprived of any literal.
Considering the example, C1, C2 are both prime implicants of fα with I1 and
I2 as model respectively, thus entailing fα: C1 |= fα, C2 |= fα. Notice that by
contrast to a minterm, an implicant does not necessary involve all the variables
of the formula (e.g., x1 is an implicant of (x1 ∨ x2) ∧ (x1 ∨ x3)).

3 A mapping will be described x = v instead of x 7→ v for the sake of simplicity.



2.2 Boolean network

A Boolean network is a discrete dynamical system operating on Boolean variables
X that determines the state evolution of variables xi ∈ X. It is defined as a
system of Boolean equations of the form: xi = fi(x1, . . . , xn), 1 ≤ i ≤ n where
each fi is a propositional formula. A Boolean state of s is an interpretation of the
variables (ie., s : X → B) and SX will denote the set of all states for variables
of X.
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Fig. 1. Model of asynchronous dynamics and interaction graph.

The model of dynamics of a Boolean network describes all the trajectories
of the system by a labelled transition system. For each transition the states
of agents are updated with respect to a predefined updating policy. For the
asynchronous updating used in the article, one agent only is updated per tran-
sition. Hence, the labelled transition system for the asynchronous updating is
〈−→, X,Bn〉 where the transition relation −→⊆ SX ×X ×SX is labelled by the

updated agent,
xi−→ such that:

s1
xi−→ s2

def
== s1 6= s2 ∧ s2(xi) = fi(s1) ∧ ∀xj ∈ X \ {xi} : s2(xj) = s1(xj).

We denote −→=
⋃
xi∈X

xi−→. A state s2 is said reachable from state s1 if and
only if there exists a trajectory defined by the reflexive and transitive closure of
the transition relation connecting s1 to s2, s1 −→∗ s2.

A state s is an equilibrium for −→, if it can be infinitely reached once met,
ie., ∀s′ ∈ SX : s −→∗ s′ =⇒ s′ −→∗ s. An attractor is a set of equilibria
that are mutually reachable and a stable state is an attractor of cardinality 1. In
Figure 1, the states 101 and 110 in grey are stable. Stable states remain identical
whatever the updating policy as they comply to Definition 1:

stblF (s)
def
== ∀1 ≤ i ≤ n : fi(s) = s(xi). (1)



An interaction graph 〈X, 〉 portrays the causal interactions between vari-
ables of a Boolean network (cf., Figure 1). An interaction xi xj exists if and
only if xi occurs as literal in a minimal dnf form of fj , ie.,

xi xj
def
== xi ∈ V (dnf(fj)).

2.3 Boolean Control Network

Boolean Control Network (BCN) extends Boolean network by adding control
parameters that are Boolean variables, ui ∈ U without equation definition.
Hence, a BCN is defined as a function generating Boolean network parametrized
by an interpretation of control parameters µ ∈ SU , called a control input :
Fu : SU → (SX → SX). For example, an extension of the Boolean network
in Figure 1 to a BCN by adding four control parameters u1, u2, u3, u4 is:

Fu1,u2,u3,u4
=


x1 = (x2 ∧ u1) ∨ x3,

x2 = ¬(x3 ∨ ¬u2),

x3 = ((¬x2 ∧ x1) ∨ ¬u3) ∧ u4

(2)

The application of a control input µ to a Boolean control network Fµ therefore
reprograms the dynamics. Figure 2 describes the dynamics resulting from the
application4 of two control inputs µ1 = {u1 = 0, u2 = 1, u3 = 1, u4 = 1} and
µ2 = {u1 = 1, u2 = 1, u3 = 1, u4 = 0}.

Boolean control network provides a general framework for dynamical system
reprogramming. Indeed, let F be an initial Boolean network reprogrammed into
an other Boolean network G where the equations are modified, then the Boolean
control network Fu = (u∧F )∨ (¬u∧G) behaves as F if u = 1 and as G if u = 0.
The switch between F and its reprogramming G now depends on the value of u
only. This encoding can be trivially extended to address a family of dynamical
systems viewed as the different outcomes of the reprogramming by triggering
each particular system from a particular valuation of several control parameters,
e.g., Fu1,u2 = (u1∧u2∧F )∨(¬u1∧u2∧G1)∨(u1∧¬u2∧G2)∨(¬u1∧¬u2∧G3) with
G1, G2, G3 as reprogramming outcomes. However, the control will be practically
specified in another way in order to represent the effective control operated in
the real system (Section 2.4).

Finally, a Boolean control network can be associated to a control constraint
Φ : Um → B fixing the allowed control inputs.

2.4 Control-freezing category

Amongst the different possibilities to control a Boolean network, we focus on a
particular category called control-freezing where the control action fixes (freezes)

4 The formulas resulting from the instantiation of the BCN by a control input are
simplified.



Fµ1 =


x1 = x3,

x2 = ¬x3,
x3 = ¬x2 ∧ x1

Fµ2 =


x1 = x2 ∨ x3,
x2 = ¬x3,
x3 = 1
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µ1 = {u1 = 0, u2 = 1, u3 = 1, u4 = 1} µ2 = {u1 = 1, u2 = 1, u3 = 1, u4 = 0}

Fig. 2. Modification of the dynamics by control inputs for the example of Figure 1.

the variable states to a specific value. This category models the dynamical after-
maths on Boolean network of the TN-actions on the interaction graph. We define
two categories of control actions: Definition-freezing (D-freezing) that controls
the definition of a variable and Use-freezing (U-freezing) controlling the use of a
variable in an equation defining another variable. Therefore, D-freezing directly
assigns an invariant value to variables whereas U-freezing sets locally an invariant
value for their use in an equation. The immediate consequence on the interaction
graph of a freezing is to totally disconnect a node from its inputs for D-freezing
and to remove an arc for U-freezing. Therefore, D-freezing control models node
action whereas U-freezing control represents arc action (cf., Section 4 for their
interpretation in biological network). The D-freezing parameter governing the
freeze of variable xi will be denoted di and the U-freezing parameter is denoted
ui,j standing for the control by freeze of the variable xi in its use in fj . Moreover,
each control parameter has two distinct regimes: either it freezes the variable to
a specific value or remains idle. The convention, inspired by the freezing temper-
ature of water 0◦C, is as follows: the freezing action is triggered when the control
parameter is set to 0 whereas the idle situation corresponds to 1. As the value
of a parameter indicates the freezing activity (active or idle), the two possible
freezing outcomes 0 or 1 are supported by two distinct parameters respectively
denoted d0

i , u
0
i,j and d1

i , u
1
i,j . For example, by considering the following controlled

equation x1 = (¬x2) ∧ d0
1, d0

i will freeze x1 to 0 if d0
1 = 0 otherwise x1 behaves

as the negation of x2 (See also (7)).



Control-freezing implementation to Boolean network. The implementa-
tion of the freezing control on a Boolean network extends the formulas to obtain
the expected control behaviour depending on the type of control parameters:
D0, D1 or U0, U1.

D-freezing control implementation. The D-freezing control of variable xi consists
in adding a D-freezing parameter to formula fi such that setting µ(dki ) = 0, k ∈
{0, 1} leads to freeze variable xi to k and remains idle otherwise (µ(dki ) = 1).
Formula fi is completed according to this control behaviour:

xi = fi(x1, . . . , xn) ∧ d0
i for freezing to 0 (3)

xi = fi(x1, . . . , xn) ∨ ¬d1
i for freezing to 1 (4)

D0 and D1 freezing parameters can be combined to trigger the freeze to different
values. To avoid a contradictory freeze to 0 and 1 simultaneously, the constraint
Φ = d0

i ∨ d1
i is added ensuring the mutual exclusion of the parameter activities.

U-freezing control implementation. The U-freezing control application follows
the same principles as the D-freezing control but applied on the occurrence of
variables in the equations of other variables.

xj = fj(x1, . . . , xi ∧ u0
i,j , . . . , xn) for freezing to 0 (5)

xj = fj(x1, . . . , xi ∨ ¬u1
i,j , . . . , xn) for freezing to 1 (6)

Both controls can be also combined with a constraint avoiding to trigger con-
tradictory freezing controls simultaneously (ie., Φ = u0

i,j ∨ u1
i,j).

In Example (2), u1 is assimilated to the U-freezing parameter of x2 to 0 (u1 =
u0

2,1) used in x1 definition, u2 can be interpreted as the U-freezing parameter
of x3 (u2 = u1

3,2), and u3, u4 are the D-freezing parameters of x3 freezing the
variable to 1 and 0 respectively (u3 = d1

3, u4 = d0
3). Consequently, the BCN (2)

can be rewritten using the appropriate naming convention as:

Fu0
2,1,d

0
2,d

2
3,d

1
3

=


x1 =

(
x2 ∧ u0

2,1

)
∨ x3,

x2 = ¬(x3 ∨ ¬u1
3,2),

x3 =
(
(¬x2 ∧ x1) ∨ ¬d1

3

)
∧ d0

3

(7)

The control activity is thus fully determined by the parameters assigned to 0
in a control input µ. The set of active control parameters collect these parameters
to trace the control activity (ie., {ui ∈ U | µ(ui) = 0}). In the sequel U will
represent the set of the freezing control parameters indifferently and ui ∈ U a
generic freezing control parameter.



3 Control parameters inference

The issue is to formally characterize the basic patterns specifying the changes of
the observable molecular traits resulting from biological system reprogramming.
Such variations will be questioned at equilibrium conditions in a twofold way:
either finding a particular property in some stable states, or finding a particular
property in all of them. We thus define two modalities: the possibility of meeting a
property in at least one stable state (PoP) and the necessity of meeting a property
in all stable states (NoP). Let p be a Boolean function on states (p : SX → B)
standing for a property, the PoP and NoP inference problems are defined as
follows:

Find a control input µ fulfilling the constraints of Φ such that:

∃s ∈ SX :stblFµ(s) ∧ p(s). (PoP) (8)

∀s ∈ SX :stblFµ(s) =⇒ p(s). (NoP) (9)

Different control inputs may be suitable as solutions. For instance, gaining
stable state 010 for Boolean network of Figure 1 with parameters defined in (7)
can be obtained with the following control inputs:{

u0
2,1 = 0, u1

3,2 = 1, d1
3 = 1, d0

3 = 1
}{

u0
2,1 = 0, u1

3,2 = 1, d1
3 = 1, d0

3 = 0
}{

u0
2,1 = 0, u1

3,2 = 1, d1
3 = 0, d0

3 = 0
}

The plurality of solutions raises the question of their interpretation for identi-
fying the root factors causing the expected effects. The causal factors are defined
as the essential actions shifting the dynamics to the objective whereas the casual
factors behave neutrally and do not interfere with the objective whatever their
valuation. Focusing on the active parameters, only u0

2,1 = 0 matters for shifting
the dynamics to gain 010 (first solution) since it is shared by all solutions, and
without this assignment the system reprogramming fail to reach the expected
objective. The other parameters becoming active are casual because they can be
set to 0 or 1 without deviating the dynamics to the result.

The set of causal control parameters forms a core K∗ defined as a minimal
active parameter set under the inclusion which is equivalent to the entailment
order for cubes. Considering the example, the core K∗ = {u0

2,1} is included in
all other active parameter sets.

Several cores may be found for a given problem. For example, three different
cores {d1

3}, {u0
2,1}, {u1

3,2} enable the loss of equilibrium 110. Hence, the inference
algorithm aims at finding all the cores in regards to a reprogramming query
formulated by the possibility or the necessity of meeting a property at steady-
state.

3.1 Abduction based core inference

Inferring a core corresponds to the determination of control parameters pro-
ducing an expected effect. In logic finding causes from effects is an abduction



problem. Abduction is a method of reasoning proposing hypotheses that provide
the best explanation for observable facts in regards to knowledge of the problem
constituting the theory [38, 42, 31]. In propositional logic, a cube C is an ab-
ductive explanation of a formula f formalizing the facts with respect to another
formula Φ representing the theory if and only if: C ∧ Φ |= f and C is consistent
with Φ (ie., Φ ∧ C is satisfied). Finding a parsimonious hypothesis introduces
the notion of minimal solution which is usually assimilated to a prime implicant.
Within this framework, the possibility and the necessity of property (8, 9) are
formulated as abduction problems in propositional logic (10,11) by considering
that p is a propositional formula. Lemma 1 demonstrates this equivalence.

Find a cube Cµ such that:

(Cs ∧ Cµ) ∧ φ |= (stblFu ∧ p); (PoP) (10)

Cµ ∧ φ |= (stblFu =⇒ p); (NoP) (11)

where Cs and Cµ are consistent with Φ, V (Cµ) = U, V (Cs) = X and the stability
condition is defined as:

stblFu
def
==

n∧
i=1

(xi ⇐⇒ fi(x1, . . . , xn, u1, . . . , um)).

In Example (7), the components of the problem for gaining state 010 (Figure 2,
µ1) are:

stblFu = x1 ⇐⇒
(
x2 ∧ u0

2,1

)
∨ x3

∧ x2 ⇐⇒ ¬(x3 ∨ ¬u1
3,2)

∧ x3 ⇐⇒
(
(¬x2 ∧ x1) ∨ ¬d1

3

)
∧ d0

3

Stability condition

Φ = d0
3 ∨ d1

3 Exclusive activity of d3

p = ¬x1 ∧ x2 ∧ ¬x3 Minterm of s = 010

For the loss of stable state 101 (Figure 2, µ2), only the property differs, now
defined as: p = ¬(x1 ∧ ¬x2 ∧ x3) corresponding to the negation of the minterm
of 101.

Lemma 1. (10) and (11) define the PoP (8) and NoP (9) problems as abductive
problems in propositional logic. (See Appendix for the proof.)

3.2 Core inference algorithm

For a formula f , the core inference consists in finding a satisfiable implicant
C∗ fulfilling C∗ |= f that minimizes the number of negative control parameters
(¬ui) with respect to the inclusion. The resulting core K∗ is trivially deduced
by collecting the negative control parameters of C∗. Computing a core is an
NP-Hard problem5. In this section, we present an algorithm adapted from the

5 by reduction of the minimum hitting set problem.



method developed for prime implicants computation in [41] and based on 0 - 1
Integer Linear Programming (0 -1 ILP). A 0 -1 ILP problem is formulated as:

Minimize

h∑
j=1

mj .yj , subject to

h∑
j=1

Wi,j .yj ≤ vi, for 1 ≤ i ≤ r, y ∈ {0, 1}h.

where y is the unknown vector, and m, v vectors, W matrix are the parameters
of the problem.

The method, called ILP-Core, operates on a formula f in CNF and com-
putes the set of all the cores K∗. The method is based on the translation of the
constraints related to core definition into 0 -1 ILP constraints such that a solu-
tion y is a binary representation of an implicant C∗. The algorithm is outlined
in Algorithm 1 and the main steps are fully described in the proof of Theorem 2.

Function ILP-Core(f : CNF formula )

(minm.yT ,Wy ≤ v) = Describe constraints on core as 0 -1 ILP problem ;
// C∗ |= f minimizing the number of negative control parameters.

K∗ = ∅;
repeat

y = Solve (minm.yT ,Wy ≤ v) with a 0 -1 ILP solver ;
if a solution y is found then

K∗ = Collect the negative control parameters from y;
K∗ = K∗ ∪ {K∗} ;
Exclude all solutions K,K∗ ⊆ K by adding constraints to Wy ≤ v ;

end

until No solution y is found ;

return K∗ // the set of all cores

end
Algorithm 1: Outline of the ILP-Core algorithm.

Theorem 2. The ILP-Core algorithm finds all and only the cores. (See Ap-
pendix for the proof.)

To properly specify the PoP and NoP resolutions, the method is called with
different formulas specifying the query. Applied to PoP (10), the complete for-
mula is passed as parameter since literals of C∗ contain control parameters as
well as variables identifying the state. For NoP (11), as C∗ must contain control
parameters only, each clause is then restricted to control parameters by remov-
ing the literals involving state variables (ie., xi ∈ X). The constraints on control
parameters Φ are already in CNF form by definition (Section 2.4).

ILP-Core(cnf(stblFu ∧ p) ∧ Φ) (PoP)

ILP-Core(cnf(stblFu =⇒ p)↓U ∧ Φ) (NoP)



3.3 Related works

BCN was recently introduced in systems biology to provide the theoretical foun-
dations and computational methods for investigating cell fate reprogramming
and therapeutic target discovery. In [25] the authors apply a stuck-at fault model
to simulate drug intervention in an acyclic growth factors pathway by a generate-
and-test method. stuck-at fault model mimics the defects on combinatorial logic
circuit which were assimilated here to malignant mutations. Based on this model,
authors identify drug actions for single mutations by correcting all possible sin-
gle faults. This framework was improved by [27] using a Max-SAT based method
dedicated to acyclic networks in order to directly compute the control parameter
values and final states. Inferring the drug targets on a network is also developed
by [35] using algebraic techniques (Gröbner basis) in order to modify the system
dynamics for creating or avoiding particular stable states. In [54], the authors
propose a heuristic method with the same goal but focused on the control of
key-nodes stabilizing “motifs” identifying sub-networks. Finally, we have intro-
duced the principle of the abductive inference of cores for drug target discovery
in [3] which is significantly extended here, in particular with the formalization
and the generalization of the TN-actions as control freezing, and with a more
efficient method for the core inference.

Our approach follows a similar orientation of these works by using BCN
for modelling disease and drug actions. By comparison, the target discovery is
modelled in an original way as an abductive problem. The resulting framework
supports any kind of networks including cycles with actions applied on both
nodes and arcs and find multiple targets qualifying the parsimonious TN-actions
(cores) reprogramming the system. The proposed algorithm infers the causes
of expected properties met at stable states and we formalize their query in a
general setting using propositional formulas with the Necessity and Possibility
modalities.

4 Application to breast cancer

This section shows the application of TN-actions inference for the study of breast
cancer. Mainly, cancer cells differ from normal cells by their uncontrolled pro-
liferation and apoptotic evasion. Accordingly, targeted drugs aim at inducing
apoptosis or stop the proliferation of cancer cells [18]. We therefore developed
a model (Section 4.1) focusing on the regulation of division and apoptosis. We
infer the causal TN-actions leading to a loss or gain of apoptosis (Section 4.2)
and then analyse the results (Section 4.3).

4.1 Aptoptosis/Cell Division Boolean network

The model focuses on the regulation of cell division and apoptosis by the EGFR
signalling pathway and a BRCA1/TP53 DNA damage response module. These
genes have been identified as central in the process of tumor formation in breast



cancer [23, 36]. The model incorporates the positive and negative interactions
between nuclear TP53 and MDM2 described by [8], the main messengers of the
PI3K/AKT and MAPK signalling following EGFR activation described by [52]
and adds BRCA1 and PARP1 regulation of DNA damage. These pathways are
gathered into a unique Boolean network through the lens of their role in the
regulation of the G1/S transition and the triggering of apoptosis in case of
DNA damage. The corresponding Boolean network6, constructed from published
litterature and signalling pathways databases (KEGG [21] and Signor [39]), is
shown in Figure 3 and the molecular mechanism for each interaction is detailed
and referenced in Appendix (see Table 2). The Boolean dynamics is bistable
characterizing two cellular functions in normal cells: either (1) the cell enters
division by activation of the G1/S transition and inhibition of apoptosis, or (2)
it enters in apoptosis and arrest the cell cycle.

4.2 Inference query

As network reprogramming effects biomarker profile changes, it is required to
1) identify the biomarkers discriminating phenotypes and 2) define the repro-
gramming queries based on these biomarkers for causal genes and drug actions
inference.

Since the proliferative activity of cells depends on the balance between divi-
sion and apoptosis, we selected CYCLIN D1 and BAX as biomarkers as they are
the key effector of the G1/S transition of cell division and initiation of apopto-
sis [2, 17]. The pair (CYCLIN D1,BAX) distinguishes four phenotypes: apopto-
sis, division, quiescence (apoptosis balanced by division) and dormancy (neither
apoptosis nor division) [43] through to the following signatures: (0, 1) for apop-
tosis, (1, 0) for division, (0, 0) for quiescence and (1, 1) for dormancy.

Since cancer cells are characterized by their inability to trigger apoptosis,
the reprogramming query for the inference of causal genes corresponds to the
loss of apoptosis. Conversely, as drugs induce apoptosis in cancer cells, the re-
programming query for the inference of drug actions corresponds to the gain
of apoptosis. Apoptosis is formalized as a property by the minterm of (0, 1)
signature: p = ¬CYCD1 ∧ BAX. The loss of apoptosis thus corresponds to the
necessity of ¬p since the apoptosis must not occur in any stable state. To recover
this marking, the query can be either the necessity or the possibility of p. We
have tested both and the solutions providing stable states are the same.

Finally, the genetic events are modelled by control parameters as follows: the
loss of expression of a gene following loss-of-function mutations or other genetic
events such as gene deletion corresponds to D0-freezing; gene over-expression
following gain-of-function mutations or other genetic events such as gene am-
plification are represented by D1-freezing; and the loss of interactions between
two molecules is interpreted as U0-freezing. The Boolean network (Figure 3) is
automatically completed with control parameters by following the rules set out

6 For the sake of simplicity, the names of genes (by convention written in upper case
letters) can also denominate the proteins they encode.



EGFR = ¬BRCA1

ERK1/2 = EGFR

PI3K = ¬PTEN ∧ EGFR

AKT = PI3K

GSK3β = ¬AKT

MDM2 = AKT ∧ TP53

TP53 = ¬MDM2 ∧ (BRCA1 ∨ ¬PARP1)

PTEN = TP53

PARP1 = ERK1/2

BRCA1 = ¬CYCD1

BCL-2 = AKT

BAX = ¬BCL-2 ∧ TP53

CYCD1 = (¬GSK3β ∧ ERK1/2)∨
(¬BRCA1 ∧ PARP1)
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Fig. 3. Boolean network (left) with its regulatory graph (right) representing the acti-
vatory (green) and inhibitory (red) interactions, and stable states (below).

in Section 2.4. Notice that U1-freezing does not seem interpretable in terms of
biological events and not used here.

4.3 Analysis of the results.

We inferred the actions from combination of D0/D1-freezing on all variables
(molecules) except markers and the U0-freezing on all interactions separately
to compare them. The computed TN-actions are shown in Table 1. The TN-
actions for the gain of apoptosis have been inferred from the model with BRCA1-
deficiency (BRCA1 = 0).

Applied to the loss of apoptosis with D−freezing, the method retrieves the
main driver genes identified in breast cancer namely BRCA1, TP53, PI3K and
EGFR [20, 5]. Moreover, it segregates tumor suppressor genes (ie., frequently
affected by gain-of-function mutations in cancers) from oncogenes (ie., frequently
affected by loss-of-function mutations in cancers) [11, 29]: D0-frozen genes all



- Health → Cancer: necessary loss of apoptosis -

n
o
d
e
a
c
t
io
n

Single D-freezing

BRCA1 = 0

TP53 = 0

PI3K = 1

AKT = 1

BCL-2 = 1

MDM2 = 1

Double D-freezing

GSK3β = 0, ERK1/2 = 1

PTEN = 0, EGFR = 1

GSK3β = 0, EGFR = 1

Single U0-freezing

TP53 BAX

Double U0-freezing

BRCA1 EGFR, TP53 PTEN

BRCA1 EGFR, BRCA1 CYCD1

BRCA1 EGFR, BRCA1 TP53

BRCA1 EGFR, PTEN PI3K

BRCA1 EGFR, GSK3β CYCD1

a
r
c
a
c
t
io
n

- BRCA1 mutation (Cancer) → Cell death: possible gain of apoptosis -

n
o
d
e
a
c
t
io
n

Single D-freezing

BRCA1 = 1

PARP1 = 0

ERK1/2 = 0

EGFR = 0

Single U0-freezing

ERK1/2 PARP1

EGFR ERK1/2

Double U0-freezing

PARP1 CYCD1, PARP1 TP53

a
r
c
a
c
t
io
n

Table 1. Freezing actions causing the gain or loss of apoptosis.

correspond to tumour suppressors and D1-frozen genes to oncogenes. For the
gain of apoptosis after application of BRCA1 deficiency, the single D-freezing
inferred actions recover the necessity of blocking PARP1, the synthetic lethal
partner of BRCA1. The pair BRCA1/PARP1 are called synthetic lethal partners
because the use of PARP inhibitors in patients with BRCA1-deficiency prevents
any possibility of DNA-repair resulting in permanent DNA damage inducing
apoptosis of the cancer cell [16, 28]. Finding such partnerships is critical for
anticancer treatment [19] but since the cancer target differs from the drug target,
they are hard to recover experimentally and computationally.

The algorithm also predicts double D-freezing actions for the necessary loss
of apoptosis which suggest that overexpression of EGFR alone would not be
sufficient to provoke a cancerous phenotype and must be combined with either
loss of PTEN or GSK3β. The validation of such result is less obvious than the
former and is based on the concomittent overexpression of EGFR and loss of
PTEN/GSK3β. Work in [26] confirms the existence of a co-occurence of EGFR
over-expression and loss of PTEN in 20% of the tumors of the studied population.
Moreover, authors also show that PTEN loss is associated to resistance to EGFR
inhibitors. Similarly in erlotinib resistant model cell lines [4] it has been observed



that GSK3β was upregulated. Thus, these works suggest the existence of the
predicted cooperation between these genes.

It is also predicted that EGFR inhibition would be synthetic lethal with
BRCA1 mutations. This is supported by the observation that the prolifera-
tion properties of BRCA-deficient cells are sensitive to EGFR inhibition by
erlotinib [5]. We found no published work suggesting that ERK1/2 inhibition
in such cells would be synthetic lethal.

In summary, in the studied model the method accurately predicts cancerous
genes and drug targets and segregate oncogenes from tumor suppressors. The
inference also recovers cooperative gene mutations and synthetic lethal partner-
ships. The double freezing results provide some insights on the necessary cooper-
ative combination of perturbations that are difficult to assess experimentally [53,
40]. Moreover by inferring cores, the method separate causal genes to casual ones
(passengers) and determine frequent drivers as well as rare ones which is more
difficult to obtain by statistical analysis that prioritize genes from the frequency
of their occurrence [51]. Usually, drivers are classified in subtypes where a spe-
cific drug target is associated for each subtype. In the proposed approach the
drug target may be directly inferred from the application of the TN-actions
corresponding to drivers on the initial boolean network. Finally, arc inference
(U0−freezing) refines the results on nodes (D0−freezing) and, to the best of our
knowledge, the resulting predictions are not experimentally confirmed.

5 Conclusion

In this article, we have proposed a modelling framework discovering the repro-
gramming actions of a dynamical system using BCN and designed a new infer-
ence method based on abduction that identifies the minimal causes reprogram-
ming the network. A library called protaxion was developed in Mathematica
to support the application on concrete cases. It has been validated on a breast
cancer model and has shown that the method can retrieve driver genes and drug
targets.

A perspective of this work is to include the notion of resistance in the in-
ference. Two sorts of resistances were established: the primary arising prior to
a classical treatment and the secondary which is an adaptive negative response
to a treatment. As the method infers all the causes responsible for a biomarker
profile shift, the primary resistance is interpreted in our framework as the varia-
tion of the input Boolean network of a patient in comparison to a generic one in
which the drug targets were deduced. In this context, we need to specialize the
network to a patient. The issue for the secondary resistance is more complex and
necessitates to predict the further alterations of the network once a TN-action
is applied. The prediction of secondary resistance requires to extend the BCN
model by including the notion of temporal sequence of control inputs instead of
a single control input.



Appendix

Proofs

Proof (Lemma 1). To prove the equivalence of PoP (10) and NoP (11) problems
with Definitions (10,11) based on propositional logic, we need to demonstrate
that 1) the stability condition can be formulated as a propositional formula 2)
we can find an equivalent formulation for these Definitions using abduction on
propositional formulas.

Stability condition defined by a propositional formula. By definition (1),
the stability condition for a BCN involving control parameters u = (u1, . . . , um)
is defined as: ∀ 1 ≤ i ≤ n : xi = fi(x, u). As the set of equations is finite, the
condition can be rephrased as:

n∧
i=1

(xi = fi(x, u)).

As the equivalence p1 ⇐⇒ p2 is satisfied if and only if I(p1) = I(p2), the equal-
ity can be formulated by an equivalence, finally defining the stability condition
as:

n∧
i=1

(xi ⇐⇒ fi(x, u)) .

Now we examine the equivalent formulation of PoP and NoP definitions given in
(8,9) using abduction on propositional formulas and leading to Definitions (10,
11).

PoP defined as adbuctive problem in propositional logic. Definition (8)
can be reformulated by introducing the entailment as:

∃s ∈ SX : (Cs ∧ Cµ) ∧ φ |= stblFµ ∧ p,

where Cs and Cµ are the minterms of a state s and a control input µ respectively.
As stblFµ ∧ p contains state variables and control parameters an implicant C
fulfilling C∧φ |= stblFµ ∧p can be divided into C = Cs∧Cµ. C can be possibly
completed by missing variables if needed. Cs is the minterm of an interpretation
s ∈ SX . Therefore determining the existence of an implicant C involving the
variables of X and U is equivalent of proving the existence of its interpretation
(ie., (C |= f) ⇐⇒ (∃s, s ∪ µ |= f)). Thus, the existential quantifier of s can be
removed.



NoP defined as adbuctive problem in propositional logic.
( =⇒ ) Definition (9) of NoP can be expressed using formula entailment as:

∀s ∈ SX : (Cs ∧ Cµ) ∧ φ |= (stblFµ =⇒ p),

where Cs and Cµ are the minterms of s and µ respectively.
We define P = (stblFµ =⇒ p) and s−i a state s deprived of its ith component.

Let Cµ be a solution, for all states s there exists a state (s−i,¬si) such that
both fulfil the following Cs∧Cµ∧φ |= P and (C(s−i,¬si)∧Cµ∧φ |= P respectively
as the property holds for all states. By applying the consensus theorem [42], we
deduce that Cs−i ∧ Cµ is also an implicant by removing si since it appears
positively and negatively in two implicants. As this simplification can be applied
for all states s ∈ Sx, we finally have:

∀s−i : (Cs−i ∧ Cµ) ∧ φ |= P.

By following the same reasoning for all s−i states with the deprivation of sj , j 6= i,
we deduce the same conclusion for s−{i,j},∀j 6= i. This can be repeated until no
variables exist (C∅). As C∅ = 1 by definition, we thus conclude that:

Cµ ∧ φ |= P.

( ⇐= ) Conversely, assume that Cµ ∧ φ |= P with V (Cµ) = U we deduce
that for all C such that C is consistent with Φ we have C ∧ Cµ ∧ φ |= P .
As for all s ∈ SX , Cs only involves variables of X and Φ is a constraint on
parameters with variables of U then V (Cs) ∩ V (Φ) = ∅. Two satisfiable cubes
with distinct variables are necessary consistent. Thus, we conclude that: ∀s ∈
SX : (Cs ∧ Cµ) ∧ φ |= P.

In conclusion, the solution can always be determined by focusing on control
parameters only for NoP. ut



Proof (Theorem 2). The proof of the Theorem lies in the translation of the
different constraints related to the determination of the cores in integer linear
constraints.

Translation of constraints on C∗ to linear constraints: The main issue
of the method is to translate the required constraints applied on C∗ as a set of
linear constraints.

Let f = C1 ∧ C2 ∧ . . . ∧ Cr be the input formula in CNF where each Ci is a
clause, we define Lf =

⋃r
i=1 Ci the set of literals appearing in f . We associate

to each literal lj ∈ Lf a {0, 1}-variable denoted ylj meaning that the vector y is
indexed by the literals of Lf .

Objective function. Let N̄ be the set of control parameters occurring negatively
in Lf , ie., N̄ = {uj ∈ U | ¬uj ∈ Lf}, as each core should minimize their occur-
rences, the objective function is the sum of these negative control parameters:∑

uj∈N̄

y¬uj

.

Clauses defined by inequalities. By definition of abduction, if there exists an im-
plicant C∗ of a formula f which is consistent with a theory, then C∗ is satisfiable
and thus also f . A formula in CNF is satisfiable if and only if all its clauses are
satisfiable and a clause is satisfiable if and only if at least one of its literal is
satisfiable. Therefore, an implicant of this formula is a cube formed by taking at
least one literal from each clause. This condition is formulated by a constraint
for each clause, such that:

∀Ci :
∑
lj∈Ci

ylj ≥ 1

Satisfiability of C∗ defined by inequalities. As the implicant C∗ is satisfiable,
it cannot contain both a literal and its negation leading to an antilogy. Let
P = {vj ∈ X ∪ U | vj ∈ Lf ∧ ¬vj ∈ Lf} be the set of variables occurring both
positively and negatively in Lf , then we have the following constraints excluding
at least the positive or the negative literal for the variables of P :

∀vj ∈ P : yvj + y¬vj ≤ 1

Conversion of y into a core K∗. y is a binary representation of a cube C∗

where ylj = 0 means that lj does not belong to C∗ and ylj = 1 means that lj
is contained in C∗, namely C∗ = {li | yli = 1}. A core K∗, being the set of
negative control parameters in C∗, is deduced from y as follows:

K∗ = {uj ∈ U | y¬uj = 1}.



Exclusion of all sets including the core as further solutions. The applica-
tion of the algorithm computes one solution y from which a core K∗ is deduced.
Thus, we need to exclude it and any set including it to find other solutions. For
this, we add the constraints such that a solution cannot contain exactly the same
negative control parameters as the found core. Therefore the sum of the y values
of the negative control parameters belonging to the core must be less than its
cardinality. This linear constraint is expressed from K∗ as follows:∑

uj∈K∗
y¬uj ≤ |K∗| − 1.

The method is then iterated until no more core is found to finally provide the
set of all cores. ut

Molecular mechanisms of the Boolean network model

EGFR is a member of the epidermal growth factors (EGF) receptors family,
it responds to extracellular stimulation at the cellular membrane. In turn, it
activates the MAPK pathway (represented by ERK1/2) and the PI3K pathway.
These two pathways stimulate the entry in the cell division cycle and inhibit
apoptosis. To do so, ERK1/2 activates CYCLIN D1 (an effector of the G1/S
transition of the cell cycle) and inhibits apoptosis through the activation of
PARP1 while PI3K signalling is mediated by AKT that 1) releases CYCLIN D1
of its inhibition by GSK3β and 2) activates BCL-2, an inhibitor of BAX (an
effector of apoptosis). In the case of DNA damage, a BRCA1/TP53 module is
responsible for the control of cell cycle arrest and triggering of apoptosis. To
do so, TP53 activates BAX, inhibits the PI3K pathways through the activation
of PTEN (an inhibitor of PI3K). Conversely, TP53 is inhibited by the PI3K
pathway at the level of AKT, that activates MDM2. BRCA1 is involved in an
inhibitory loop with CYCLIN D1 : active BRCA1 provokes cell cycle arrest at
the G1/S transition checkpoint, and avoid subsequent activation by inhibiting
EGFR. Morevoer, BRCA1 has been shown to activate TP53 and its subsequent
activation of BAX [34, 55]. Finally, PARP1, which is involved in efficient DNA
repair, is activated by the MAPK pathway and subsequently inhibits TP53 and
activates CYCLIN D1.



Boolean function Molecular mechanisms References

EGFR = ¬BRCA1 BRCA1 inhibits EGFR through transcriptional,
post-transcriptional and post-translational mech-
anisms.

[5, 24]

ERK1/2 = EGFR EGFR activation induce an increase of enzymatic
activity of ERK1 and ERK2.

[56, 15]

PI3K =

¬PTEN ∧ EGFR
EGFR activation leads to the activation of PI3K
by phopshorylation, PTEN inhibits PI3K activity
by catalyzing its inverse reaction.

[13, 15]

AKT = PI3K AKT is activated via PI3K. [13, 15]

GSK3β = ¬AKT AKT inhibits GSK3β by phospshorylation [6, 13]

MDM2 = AKT ∧TP53 MDM2 gene transcription is activated by nuclear
TP53, AKT is necessary for MDM2 to be translo-
cated into the nucleus where it binds TP53

[32, 33]

TP53 = ¬MDM2∧
(BRCA1 ∨ ¬PARP1)

The binding of MDM2 to TP53 blocks TP53
transcriptional activity and MDM2 exports TP53
to the cytoplasm and targets it for proteasomal
degradation. BRCA1 stimulates TP53 transcrip-
tion, while PARP1 inhibits it.

[32–34,
55, 30, 37]

PTEN = TP53 TP53 activates PTEN transcription [32, 44]

PARP1 = ERK1/2 ERK1 activates PARP1 by phosphorylation. [9, 46]

BRCA1 = ¬CYCD1 CYCLIN D1/Cdk4 complex inhibits BRCA1 by
phopshorylation

[22]

BCL-2 = AKT AKT activates BCL-2 by phosphorylation of Bad
(not shown) consequently releasing BCL-2 inhibi-
tion by Bad

[7]

BAX = ¬BCL-2 ∧
TP53

BAX gene transcription is directly activated by
TP53 and its translocation to its active site (mi-
tochondria) is blocked by BCL-2.

[47, 48]

CYCD1 =

(¬GSK3β ∧ ERK1/2)

∨(¬BRCA1 ∧ PARP1)

CYCLIN D1 degradation is regulated both depen-
dently and independently of GSK3 levels (OR),
BRCA1 provokes cell cycle arrest at the G1/S
transition checkpoint, PARP inhibition induces
cell cycle arrest suggesting that PARP activates
cell cycle transitions

[37, 34,
14, 1]

Table 2. Detailed molecular mechanisms driving the Boolean network construction
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wei Lin, Tong Hao, Changyu Fan, Stuart Milstein, Denis Dupuy, Robert Brasseur,
David E Hill, Michael E Cusick, and Marc Vidal. Edgetic perturbation models of
human inherited disorders. Molecular systems biology, 5(321):321, 2009.


