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Introduction 
 

The spatial distribution of land management practices (LMPs) in an 

agricultural catchment determines the capacity of any given part of 

the catchment to reduce or increase the global sedimentological 

connectivity (Cammeraat and Imeson 1999; Fitzjohn et al. 1998). 

Fryirs et al. (2007), in a work on large-scale systems, proposed that 
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the effects of vegetated filters in catchments depend on their scale 

and their location relative to the sediment conveyance channels. 
Distributed erosion models, therefore, can be used to provide 

relevant  information  to  managers,  planners,  and  policymakers 

for the prediction or explanation of the impact of LMPs on soil 

erosion  and  sediment transport (Boardman 2006).  A  sine qua 

non condition for the models is that they must be able to detect 

variations in the spatial distribution of LMPs within catchments 

(Gumiere et al. 2011b). Using the STREAM model (Cerdan et al. 

2002), Lecomte (1999) showed that a change in the spatial distri- 

butions of grass strips over a catchment had a greater impact on 

total runoff and sediment trapping than a variation in the size of 

grass strips in the same location. 
From an economic point of view, the implementation and main- 

tenance of LMPs and cropland loss represent the major costs as- 

sociated with LMPs. Moreover, LMPs are the subject of various 

government policies and guidelines, such as location and dimen- 

sioning (width, proportion of cropland dedicated to conservation 

areas).  In  comparing  different  provincial, territorial, and  state 

guidelines for riparian buffers in the United States and Canada, 

Lee et al. (2004) found that recommended widths vary between 

15.1 and 29.0 m on average, and in some cases the widths can reach 

up to 100 m for different river types. The guidelines are often based 

on water body type and size, shore lines, and the presence of fish. 

Lee et al. (2004) argued that simple approaches, such as one size 

fits all for riparian vegetated filter strip (RVFS) width recommen- 

dations, were common in southeastern, northeastern, and midwest- 

ern  North  America.  However,  more  complicated  management



 

 

approaches are widespread elsewhere, such as in the North 

American Pacific region, including Alaska, and the boreal region, 

where water body type, water body size class, shoreline slope, and 

fish presence are used to specify riparian buffer width. 
Numerical experiments help quantify how hydrological fluxes 

depend on the spatial characteristics of catchments, which is espe- 

cially important when the required spatial configurations to be 

tested are too numerous to use field experiments (Colin et al. 

2012). Numerical experiments usually require linking a physically 

based and spatially distributed hydrological model to a catchment 

characteristics generator (Van Nieuwenhuyse et al. 2011). In real- 
istic cases, such a conceptual representation of catchment behavior 

involves several parameters and probable interactions among them, 

which forces the use of dedicated sensitivity analysis methods. 
Sensitivity analysis methods are generally categorized (Saltelli 

et al. 1999, 2004) into global or local methods, the latter often con- 

sisting of differential analysis or nominal range methods (Frey and 

Patil 2002; Helton 1993). Differential analysis approximates partial 

derivatives of model outputs with respect to the imposed perturba- 

tions in the model inputs and then takes the numerical values of 

these derivatives as measures of sensitivity. Nominal range methods 

calculate the relative deviation of outputs from reference (nominal) 

values and do the same for input values. These methods then ex- 

press sensitivity as the ratio of relative deviations in output values 

to that of input values. A known drawback of simple local sensi- 

tivity analysis methods is their inability to identify interactions 

among input parameters, risking erroneous sensitivity estimations, 

especially for models with large parameterizations or highly non- 

linear characteristics. In such contexts, global sensitivity methods 

are often more suitable. 
Global sensitivity analysis methods, such as regional sensitivity 

analysis (RSA) (Young 1978), variance-based methods (Saltelli 

et al. 2000, 2010), and regression-based approaches (Spear et al. 

1994), attempt to fully explore the parameter space within prede- 

fined plausible parameter ranges. The Sobol method is appropriate 

for models in which cross effects among input parameters exist 

(Saltelli 2002). For spatially distributed parameter values of rela- 

tively large systems, however, Sobol sensitivity analyses suffer lim- 

itations due to the heavy computational demands resulting from the 

need to account for multiple combinations of parameters (Lilburne 

and Tarantola 2009; Hall et al. 2005). Thus, a strategy to model the 

aleatory uncertainty in the spatial distribution of input parameters 

should be designed and should consider reduced parameterizations. 

As noted by Marrel et al. (2008), the spatial distributions of LMPs 

would be best tested using few parameters and limiting the dimen- 

sionality of the problem. 
In the present study, the impact of the spatial distributions of 

LMPs is analyzed using a numerical analysis that combines the spa- 

tially distributed MHYDAS-Erosion model (Gumiere et al. 2011a), 

a random generator of LMP locations, and the Sobol sensitivity 

indicator. The upslope–downslope distribution of LMPs is modeled 

and simulated using a stochastic model and is defined along a spe- 

cific upstream–downstream location index. The positions of the 

LMPs are controlled by a set of three parameters. The authors cal- 

culate the usual Sobol sensitivity indices to highlight the influences 

of these three parameters in a deterministic framework using nu- 

merous triplets of parameter values, an approach that corresponds 

to Latin hypercube samplings involving one value in the bounded 

uncertainty interval of each parameter. The objective here is not to 

perform a complete sensitivity analysis of the model; the authors 

are only interested in the impact of the spatial variability of LMPs 

on soil erosion. 
The second section presents the study site, MHYDAS-Erosion, 

the stochastic model, and the sensitivity analysis procedure. In a 

subsection of the second section, the authors present a detailed 

description of the stochastic LMP location generator model, the 

coupling between the stochastic model, and MHYDAS-Erosion 

within SENSAN and the Sobol sensitivity analysis method. In 

the third section, the authors present the model response to the spa- 

tial distribution of LMPs on the Roujan catchment by analyzing soil 

losses at three measurement points. First- and total-order Sobol sen- 

sitivity indices are also presented. The conclusion is presented in 

the fourth section. 
 
 
Materials and Methods 

 
Study Site 
 

The  study  site is  an  experimental catchment belonging to  the 

Observatoire Méditerranéen de l’Environnement Rural et de l’Eau 

(OMERE) long-term hydrometeorological observatory (http:// 

www.umr-lisah.fr/omere) called Roujan (43.300N, 3.190E, area ¼ 

0.91 km2 ). The observatory has been densely instrumented with 

hydrometeorological equipment (Fig. 1).  The authors chose to 

use only three measurement points, corresponding to two subcatch- 

ment outlets, one in the headwater and the other near the outlet. 

These two subcatchments (Points 2 and 3 in Fig. 1) were selected 

because they are not in a cascade system, so they do not interact. 

Approximately 20% of the agricultural fields have a vegetated filter 

downstream. For simplicity, the authors consider that these veg- 

etated filters behave like grass strips from a phenomenological 

point of view. 

The annual rainfall varies between 500 and 1,400 mm, showing 

a bimodal temporal distribution with two major rainy periods—one 

in spring and the other in autumn. Rainfall is usually of high in- 

tensity and short duration. The mean annual temperature is approx- 

imately 14°C, and the mean annual Penman evapotranspiration is 

1,090 mm. The soils of the catchment developed from marine, la- 

custrine, or fluvial sediments (Moussa et al. 2002). The catchment 

is mainly covered by vineyards and is divided into 237 agricultural 

fields. The areas of the agricultural fields vary between 0.03 and 

2.2 ha. The drainage network is very dense, is formed by human- 

made ditches, and generally follows the boundaries of the agricul- 

tural fields. The total length of the ditch network is 11,069 m 

(drainage density of 1.21 × 10−2 =m). 

 
Erosion Model 
 

The MHYDAS-Erosion (Gumiere et al. 2011a) model is coupled 

with the MHYDAS hydrological model (Moussa et al. 2002). The 

latter partitions rain between infiltration and runoff according to the 

method introduced by Morel-Seytoux (1978) and analytically sol- 

ves the one-dimensional diffusive wave equation for concentrated 

flows in the linear elements (drainage network) of the catchment 

(Moussa and  Bocquillon 1996;  Moussa  1996).  The  calculated 

excess-infiltration runoff depends on saturated, vertical, and 

hydraulic conductivity and initial water content, which govern 

water infiltration. Flow depth and velocity are then obtained from 

discharge by means of the Manning equation from the known slope 

and width of each reach segment draining a plot. The erosion mod- 

ule requires, at minimum, a finer decomposition of flow regions 

into subsections of adaptable sizes representing rill and interrill 

areas associated with different phenomenologies [further details 

on MHYDAS-Erosion can be found in Gumiere et al. (2011a)]. 

Computed on time steps fine enough to correctly track the fastest 

flow expected, the flow velocities were also redefined to ensure the 

stability of the model according to the Courant–Friedrichs–Lewy 

condition (Courant et al. 1928).



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  1. (Color) Measurement network of Roujan catchment, France, and its LMP locations (data from OMERE 2009) 
 
 

                                                                                 



 

Parameter Description Unit 

SU   
ks Saturated hydraulic conductivity m=s 

hc 

θr 

θs 

Air entry potential 

Soil residual moisture 

Soil saturation moisture 

m 

m3 =m3
 

m3 =m3
 

 

τ c Critical soil shear stress Pa where q = flow rate per unit of hillslope width (m2 =s); B0  = unit 
LMPcode LMP type indicator — flow width not blocked by grass (−); μ = dynamic viscosity of 
Kr Rill erodibility s=m water (kg=s=m); ρ = water density (kg=m3 ); ρs  = sediment particle 
cetimax Maximum transport coefficient – density (kg=m3 ); and ds  = particle diameter (m). Deletic (2005) has 
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Table  1. Input Parameters of MHYDAS-Erosion where l = width of the grass strip (m); V s  = Stokes velocity for the 

settling of sediment particles (m=s); hw = water height (m); and V = 

mean flow velocity between grass blades (m=s). The mean flow and 

settling velocities in the model are calculated as follows: 
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nSU                                   Manning’s roughness coefficient                       sm−1=3

 

As                                     Aggregate stability index                                       — 
Nrill                                  Number of rills                                                      —
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W                           Rill width                                                                m 

d50                                    Median sediment diameter                                     m 

V s  ¼ 
18μ 

ðρs  − ρÞds                                              ð4Þ

 

 
 

from interrill erosion 

l                             Vegetated filter width                                             m 

B0                          Unit flow width not blocked by grass                  — 

RS 
ks                           Saturated hydraulic conductivity                          m=s 
nRS                                   Manning’s roughness coefficient                       sm−1=3

 

Kr                                   Rill erodibility                                                      s=m 
τ c                                      Critical soil shear stress                                         Pa 

 

 
MHYDAS-Erosion has been designed to simulate runoff and 

erosion processes from isolated rainfall events in agricultural catch- 

ments. The model is based on the spatial segmentation of a catch- 

ment, where agricultural fields are represented by homogeneous 

polygons called surface units (SUs) and the network of drainage 

channels is depicted by a series of interconnected reach segments 

(RSs).  A  semiautomatic geographic  information  system  (GIS) 

vector-based procedure (Lagacherie et al. 2010) allows for easy 

segmentation and, in turn, facilitates the parameterization of the 

hydrological objects. The processes incorporated into the model 

are rainfall, infiltration, overland flow, channel flow, soil detach- 

ment by rainfall, soil detachment and deposition by overland flow, 

and soil detachment and deposition by channel flow. The model has 

a module with which to describe the influence of LMPs on sedi- 

mentological connectivity.  In  this  first  version  of  MHYDAS- 

Erosion, LMPs are limited to vegetative filters located between 

SUs or between one SU and a draining RS. Table 1 shows the input 

parameters and descriptions used in MHYDAS-Erosion. 

The sedimentological connectivity module of MHYDAS- 

Erosion controls the sediment transfer between two hydrological 

objects (SU → SU, SU → RS, and RS → RS). This version of 

MHYDAS-Erosion only  takes  into  account  LMPs  falling  into 

the  broad  category of  vegetated filters: grass  strips, vegetated 

waterways, and riparian zones. The parameter LMPcode   indicates 

which type of LMP is applied to a given hydrological object: if 

LMPcode  ¼ 0, then no LMP is applied. If LMPcode  ¼ 1, then an 

LMP is applied downstream from the corresponding SU. 

In MHYDAS-Erosion, sediment filtration provided by a grass 

strip  is  based  on  flume  experiments  conducted  by  Deletic 

(2001) and Deletic and Fletcher (2006). The sediment-trapping ef- 

ficiency (T r ) is defined as a function of the nondimensional particle 

fall number Nf 

 
0.69 
f  

 

shown  that  the  cross-correlation coefficient between  measured 

and calculated trapping efficiencies reached R2 ¼ 0.85, which is 

acceptable. 

In MHYDAS-Erosion, Tr  is calculated for each time step, mak- 

ing sediment-trapping efficiency time dependent. The parameters 

B0 and l are estimated from field observations and may be spatially 

distributed in the catchment. For the present tests, the authors 

adopted constant values of B0 ð0.5Þ and l (2 m) for all grass strips 

in the catchment. 
 

 
Numerical Experiment Procedure and Stages 
 

The procedure used to assess the impact of the spatial distributions 

of LMPs follows a three-step sequence. The first step consists in 

developing a stochastic model defining the distributions of LMPs 

along upslope–downslope branches of the surface flow chart. The 

second step matches the input requirements of MHYDAS-Erosion 

with those of the conceptual stylized representation. The third step 

calculates the global Sobol indices that trace the influence of the 

upstream–downstream distribution of LMPs on MHYDAS-Erosion 

outputs. 
 

Stochastic  Generation of LMP Locations 

The transfer of water and sediment in MHYDAS-Erosion is con- 

strained by a process-oriented topology in which the links between 

hydrological objects (SU and RS) are made in a descending 

upslope–downslope procedure that allows no reverse upward ad- 

vection resulting from backwater phenomena. Moreover, the fluxes 

of water and sediment from a surface unit can only be gathered, not 

divided: confluence is allowed, difluence is not. Therefore, neither 

loops nor bifurcations exist in the flow patterns. Conversely, a 

surface unit may receive water and sediment from one or more 

hydrological objects. Consequently, the topology allowed in 

MHYDAS-Erosion for the Roujan catchment corresponds to the 

downstream-oriented tree shown in Fig. 2(a). In Fig. 2(b), the au- 

thors chose to project the tree on an ordinate corresponding to the 

distance of the hydrological objects to the main outlet of the flow 

network. Thus, the locations of LMPs generated by the stochastic 

process can be unambiguously identified along this ordinate (called 

the h-ordinate, representing the distance of sources to the outlet of 

the catchment), which thus bears every tested configuration of 

LMPs in the catchment according to flow paths. The abscissa val- 

ues simply indicate a junction order. 
The potential sites for LMPs are flagged by ½þ&  symbols in
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Fig. 2(b). Two types of connections are possible, from SU to 

SU and from SU to RS, wherever water and sediment discharge 

may occur. For the purpose of the present sensitivity analysis,

Nf  ¼ 
w · V                                     

ð2Þ the authors decided to apply LMPs only to SUs, thereby allowing 
both types of connection. Here, LMPs are exemplified as grass
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Fig. 2. (Color) Schematic view of locations of land management practices (LMPs) over Roujan catchment: (a) catchment topology representation; 

(b) catchment represented as directed tree with potential LMP sites; (c) probability density function (PDF) of potential LMP sites (data from OMERE 

2009) 
 

 

strips applied downslope of a SU. Fig. 2(c) shows all potential sites 

for LMPs projected along the h-axis and the resulting smoothed 

kernel of the associated probability density function (line). 

First, the h index is transformed for convenience into a normal- 

ized x index ranging from 0 (outlet) to 1 (farthest source from 

To model contrasted upslope–downslope configurations of 

LMPs, the authors propose a linear upslope–downslope probability 

density function, gðxÞ, which is defined for any location x as 

follows: 

!
1 þ p

"
outlet) 

 
h 

gðxÞ ¼       
2
 − ðp ' xÞ                                ð6Þ

x ¼ 
max h 

ð5Þ where  p  =  upstream–downstream gradient  of  LMPs,  ranging 

from −1 to 1. When p ¼ 0, all potential sites have the same prob- 

ability of being selected, regardless of the x value. When p ¼ −1, it

The main principle of the stochastic generation of LMP loca- 

tions is to randomly select a number of LMPs from potential sites 

½þ&  using a probability assigned to each potential site. This prob- 

ability is determined by r, the LMP density parameter controlling 

the total number of LMPs generated, and by p and bw, which con- 

trol  their locations along  the upslope–downslope x-axis. From 

the given values of these three scalar parameters, an upslope– 

downslope probability function gðxÞ is built. According to gðxÞ, 

potential sites ½þ&  are randomly selected for LMP locations. Sto- 

chasticity in the process is ensured through random sampling with 

respect to gðxÞ. 

is more probable that the potential upstream LMP sites will be se- 

lected  than  the  potential  downstream  sites.  Conversely,  when 

p ¼ 1, the potential downstream sites of LMPs will more likely 

be selected than the potential upstream sites. 

For a given catchment, intrinsic potential sites are not distributed 

with the same density along the upstream–downstream axis, which 

can be described by the preceding equations. To increase the flex- 

ibility of the procedure and especially to amplify the contrast be- 

tween upstream and downstream locations, the authors added a 

second-order parameter to the description. This parameter, denoted 

by bw, corresponds to the bandwidth of the kernel used to estimate
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the probability density function of potential LMP sites (PDFL) 

along the upslope–downslope axis [Fig. 2(c)]. The inverse of the 

probability density function is  used as a  probability amplifier, 

i.e., gðxÞ is convoluted with the inverse of the PDFL and normal- 

ized to obtain a total probability of one. Consequently, when bw 

is large, PDFL is constant and gðxÞ [Eq. (6)] is not altered. 

Conversely, when bw is small, PDFL is a nonconstant function 

[Fig. 2(c)] and gðxÞ is accordingly corrected and locally amplified. 
During simulations, it is necessary to define the number of 

LMPs placed in the catchment. For this purpose, the authors intro- 

duced a density parameter r ranging from 0 to 1, defined as the ratio 

between the number of simulated LMPs and the total number of 

potential sites in the catchment. Practically, r controls the repetition 

of samplings in the gðxÞ function (amplified according to bw) until 

the desired number of simulated LMPs is obtained. 
Finally, the LMP locations in the catchment are stochastically 

simulated through two main parameters, r and p,  and a second- 

order parameter, bw. Fig. 3 shows the mean upslope–downslope 

positions of LMPs as calculated within this stochastic model for 

various values of the control parameters. 
In Fig. 3, the mean upslope–downslope positions of LMPs for 

bw ¼ 0.06 are more contrasted than for bw ¼ 2. The effect of p 

variations is clear: upstream positions are more numerous when 

p ¼ 1 and less numerous when p ¼ −1. In fact, the bw parameter 

was introduced to control the influence of the intrinsic hydrological 

connectivity of the catchment. When bw ¼ 2, the intrinsic connec- 

tivity is maintained. Conversely, when bw ¼ 0.06, the connectivity 

is modified and normally distributed throughout the catchment. 
 
Framework to Link  the Stochastic  Model to 

MHYDAS-Erosion 

Only the three parameters defining the stochastic model were used 

in the present sensitivity analyses. The sensitivity of MHYDAS- 

Erosion to the other input parameters has been tested by Cheviron 

et al. (2010). Sensitivity analyses performed by Cheviron et al. 

(2010, 2011) identified the most sensitive parameters for 

MHYDAS-Erosion: ks, Nrill , Kr , and As . According to Cheviron, 

MHYDAS-Erosion showed a strong sensitivity to the input flux 

(control of hydrological factors), such as precipitation and runoff. 

In fact, some erosion processes represented in MHYDAS-Erosion 

depend on a threshold value (e.g., strong and short precipitation 

events associated with strong runoff conditions result in strong rill 

erosion, whereas weak and long rainfall events may favor interrill 

erosion). The sensitivity of the model to the soil erosion parameters
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Fig.  3. (Color) Mean normalized distance of LMPs for varied r, p, and bw values 
 

 



 

X1 . SðX1 X2 Þ and SðX1 X3 Þ refer to the interaction effects between 

X1 and X2 and between X1 and X3 , respectively. SðX1 X2 X3 Þ refers 

to the interaction effects among X1 , X2 , and X3 . The Sobol method 

decomposes the output variance into all possible sources based on a 

high-dimensional representation of the model. 

Indices Si and TSi for a given Xi factor correspond to empirical 

estimations of the variance ratio 
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Fig. 4. (Color) Graphic representation of coupling between stochastic 

LMP position generator model and MHYDAS-Erosion 

 
 
 

thus depends on the test configuration, as suggested by Gumiere 

et al. (2009). To exclude parasite sensitivity effects, all innate 

parameters required by MHYDAS-Erosion are held constant 

throughout the catchment for all hydrological objects (SU and RS). 
The SENSAN software (Doherty 2004) was used to feed pre- 

defined parameter sets  to  MHYDAS-Erosion and  to  automate 

MHYDAS-Erosion runs until all parameter sets were tested. 

SENSAN acts as a master model to any slave model to which it 

is linked, provided communication between them is possible 

through input and output ASCII files. Fig. 4 shows the overall cou- 

pling  among  the  stochastic  model,  SENSAN, and  MHYDAS- 

Erosion. 
Based on a quasi-random Sobol sampling of r, p, and bw using 

the fOptions (Wuertz et al. 2010) package of the R-CRAN software 

(R Development Core Team 2010), the stochastic model generates 

the  positions  of  LMPs  throughout  the  catchment. The  output 

of the stochastic model is a binary LMPcode   set that indicates 

whether the candidate SU has a LMP for each of the 237 SUs 

in the Roujan catchment. Eighty thousand simulations with 

MHYDAS-Erosion were run using fixed rainfall characteristics 

to ensure that the sensitivities stabilized themselves near asymptotic 

values. A constant rain value of 60 mm/h over 4 h in a single storm 

event was used in all simulations (a 100-year return period event for 

the Roujan catchment). First-order and total Sobol sensitivity indi- 

ces were calculated using the sensitivity package of the R-

CRAN 

software. 
 

Impact  of LMP Distribution  through  the Sobol Indices 

The Sobol method, described in Sobol (1993) and Saltelli et al. 

(2000), was used to compute sensitivity indices; this method is 

a  variance-based global  sensitivity  analysis  method  using  the 

http://cran.r-project.org/web/packages/sensitivity/ sensitivity pack- 

age. This method usually yields first-order sensitivity indices (S) 

and total sensitivity indices (TS) that take into account interactions 

among factors. The TS of a factor is defined as the sum of all the 

sensitivity indices involving that factor, alone or in interactions 

(Saltelli et al. 2008). For example, if a model has three factors 

X1 , X2 , and X3 , the TS of the factor X1  is given by SðX1 Þ þ 

SðX1 X2 Þ þ SðX1 X3 Þ þ SðX1 X2 X3 Þ, where SðXÞ denotes the sensi- 

tivity index of X. SðX1 Þ refers to the first-order sensitivity index of 

In Eqs. (7) and (8), Y is the model output, V ðYÞ the variance of 

Y, and EðYÞ its expectation. X−i  denotes all other parameters ex- 

cept Xi . V ðEðYjXiÞÞ is the variance of a conditional expectation of 

Y, having frozen the source of variation Xi . V ðEðY jX−i ÞÞ  is the 

variance of the conditional expectation of Y, having frozen all sour- 

ces of variation except Xi . Consequently, Si ranges from 0 to 1, and 

the higher Si is, the more sensitive the model is to Xi . In the case of 

additive models, 
P

i Si  ¼ 1. Using the usual Sobol framework on a 
model with a stochastic component, the authors limit the sensitivity 
exploration to the deterministic behavior of the model (Iooss et al. 

2009; Marrel et al. 2010). As a consequence of this limitation, the Y 

variability arising from model stochasticity is not taken into 

account. 

However, the Sobol method provides information on isolated 

or combined influences of the factors as well as insights into 

the additive or nonlinear behavior of the model. Furthermore, 

the  Sobol  method  can  be  smoothly  applied  to  categorical 

factors without rescaling. The method used to estimate the Sobol 

indices with a Monte Carlo approach is explained by Saltelli 

et al. (2008, 2010). In the next section, the authors examine 

variations in the predicted soil loss related to variations in the 

three control parameters (r, p,  and bw) used to generate the 

LMP locations. 
 

 
Results and Discussion 

 
Impact of Upslope–Downslope Positions of LMPs 
 

First, the authors fixed the range of variations for the control param- 

eters r, p, and bw to ½0 − 1&, ½0 − 1&, and ½0.06 − 2&, 

respectively, with uniform probability laws and separated these 

intervals into 20 classes each and performed 800 repetitions 

within each class ac- cording to the Latin Hypercube sampling 

design and Sobol method described by Saltelli et al. (2008, p. 

165). These collected param- eter sets were used to generate an 

equal number of spatial distri- butions of LMPs. 

Second, a constant rain intensity of 60 mm=h over 4 h was ap- 

plied for each spatial configuration of LMP. The normalized soil 

loss results obtained from MHYDAS-Erosion were calculated at 

the three aforementioned measurement points in the Roujan catch- 

ment, allowing for easy comparison between scales. The Normal- 

ized Soil Loss (NSL) is calculated for each measurement point as 

NSL ¼ ½Ei  − minðEÞ&=½maxðEÞ − minðEÞ&,  where Ei ðkgÞ  is  the 

soil loss at a measurement point for the ith simulation and E is 

the vector with all simulated erosion values. Fig. 5 shows boxplots 

of simulated NSL responses to variations in p, r, and bw values at 

the three measurement points in the catchment. 

Fig. 5 shows the direct relation between the variance of model 

response and that of individual parameter values, corresponding to
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Fig. 5. Boxplots of simulated NSL responses to variations in p, r, and bw values; (a–c) refer to measurement Point 1; (d–f) refer to measurement Point 

2; (g–i) refer to measurement Point 3 
 

 
 

Eq. (7). From values plotted as the median line, it is obvious 

that  the  density of  LMP  (r)  has  a  scale-dependent effect on 

NSL. When the density approaches 1, NSL asymptotically de- 

creases to zero, but the variance of NSL at Point 1 (catchment) 

appears to  be  smaller than  the variances found  for  measure- 

ment Points 2 and 3 at subcatchment scales. In addition, the 

NSL values calculated at Points 2 and 3 seem to be more sensitive 

to the upslope–downslope probability (p) and to the bw parameter 

than the NSL calculated at Point 1. The fact that NSL at the 

main outlet is less influenced by p values than at the intermediate 

measurement points might be explained by the presence of a very 

dense drainage network (1.21 × 10−2 =m), which limits the effect 

of the p parameter as long as no LMP is applied to the drainage 

channels. 

Fig. 6 shows the best configuration for LMP emplacements re- 

garding  the  maximum trapping coefficient over  the  catchment 

when fixing a specific value of LMP density (r). The boxplot below 

each map shows the trapping coefficient variation for all possible 

configurations of emplacements given a fixed value of LMP den- 

sity. In the first scenario (r ¼ 0.3), the trapping coefficient varies 

within a certain range [0.06,0.46]. This trapping coefficient range 

is due to the different possibilities of LMP emplacement over the 

catchment. Thus, 0.46 is the maximum trapping coefficient for this 

particular catchment when 30% of the fields have an LMP. This 

result also shows that a poor choice of LMP locations may have 

a large impact on the sediment-trapping efficiency, e.g., at least 

one configuration has an efficiency of 0.06. For the last scenario 

(r ¼ 0.7), indicating that 70% of the fields have one LMP, the trap- 

ping coefficient varies from 0.32 to 0.93. Even in this condition, 

with 70% of the fields having a LMP, a poor recommendation 

may have a serious impact on the global sediment-trapping effi- 

ciency of the catchment. 

Global Impact of Distributions of Land Management 

Practices 
 

Table 2 shows the total and first-order Sobol indices related to the 

ðr; p; bwÞ triplet as well as the NSL values obtained at the two sub- 

catchment outlets and at the main catchment outlet. 

As expected, the largest sensitivity indices are found for the 

parameter r, accounting  for  the  LMP  density.  The  maximum 

first-order index is always that of r, whatever the subcatchment, 

and it increases with the drained area. These results indicate that 

r is  the  only  parameter  influencing  soil  loss  simulation  by 

MHYDAS-Erosion in Roujan at all three points (and for the asso- 

ciated drained areas). In contrast, p has a very small, though non- 

zero, influence on the prediction. Additionally, bw has no direct 

influence on the model outputs. 
Except for Point 1 (catchment outlet), the sum of the first-order 

sensitivity indices always remains less than one. This behavior may 

indicate that the metamodel linking the stochastic generation of 

LMP to MHYDAS-Erosion has no additive effect for Points 2 

and 3, except at the outlet of the catchment, but this result is also 

due to the neglect of variance arising from the stochastic compo- 

nent of the model in the usual Sobol indices (Iooss et al. 2009; 

Marrel et al. 2010). 
Table 2 indicates that all parameters interact and that the total 

Sobol indices provide information about these interactions. At 

Point 1, a very slight increase of 0.08 in the index of the total effect 

associated with r reveals only weak interactions, whereas signifi- 

cant interactions are observed for the two subcatchments. The in- 

crease from first-order to total sensitivity indices for the r, p, and 

bw parameters has the same order of magnitude at the subcatch- 

ment scales (measurement Points 2 and 3), showing a high inter- 

action of the p and bw parameters with the others at these scales.

 



 

 

 
 

Fig. 6. (Color) Maps: best configuration for LMP emplacements for outlet soil loss (Point 1); boxplots: sediment trapping coefficient for outlet for r 

varying from 0.3 to 0.7 
 
 
 

Table  2. Sobol Sensitivity Indices  

Parameter →  r    p    bw  

Points First ðSi Þ Total ðST Þ ST − Si  First ðSi Þ Total ðST Þ ST − Si  First ðSi Þ Total ðST Þ ST − Si 

1 0.9172 0.9926 0.0754  0.0088 0.0846 0.0758  0.0038 0.0716 0.0678 

2 0.5716 0.9987 0.4271  0 0.4217 0.4271  0.0141 0.4085 0.3944 

3 0.6181 0.9236 0.3055  0.0778 0.3733 0.2955  0.0094 0.3166 0.3072 

Mean 0.7023 0.9716 0.2693  0.0271 0.2932 0.2661  0.0091 0.2656 0.2565 

 
 

Thus, the interaction among these parameters has the same order of 

magnitude at Points 2 and 3. Table 2 indicates that 70% of the si- 

mulated soil loss is explained by r when taking the average of all 

measurement points. 
 

 
Conclusion 

 

The present numerical analysis provides a framework for studying 

the influence of the density and upslope–downslope locations of 

LMPs on soil loss response. Using Sobol methods to calculate sen- 

sitivity indices, our procedure provides information regarding the 

individual or combined sensitivities of the tested parameters. In the 

present case study, soil losses predicted by MHYDAS-Erosion are 

more sensitive to the overall density of LMPs (r) than to their up- 

stream–downstream gradient (p and bw). The hierarchy of param- 

eter sensitivities arises from the first-order Sobol indices, which 

show that 70% of the simulated soil loss is explained by r when 

taking the average of all measurement points. 

The model response of normalized soil loss also showed that the 

upstream–downstream gradient (p)  was not the key sensitivity 

parameter but could significantly affect MHYDAS-Erosion output 

via interactions. Different values of normalized soil losses are pos- 

sible for given values of r, according to variations in the p values. 

This point confirms that the efficiency of LMPs is linked to their 

location within the catchment. 
Therefore, the layout of the LMP emplacement must be properly 

addressed. An appropriate recommendation regarding where the 

LMPs should be applied is crucial for the sediment trapping effi- 

ciency. This conclusion also has strong implications for the eco- 

nomic aspect of LMP application because the associated cost of 

LMPs is strictly linked to their density within a catchment area. 

When the density increases, the production cost may increase as 

well through both productive surface losses and implantation costs. 

For example, reducing the sediment exportation for the Roujan 

catchment by 60% can be achieved with an LMP density grater 

than 0.4. This will drastically reduce the costs associated with 

LMP implantation and productive area losses.
 



 

The numerical experiment analysis confirms the influence of 

LMP spatial configuration on soil-loss ratios at various spatial 

scales. MHYDAS-Erosion can thus be used as a toolbox to opti- 

mize the locations of LMPs in agricultural catchments. 
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