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Abstract—Bathymetry is usually determined using the positions 
of the water surface and the water bottom peaks of the green 
LiDAR waveform. The water bottom peak  characteristics are 

known to be sensitive to the bottom slope, which induces pulse 
stretching. However, the effects of a more complex bottom ge- 
ometry within the  footprint below semitransparent media are 

less understood. In this letter, the effects of the water bottom 
geometry on the shifting of the bottom peaks in the waveforms 
were modeled. For the sake of simplicity, the bottom geometry 

is modeled as a 1D sequence of successive contiguous segments 
with various slopes. The positions of the peaks in waveforms were 
deduced using a conventional peak detection process on simulated 

waveforms. The  waveforms were  simulated using  the  existing 
Wa-LID waveform simulator, which was extended in this study 
to account for a 1D complex bottom geometry. An experimental 

design using various water depths, bottom slopes, and LiDAR 
footprint sizes according to the design of satellite sensors was used 
for the waveform simulation. Power laws that explained the peak 

time shifting as a function of the footprint size and the water 
bottom slope were approximated. Peak shifting induces a bias in 
the bathymetry estimates that is based on a peak detection of up 

to 92% of the true water depth. This bias may also explain the 
frequent underestimation of the water depth from bathymetric 
airborne LiDAR surveys observed in various empirical studies. 

 

Index Terms—Altimetry, laser noise, laser radar, sea floor. 

 
I.  INTRODUCTION  

 

ULL-waveform LiDAR is a technology that registers the 
backscattered laser pulse power over time, i.e., along the 

laser beam path, as it penetrates successive media. In many 
environmental applications, the peaks in the waveforms are 
the basic information used to  retrieve useful variables and 
parameters, such as elevations or media thickness values (e.g., 
water depth and forest height) [1]. In a remote opaque media, 
such as bare soil or building materials, it has been demonstrated 
that the target geometry within the footprint highly modifies the 
waveforms [2], particularly if the footprint is wide. Numerous 
analytical equations relating the waveform properties to the 
slope within the footprint exist in the literature [2], [3]. The 
main known impact of laser target geometry, i.e., the incidence 
angle, is the effect of pulse stretching. In bathymetric LiDAR, 

 

 

because of the semitransparent nature of the medium (water) 
that is penetrated by the laser beam before reaching the bottom, 
the physics differs from those of topographic LiDAR. However, 
the effects of the water bottom geometry on the waveforms also 
show a stretching effect [3], [4]. Some analytical formulations 
were proposed to explain pulse stretching as a function of 
the target slope [4]–[6]. Empirical studies on the accuracy of 
LiDAR  airborne  bathymetry [7],  [8]  often  report  observed 
biases, i.e., a systematic underestimation of the bathymetry 
estimates. However, explanations on the physical causes of 
these biases are few and vary among studies, most likely 
because of the lack of highly detailed reference data on the 
target properties at the airborne footprint scale that can help 
researchers better understand these causes. 

Assuming a Gaussian spatial distribution of laser pulse en- 
ergy within the laser beam solid angle (beam profile) [9], we 
hypothesize that this underestimation originates from the bot- 
tom peak position in waveforms that may be highly disturbed 
due to the water bottom geometry. In this letter, we aimed at 
qualitatively and quantitatively testing this hypothesis using an 
existing bathymetric LiDAR waveform simulator. 

For  that  purpose, a  specific 1D  water  bottom  geometry 
model was included in the Wa-LID simulator for this study. An 
intensive experimental design was used to analyze and assess 
the bottom geometry effects on the bathymetry’s accuracy. This 
analysis was performed according to the wide LiDAR footprints 
that are expected in future LiDAR bathymetric satellite sensors. 

This letter first presents the methods, including 1) the ap- 
proach used to model the water bottom geometry within a 
given footprint and 2) the detailed protocol with which the 
Wa-LID simulator was used to account for the water bottom 
geometry. Furthermore, a qualitative analysis of the simulated 
waveform under controlled conditions was conducted. Finally, 
we modeled the relationships between the time shifting of the 
waveform peaks and the bottom slope, the water depth, and the 
footprint size for a steepened segment geometry. 

 
II.  METHODS  

 

The bathymetry of coastal waters, i.e., the water depth, is 
a key parameter for hydrodynamics engineering, navigation, 
and aquatic environments. Its value to areal supports, such 
as the LiDAR footprint, can be directly deduced from the 
water bottom geometry within this support if the water sur- 
face is flat. To further investigate the link between the water 
bottom geometry and the accuracy of bathymetry estimates 
from LiDAR waveforms, we first proposed a simplified 1D 
geometric model of the water bottom. Indeed, we assumed that 
the 1D bottom geometry model, despite being a simplification, 
is  appropriate for  demonstrating the  impact  of  the  bottom 
geometry on water depth estimation. We then demonstrated
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Thus, the mean water depth Z̄  of a given LiDAR footprint 
can be defined as the weighted average of all mean water depths 

Z̄i  of segment Si , i.e.,

n−1 

Z̄ =   
     

L Z̄
 

n−1 

with L = 
    

L .                (5)
L   

i  i 

i=1 

i 
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If we substitute Z̄i  from (4) into (5), the bathymetry Z̄ could 

be written as

Fig. 1.   Simplified 1D  water bottom geometry along the footprint diameter 
(X -axis). The z-axis denotes the water depth. Z = 0 is the water surface. 
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how to use an existing bathymetric waveform simulator using 
this modeled geometry. Finally, we presented an experimental 
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Li (Lk tan(θk )) . 
 

(6)

design for waveform simulation to investigate the water bottom 
geometry effect on the peak time shifting in LiDAR waveforms. 
However, to highlight only the effect of the bottom geometry, 
additional sources of perturbations in actual data from LiDAR 
systems were neglected in the simulation, including the beam 
wander, scintillation, and shape distorsion of emitted pulses and 
capillary wave effects. 

 

 
A. Linking Bathymetry to the Water Bottom Geometry 

Properties at the Footprint Scale 
 

For a given LiDAR footprint of diameter F p, we modeled 
the water bottom geometry as a 1D series of n − 1 contiguous 
segments that are denoted Si for i ∈ (1, . . . , n − 1) having n 
endpoints denoted Zj  with j ∈ (1, . . . , n). Each segment Si is 

defined by its length Li , which corresponds to its projection on 

the abscissae axis and a slope angle θi  with respect to this same 

abscissae axis (see Fig. 1). The water depths at the endpoints of 
segment Si are denoted Zi and Zi+1 . 

Z̄i  corresponds to the mean water depth of each segment Si , 
and Z̄  is the bathymetry at the footprint scale, i.e., the mean 
water depth throughout the LiDAR footprint. Knowing Z1  and 
the segment parameter pairs (θi , Li ) allows for the calculation 
of the mean water depth, i.e., bathymetry Z̄ ,  as illustrated 
below. 

First, using a descending Cartesian Z-axis and the properties 
of geometric series, the water depth of endpoint Zj  of segment 
Si is 

j−1 

∀j ∈ (2, . . . , n)    Zj  = Z1  + 
    

Lk . tan(θk ).        (1) 
k=1 

 

By definition, the mean water depth Z̄i  of segment Si is thus 

Using  the  proposed  water  bottom  geometric  model  and 
knowing the bathymetry at footprint size Z̄ , all segment pairs 

(θi , Li ), Z1   and any segment endpoint Zi  or segment mean 

water depth Z̄i  can be computed. It is also possible to compute 
the water depth for any position x along the X abscissae axis. 

 
B. Waveform Simulation 

To simulate LiDAR waveforms using a modeled water 
bottom geometry, we assume that the mean water depth Z̄ , 

the angles (θi )i∈(1,...,n−1) , and the length of each segment 

(Li )i∈(1,...,n−1)  are given. Because the water bottom is a finite 

continuous medium and an analytical model of a waveform 
cannot be simply defined with this bottom geometry, we chose 
to develop a discretization approach. 

In this approach, the series of segments describing the water 
bottom geometry is spatially sampled along the X -axis into 
m  samples (x1 , . . . , xf , . . . , xm ) with the spatial lag Δx . At 
a given sample xf  along the X -axis with a water depth of Zf , 
a  waveform denoted Pbf (t) with a footprint diameter of F p 
and a null slope angle is simulated using the Wa-LID simulator 
[10], where the water bottom is assumed to be a Lambertian 
reflector [11]. We assumed that illuminating a nonflat bottom 
can be approached by illuminating a staircase function with 
the Δx spatial lag, i.e., a mix of flat bottoms of the same size 
F p but with different water depths Zf   for f ∈ (1, . . . , m).  In 
this approach, the slope of the water bottom at the Δx scale is 
neglected. 

Consequently, the resulting simulated waveform at the foot- 
print scale, considering the complex water bottom geometry, is 
computed by averaging the waveforms Pbf (t) and accounting 
for the Gaussian beam profile, i.e., 

m  
 

∀i ∈ (2, . . . , n − 1) 

 

Z̄i  = 

 

Zi + Zi+1 
.             (2) 

2 

Pb (t) =   
f =1 

wf  ∗ Pbf (t)                     (7)

 

Substituting Zi and Zi+1 from (1) into (2), we obtain 
where wf   is the weight corresponding to a Gaussian beam 
profile, i.e.,

 i−1  
Lk . tan(θk ) +

  i     
Lk . tan(θk )
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σ   2π 
exp  
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Extending this computation for each i ∈ (2, . . . , n  − 1) gives with σ = Fp /6 (∼99.7%).

i−1 

Z̄i  = Z1  + 
  

Lk . tan(θk ) +  
k=1 

 

where Z̄1  = Z1  + L1 /2. tan(θ1 ). 

 

L i 
. tan(θ  )           (4) 
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In practice, the waveform simulator 1) identifies the starting 
sample of the discretization; 2) defines the next m,  i.e., the 
number of required samples, which depends on Δx and F p; 
3) calculates the depth for each sample position f ; 4) simulates 
and stores the Pbf (t) waveform of a flat bottom at depth Zf ;



 

p   

 

and 5) simulates the average waveform from the discretization 
process. 

To avoid discretization disturbance in the simulations and 
based  on  the  Nyquist–Shanon sampling theorem, sampling 
interval Δx  must be smaller than half of the time sampling 
resolution in the LiDAR digitizer, i.e., 

1 
Δx ≤ 

2 
cw Tp                                                  (9)

 

where cw  = 225563 km.s−1   is the speed of light in water, 

and T p  is the LiDAR time sampling lag corresponding to 
the inverse of the digitizing rate (typically of 1 GHz). Here, 

Δx = 0.1125 m was used. 

 
C. Waveform Peak Detection 

Many heuristics exist to retrieve the bathymetry Z̄  from a 
LiDAR waveform. A basic approach is to identify the surface 
and bottom positions in the waveforms using a multi-Gaussian 
fitting of the peaks. This is an effective approach in the case of 
an actual signal with noise. In the waveform simulation process, 
we chose to turn off the noise addition because the objective 
of this study was not to test an inversion method but only 
to analyze the effect of the bottom geometry on the accuracy 
of the bathymetry estimates. We thus chose to use a simple 
waveform peak detection method instead of a multi-Gaussian 
fitting. This method assumes that a peak is the highest point 
between valleys, i.e., a local maximum; thus, the algorithm used 
searches for local maxima. 

The first peak is usually assumed to be the water surface po- 
sition, and the latest peak is assumed to be the bottom position. 
The bathymetry can thus be deduced simply by transforming 
the time difference into distance. 

 

 
D. Experimental Design 

LiDAR waveform simulations were  performed using the 
configuration of a satellite LiDAR sensor illuminating a semi- 
transparent coastal water. In the simulations, the usual green 
Nd:Yag laser wavelength (532 nm) was used, as has been used 
in many Airborne LiDARs [12]. This wavelength is used to 
obtain a tradeoff between the attenuation of the bottom return 
due to water absorption and scattering by particles in the water. 

The sensor parameters were fixed and chosen to agree with 
the  configurations studied  by  the  EADS-Astrium company 
(European  Aeronautic  Defence  and  Space  Company)  [13], 
particularly regarding laser energy. Because the limit of expo- 
sure to laser radiation (LLR) is 5.10 −3 J/m2  for wavelengths 
between 400 and 700 nm (including the green laser with a 
532-nm wavelength) [14], [15], the maximum allowed energy 
E0  (J) by the LiDAR that meets the standards of ocular safety 
is defined as 
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SPECIFI CATION  OF  SENSOR  PARAMETERS  

 

 
 
which is linked to the sensor elevation (meters) and the LiDAR 
divergence angle (rad) through the following equation: 

Fp  = H. tan(γ).                         (11) 

From (9) and (10), the values of E0   and γ can be calculated 

because all other parameters are fixed. 
Based on a previous review [13], the water parameter values 

were fixed and chosen to be representative of clear coastal 
waters with reflective bottoms [13], [16], [17]. The chosen 
sensor and water parameters are all listed in Tables I and II. 

Waveform simulations were performed for the following 
mean water depths Z̄ at the footprint scale: 2, 5, 8, and 12 m. 
Five different footprint sizes F p were also used: 5, 10, 20, 30, 
and 40 m. The slope segment angle was varied between 0◦ and 
50◦, with a step size of 1◦. The waveforms resulting from these 
different configurations were used to quantify and model the 
effect of the bottom geometry on the bathymetry estimates. For 
the sake of simplicity, a geometry with a single steep segment 
was used. 

 
III.  RESULTS AND DISCUSSION  

A. Qualitative Analysis of the Simulated Waveforms 
 

To highlight the influence of the bottom geometry on the 
shape of the LiDAR waveforms, Fig. 2 shows five waveforms 
using different configurations of slope angles of three succes- 
sive segments of equal length that describe the geometry of

E0  ≤ 
4T 

 

atm Mscint Mgauss 

(10) 
G2

 the water bottom. For all waveforms, a mean water depth Z̄ 
(bathymetry) of 2 m and a LiDAR footprint F p of 5 m were

where Tatm = 0.5 is the atmospheric transmittance; Mscint  = 
2 is the margin for atmospheric scintillation; Mgauss = 4.6 is 
the margin for Gaussian beam (factor overload in the center 
of a Gaussian); G = 13.34 is the binocular magnification used 
by the observer in the ground; Fp  is the LiDAR footprint size, 

used. 
Fig. 2 shows that the bottom peaks for complex water bottom 

geometries can be shifted to the left or right of the bottom peak 
of the flat-bottom configuration (0◦/0◦/0◦). This finding signi- 
fies that a complex bottom geometry can produce bottom peaks



 
 

 
 

 
 
 
 

Fig.  2.   LiDAR  waveforms  for  five  water  bottom  geometries.  In  each 
LiDAR footprint F p(= 5  m),  the bottom geometry is composed of three 
segments. The configuration of the bottom slope angles of successive segments 
(θ1 , θ2 , θ3 ) are: (0◦/0◦/0◦), (−30◦/30◦/ −30◦ ), (0◦/−30◦/30◦ ), (0◦/30◦/0◦ ), 
and (−30◦/0◦/−30◦ ). 1 ns is equivalent to 11.25 cm. 

 

 
 

Fig. 3.   Influence of the water bottom slope on the LiDAR waveform. F p = 
5 m, Z̄ = 2 m, one segment with θ = [0◦ , 5◦ , 10◦ , 15◦ , 20◦ , 25◦ , 30◦ ]. Here, 
1 ns is equivalent to 11.25 cm. 

 
that can induce an over- or underestimation of the water depths. 
For instance, the bottom geometry configuration (0◦/30◦/0◦) 
depicted in dark gray produces a waveform that contains one 
peak for the water surface and two peaks for the water bottom 
contribution, with a last bottom peak located at a water depth 
of 2.47 m. The other cases show stretched peaks after the water 
surface peak with a delay from the true bottom position in the 
waveform abscissae axis ranging from approximately −7 to 
4.2 ns, corresponding to a deviation of about −0.79 to 0.47 m in 
the water depth estimation. These schematic examples confirm 
that it is not accurate to estimate the water depth only from the 
latest peak position if the water bottom geometry is complex. 

 

 
B. Quantitative Peak Shifting Analysis 

From the previous examples, we chose to analyze in detail 
the effect of the bottom geometry on the peak time shifting 
using only one segment with a bottom slope θ and the experi- 
mental design of water depths and footprint sizes F p described 
in the previous section. Fig. 3 shows the resulting waveforms 
for F p equal to 5 m, Z̄ equal to 2 m, and θ ranging from 0◦ to 
30◦ with a step size of 5◦. 

First, the water bottom peak approaches the water surface 
peak when the water bottom slope increases. This shifting of 
the bottom peak may result in an underestimation of the water 
depth. For example, for a footprint of 5 m and Z̄ = 2 m, the 

water depth is underestimated by 0.089 m at a slope of 10◦ 

Fig. 4.   Underestimation of bathymetry at the footprint scale as a function of 
the water bottom slope. 
 

tends to expand with a lower amplitude when the bottom slope 
increases. This stretching effect may also participate in bottom 
peak time shifting. 

This bottom peak shift is explained by the strongest contri- 
bution to the waveform coming from the shallowest part of the 
bottom section due to the semitransparency of water. In fact, 
the bottom peaks resulting from the shallowest samples have 
higher amplitudes due to lower attenuation. The stretching of 
the bottom peak when the water bottom slope increases is due 
to the discretized convolution between the emitted pulse and 
either a decrease or increase in the bottom depth when the slope 
is not zero [7]. 

The bottom peak time shifting in the waveform leads to 
a bias in the estimation of bathymetry. An analysis of this 
bias according to the water bottom slope angle revealed a 
power function relationship. Fig. 4 illustrates the error in the 
bathymetry estimates for two different LiDAR footprints with 
a steep water bottom: small footprint F p = 5  m and large 
footprint F p = 40 m. 

Fig. 4 shows that for a mean water depth of 2 m and a LiDAR 
footprint F p of 5 m, the highest investigated bottom slope θ is 
32◦. Higher slope angles make the segment modeling the water 
bottom go out of the water. For a footprint F p of 40 m and a 
mean water depth of 2 m, the highest investigated bottom slope 
θ is 4◦ (see Fig. 4). 

Fig. 4 also demonstrates that the underestimation of the mean 
water depth highly depends on both the LiDAR footprint F p 
and the bottom slope θ but only slightly depends on the mean 
water depths for the four tested depths Z̄ = (2, 5, 8, 12) m. We 
can model this underestimation with a generalized power law 
for given F p and Z̄ values, i.e., 

ΔZ = a|θ|b .                                 (12) 

For each F p and Z̄ , Table III shows the value of the (a, b) 

coefficients that were estimated from a nonlinear fitting process 
of the power law [see (11)], which yielded high R2   values 
(close to 99.6%). As shown in Table III, the values of a increase 
as F p increases, whereas the values of b decrease toward 1 as 
F p increases. In addition, coefficient a varies with the mean 
water depth only for high F p (a slight increase is observed). 
For low F p values, coefficient a appears to be independent of 
the mean water depth. 

We then performed multiple linear regressions between the a 
or b coefficients of (11) and parameters F p and Z̄ , i.e.,

and by 1.213 m at a slope of 30◦. It is apparent that the return 

pulse broadening is also observed. In fact, the bottom peak 

  
a = α1 F p + β1 Z̄ + γ1 

b = α2 F p + β2 Z̄ + γ2 . 

 

(13)



 
 

TABLE  III 
a AND b COEFFI CIENTS  OF  THE  RELATIONSHIP  BETWEEN  THE  

UNDERESTIMAT ION O F T HE MEAN  WATER  DEPTH 

AND  THE  WATER  BOT TO M SLOPE  [SEE (11)] 
 

 
 

The underestimation of the mean water depth described in 
(11) can then be written as 

 

Z̄+γ  )
 

increases with an increase in the LiDAR footprint and bottom 
slope. For a mean water depth of 2 m and F p = 5  m, the 
bathymetry underestimation is  approximately 0.0235 m  for 
θ = 4◦  and 0.651 m for θ = 20◦.  For the same water depth 
and F p = 40 m, the underestimation is approximately 1.10 m 
for θ = 4◦. The bias of the water depth estimates was further 
modeled as a generalized power law of the LiDAR footprint 
size, bottom slope, and water depth. 

These results show that the bathymetry from the LiDAR 
waveform for a rough water bottom at the footprint scale should 
not be based only on the peaks in the waveform. These conclu- 
sions are valid when any laser beam penetrates semitransparent 
media before reaching the bottom and could be applicable 
for other laser wavelengths in other contexts. However, more 
formulations for other complex water bottom geometries with 
more contiguous segments or facets within the footprint should 
also be investigated in future works.

ΔZ = (α1 F p + β1 Z̄ + γ1 )θ(α2 F p+β2         2
 (14)  
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green LiDAR waveform is the detection of the positions of 
the surface and bottom peaks in the waveform. The bottom 
peak (position and intensity) is dependent on the water bottom 
morphology, i.e., geometry, within the footprint. A 1D model 
assimilating the bottom geometry to a series of segments of 
varying length and slope was developed and integrated into the 
existing Wa-LID code to simulate bathymetric LiDAR wave- 
forms for any footprint size and water depth. The effect of the 
water bottom slope on the water depth estimates was analyzed 
using water bottom configurations with only one steep segment. 

The results show a significant decrease in the delay in the 
waveform between the water surface and the bottom peaks 
when the water bottom slope increases. This decreasing delay 
is due to a shift in the bottom contribution due to a higher 
contribution of the laser backscattered energy from the top 
of the bottom slopes within the footprint. If the positions of 
the peaks in the waveform are used to retrieve bathymetry, 
this shift leads to a systematic underestimation, i.e., a bias in 
the bathymetry measurement, which depends mainly on the 
LiDAR footprint, the water bottom slope, and slightly on the 
water depth. This underestimation of the water depth obviously 

[1] C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the- 
art,” ISPRS J. Photogramm. Remote Sens., vol. 64, no. 1, pp. 1–16, 
Jan. 2009. 

[2] B. Jutzi and U. Stilla, “Range determination with waveform recording 
laser systems using a Wiener filter,” ISPRS J. Photogramm. Remote Sens., 
vol. 61, no. 2, pp. 95–107, Nov. 2006. 

[3] Z. Liu, R. Li, X. Xi, L. Tang, and C. Li, “Modeling and simulation return 
waveforms from forest canopy of large footprint lidar,” in Proc. SPIE, 
2009, pp. 74981L-7–74981L-8. 

[4] R. E. Walker and J. W. McLean, “Lidar equations for turbid media with 
pulse stretching,” Appl. Opt., vol. 38, no. 12, pp. 2384–2397, Apr. 1999. 

[5] O. K. Steinvall and K. R. Koppari, “Depth sounding lidar: An overview of 
Swedish activities and future prospects,” in Proc. SPIE, 1996, pp. 2–25. 

[6] C.-K. Wang and W. D. Philpot, “Using airborne bathymetric lidar to detect 
bottom type variation in shallow waters,” Remote Sens. Environ., vol. 106, 
no. 1, pp. 123–135, Jan. 2007. 

[7] G. C. Guenther, A. G. Cunningham, P. E. LaRocque, and D. J. Reid, 
“Meeting the accuracy challenge in airborne lidar bathymetry,” in Proc. 
EARSeL-SIG-Workshop LIDAR, 2000, pp. 1–27. 

[8] J.  Bailly,  Y.  LeCoarer, P.  Languille,  C.  Stigermark, and  T.  Allouis, 
“Geostatistical estimation of bathymetric lidar errors on rivers,” Earth 
Surf. Process. Landforms, vol. 35, no. 10, pp. 1199–1210, Aug. 2010. 

[9] P. Schaer, J. Skaloud, S. Landtwing, and K. Legat, “Accuracy estimation 
for laser point cloud including scanning geometry,” presented at the 5th 
International Symposium Mobile Mapping Technology, Padova, Italy, 
May 29–31, 2007. 

[10] H. Abdallah, N. Baghdadi, J. Bailly, Y. Pastol, and F. Fabre, “Wa-LiD: A 
lidar waveform simulator for waters,” IEEE Geosci. Remote Sens. Lett., 
vol. 9, no. 4, pp. 744–748, Jul. 2012. 

[11] H. M. Tulldahl and K. O. Steinvall, “Analytical waveform generation from 
small objects in lidar bathymetry,” Appl. Opt., vol. 38, no. 6, pp. 1021– 
1039, Feb. 1999. 

[12] A. Axelsson, “Rapid topographic and bathymetric reconnaissance using 
airborne lidar,” in Proc. Soc. Photo-Opt. Instrum. Eng., 2010, vol. 7835, 
pp. 783 503-1–783 503-10. 

[13] H. Abdallah, J. Bailly, N. Baghdadi, N. Saint-Geours, and F. Fabre, “Po- 
tential of space-borne lidar sensors for global bathymetry in coastal and 
inland waters,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 
vol. 6, no. 1, pp. 202–216, Feb. 2013. 

[14] “Guidelines on limits of exposure to broad-band incoherent optical radia- 
tion (0, 38 to 3 micrometre),” Health Phys., vol. 73, pp. 539–554, 1997. 

[15] “Revision of guide-lines on limits of exposure to laser radiation of wave- 
lengths between 400 nm and 1.4 micrometre,” Health Phys., vol. 79, 
pp. 431–440, 2000. 

[16] G. H. Tuell and J. Y. Park, “Use of shoals bottom reflectance images to 
constrain the inversion of a hyperspectral radiative transfer model,” in 
Proc. SPIE, Laser Radar Technol. Appl. IX, Sep. 13, 2004, vol. 5412, 
pp. 185–193. 

[17] H. M. Tulldahl and S. A. Wikstrom, “Classification of aquatic macrovege- 
tation and substrates with airborne lidar,” Remote Sens. Environ., vol. 121, 
pp. 347–357, Jun. 2012. 

[18] T. Urban, B. Schutz, and A. Neuenschwander, “A survey of ICES at coastal 
altimetry applications: Continental coast, open ocean island, and inland 
river,” Terr. Atmos. Ocean. Sci., vol. 19, no. 1/2, pp. 1–19, Apr. 2008. 


