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 I.  INTRODUCTION 

 
ATA acquired by the Geoscience Laser Altimeter System 
(GLAS)   on  board  the  Ice,  Cloud,  and  Land  Eleva- 

tion Satellite (ICESat) between 2003 and 2009 have been 
successfully  used  to  estimate  tree  heights  and  aboveground 
forest biomass (e.g., [1]�±[13]). GLAS 1064-nm waveforms 
correspond  to backscatter  energy as a function  of time. They 
are digitized  in 544 or 1000 bins with a bin size of 1 ns for 
land  (15  cm  vertical  resolution),  corresponding  to  81.6  and 
150 m height ranges, respectively.  The GLAS laser footprints 
have  a near circular  shape  of about  60 m in diameter  and a 
footprint  spacing  of about  170 m along  the track.  For forest 
applications,  the data used consist of the GLA01 and GLA14 
products. These products provide the full received waveforms 
and the land surface elevation data, respectively [14]. The 
horizontal  geolocation  error of the ground footprints  is lower 
than 5 m on average for all ICESat missions,  and lower than 
5 m in standard deviation, except for the L2C, L2D L2E, and 
L2F  missions,  where  the  standard  deviation  is  between  7.4 
and 15.6 m for L2D and L2F missions, respectively  [14]. The 
vertical geolocation accuracy ranges between 0 and 3.2 cm on 
average with a standard deviation under 3.3 cm for all missions 
except for the L2C, L2D, L2E, and L2F missions (between 5.1 
and 10.9 cm) [14]. 

The accuracy obtained on the forest height estimates in 
numerous studies using the GLAS data has varied between 2 
and 10 m according to the forest type and the characteristics 
of the study site (mainly the topography of the terrain) (e.g., 
[3]�±[5], [7], [8], [10], [11], and [13]). GLAS data are often 
used together with auxiliary datasets to estimate aboveground 
biomass. The auxiliary data is mainly composed of airborne 
laser data, a digital elevation model, and optical and radar 
images. The recent paper by Saatchi et al. [12] provides the 
spatial distribution of aboveground forest biomass in tropical 
regions over three continents (Latin America, sub-Saharan 
Africa, and Southeast Asia) using GLAS, MODIS, QSCAT 
(spaceborne scatterometers at 12 GHz), the SRTM digital 
elevation model, and ground data with an overall accuracy of 

23.8%. Using only the forest height estimated from GLAS 
data, Lefsky et al. [6] obtained a biomass estimate accuracy of 
58.3 Mg/ha for biomass values lower than 350 Mg/ha. Nelson 
et al. [9] estimated Siberian timber volume using MODIS and 
GLAS data with a biomass standard error of 36 Mg/ha.



 
 
 

However, three main limitations have been pointed out by re- 
searchers: 1) the low density of the GLAS footprint count and 
the lack of data over wide areas of the world; 2) the high sensi- 
tivit y of GLAS returns to terrain topography  due to the large 
footprint  size of GLAS  impacts  on forest  height  estimations 
[10]; 3) for denser and higher canopies, laser penetration is re- 
duced and, consequently,  the ground return needed to estimate 
canopy height is not detectable or has a low intensity. 

The objective of this paper was to test the best known models 
used for estimating canopy height using full waveform LiDAR 
data. Studies to estimate forest heights from LiDAR data have 
highlighted that the fitting coefficients of developed models are 
strongly  dependent  on environmental  factors,  such as the re- 
gion of the study site, terrain topography,  and forest type. In 
this paper, we evaluate the main models developed  to predict 
canopy height using a combination of parameters extracted from 
GLAS waveforms (GLA14 and GLA01 products) and a digital 
elevation model, in order to explore which combination  of pa- 
rameters yields the best forest height estimates. In addition, a 
model to estimate aboveground biomass from dominant height 
was calibrated.  Canopy height and aboveground  biomass esti- 
mates derived from GLAS data were compared with inventory 
measurements. 

A  description  of  the  dataset  used  in  this  study  is  given 
in  Section  II,  followed  by  the  presentation  of  methods  for 
forest height and aboveground biomass estimations using 
ICESat/GLAS  in Section  III . The results  are shown  and dis- 
cussed in Section IV, and finally Section V presents the main 
conclusions.  

 
Fig. 1.  GLAS/ICESat tracks over our study site.

 
 

A.  Study Area 

II.  DATASET DESCRIPTION

The study area was located in Brazil, ranging from 47  31�¶��
to 47  38  longitude  West and from 21  29  to 21  39  latitude 
South (Fig. 1). The area was mainly  covered  with industrial, 
fast-growing Eucalyptus plantations managed for pulpwood by 
the Internationnal  Paper do Brasil company [15]. Seedlings or 
clones of E. grandis (W. Hill  ex Maiden) x E. urophylla (S. T. 
Blake)  hybrids  were planted  in rows at a density  of approx- 
imately  1300 trees/ha  and were being  harvested  every six to 
seven years, with very little tree mortali ty (under 7%). The an- 
nual productivity of the plantations depended on the growth 
stage, soil type, fertilization, climate, etc., but was generally 
above 30 m /ha/year, sometimes reaching values as high as 
60 m /ha/year. At harvest time, the stand volume was there- 
fore about 250�±300 m /ha, and the dominant height was about 
20�±30 m. These plantations were managed locally by stand units 
of variable area (   50 ha on average for the studied stands). 
Management practices were uniform within each stand (e.g., 
harvesting and weeding dates, genetic material, soil prepara- 
tion, and fertilization).  Chemical  weeding  was carried  out in 
the first year after planting, resulting in a very sparse under- 
story and herbaceous strata in these plantations. A few Euca- 
lyptus trees were dominated from the early growth stages and 
remained small throughout the whole rotation, but their leaf area 
and biomass were very low compared with regular trees (see 
[16, Fig. 1]). The stands were therefore rather simply structured 
with a crown layer of 3 to 10 m in width above a �³�W�U�Xnk lay�H�U�´��
of 0 (in the first months) to 20 m in height (Fig. 2) with very few 

 
 
 
 
 
 
 
 
 
 
Fig. 2.  Eucalyptus stand during harvest illustrating the clearly separated crown 
and trunk strata (dominant height of    30 m). 

 
understories. In the study area, the stands were established in a 
low to moderate topographic relief (slope under 7 ). 
 
B.  In Situ Measurements 

A total of 114 Eucalyptus stands were selected, corre- 
sponding to the stands where GLAS footprints were totally 
included, with an additional 10-m buffer strip from the stand 
borders  to account  for any footprint  geolocation  errors.  This 
selection was also intended to avoid mixing effects within 
a  GLAS footprint. In  these 114 Eucalyptus stands, two to 
eight  permanent  inventory  plots  were  measured  regularly 
by  the  company between November 2002  and  May  2009. 
During a rotation, three inventories were generally carried out: 
around the age of two years, four years, and before harvesting 
(approximately  six years).  Permanent  inventory  plots had an 
area of approximately  400 to 600 m   and were systematically



 
 
 

TABLE I 
THE  NUMBER   OF  EXPLOITABLE   ICESAT  FOOTPRINTS   FOR  EACH  YEAR. OF  THE  1387 FOOTPRINTS 

ACQUIRED  OVER OUR STUDY  SITE, THE NUMBER  OF USABLE  SHOTS WAS 800 
 

 
 

 
 

 
Fig. 3.  Dominant height             calculated on the ICESat footprint acquisi- 
tion date using neighboring data (linear interpolation of           measured on 
inventory plots in the stand including ICESat footprint). 

 
 

distributed throughout the stand with a density of one plot per 
12 ha. They  included  30 to 100  trees  (average  of 58 trees). 
During a field inventory,  the diameter  at breast height (DBH, 
1.3 m above the ground) of each tree in the inventory plot, the 
height  of a central  subsample  of 10 trees,  and the height  of 
the 10% of largest DBH (dominant trees) were measured. The 
mean height of the 10% of the largest trees defined the domi- 
nant height of the plot               , while the mean height of the 
10 central trees defined the average height of the plot                . 
The           , basal area, and age on the inventory date were then 
used in a company-calibrated volume equation, specif ic to the 
genetic material,  to estimate the plot stem volume (wood and 
bark of the merchantable  part of the stem that has a diameter 
of more than 2 cm). Trunk biomass  was then estimated  from 
the trunk volume using age-dependent estimates of wood 
biomass density (see [17] for more details). Plot-scale 
and biomass were then averaged on a stand scale, for each 
inventory date. 

As the dates of the ground measurements were different from 
the GLAS acquisition dates, plantation dominant height and 
stem biomass for the GLAS acquisition dates were estimated 
using linear interpolations of the inventory plot measurements 
between the two dates either side of each GLAS acquisition date 
(Fig. 3). This simple linear interpolation gave fairly good esti- 
mates since forest inventories were regularly carried out. 

Note that these estimates of           and biomass gave a large 
and unique dataset for testing methods of height estimations 
from GLAS data since the measurements of these variables is 
precise compared to natural forests: uniform stands with rela- 
tively low dispersion of tree sizes around the average values, 
accurate allometric equations, large number of inventory plots 
within  a stand,  short intervals  (       years)  between  inventory 
dates,  a relatively  gentle  slope,  and  a simple  canopy  with  a 

Fig. 4.  Typical GLAS waveform acquired over a forest stand, on relatively flat 
terrain, and the associated main metrics (1          15 cm). 
 

 
clearly  separated  crown layer and the very sparse understory 
and herbaceous strata. 
 
C.  GLAS/ICESat  Data 
 

A dataset of LiDAR data acquired by the Geoscience  Laser 
Alti meter  System  (GLAS)  was used. In total, 1387  recorded 
signals (waveforms) were acquired over our study site between 
February 2003 and March 2009 (Table I, Fig. 1). Fig. 4 shows 
a typical waveform over a forest stand on relatively fl at terrain. 
For our forest stands, the GLAS waveforms were generally bi- 
modal distributions resulting from scattering within the canopy 
and the ground surface. Of the 15 ICESat data products, only 
products  GLA01  and GLA14  in release  33 were used in this 
research.  For each ICESat  footprint,  these products  provided 
a raw waveform,  an acquisition  date and time, the precise ge- 
olocation of the footprint center, waveform parameters derived 
from the Gaussian decomposition, the estimated noise level, i.e., 
the mean and standard deviation of background noise values in 
the waveform, etc. Each received waveform was decomposed 
into a maximum of six Gaussian functions corresponding to re- 
turns from different layers between the top of the forest and 
the ground. Over flat terrain, the fi rst Gaussian corresponds to 
a reflection from the top of the canopy while the last Gaussian 
mostly refers to the lowest point in the footprint, i.e., the ground 
surface. 

In order to use only the reliable ICESat data, several filters 
were applied to the waveforms to remove ICESat data contam- 
inated by the clouds and other atmospheric artefacts (e.g., [2], 
[4], [18]): 1) waveforms with ICESat centroid elevations signifi- 
cantly higher than the corresponding Shuttle Radar Topography 
Mission (SRTM) elevation (resolution of 90 m    90 m) were 
excluded ( ICESat-SRTM       100 m; 2) waveforms with low 
signal-to-noise ratios (SNR) were also removed  SNR           ; 3) 
saturated waveforms were removed (GLAS detector saturation 
index                      ); and 4) only the cloud-free waveforms were



 
 

kept   cloud detection flag                                      . FRir_qaFlag 
and satNdx are both indices recorded in the GLA14 product. 

The application of different filters on the ICESat dataset 
showed  that  among  the  1387  waveforms  acquired  over  our 
study site, the number of usable waveforms respecting the filter 
condition  was 800 (57.7%  of waveforms),  of which 306 had 
corresponding  ground measurements. 

For comparison  between  ICESat,  SRTM DEM, and in situ 
data,  datasets  needed  to be available  in the same  coordinate 
system. The ICESat ellipsoidal heights (TOPEX/Poseidon 
ellipsoid)  were  first transformed  to the  WGS84  ellipsoid  by 
subtracting 70 cm, then orthometric heights from ICESat were 
derived with respect to the WGS84  reference  system and the 
EGM96 geoid model. 

 

 
III.  MATERIALS AND METHODS 

 
A.  Forest Height Estimation 

 

1) Direct Method:  The most commonly used method to esti- 
mate the maximum canopy height               from a GLAS wave- 
form over forest stands with a gently sloping terrain uses the 
difference between the signal begin           and the ground peak 

[19]: 

(1) 

The signal begin and the signal end correspond respectively 
to the highest and lowest detected surfaces within the laser foot- 
print. They are defined by the fi rst and last bins at which the 
waveform intensity exceeds a certain threshold above the mean 
background  noise. Different thresholds have been used in pre- 
vious studies. Their levels correspond to the mean background 
noise plus 3 to 4.5 times the standard deviation (3 times in Sun 
et al. [20]; 3.5 times in Hilbert and Schmullius [4]; 4 times in 
Lefsky et al. [6] and Xing et al. [13]; 4.5 times in Lefsky et al. 
[7]). Chen [2] examined several thresholds between 0.5 and 5 
times the standard deviation. He demonstrated  that the optimal 
threshold depends on the study site (between 3 and 4.5 times the 
standard deviation).  The background  noise statistics are avail- 
able in the GLA01 product. 

The ground peak is assumed to be either the last peak (e.g., 
[3], [13], [20]) or one of the last two Gaussian peaks with the 
greatest amplitude (e.g., [4] and [11]). Harding and Carabajal 
[19] specify that, in the case of a low amplitude final peak, the 
better representation of the ground surface is probably the peak 
close to the last one with a relatively high amplitude. Chen [2] 
found for his conifer sites that the ground elevation corre- 
sponded better to the stronger peak of the last two, whereas for 
his woodland site the strongest peak of the last five matched 
best with the ground elevation. 

2) Regression Models:  Over sloping terrain, the ground peak 
becomes wider, and the returns from ground and vegetation can 
be mixed in the case of large footprints, making the identifica- 
tion of ground peak returns difficult and the estimation of forest 
height inaccurate [6], [19]. To remove or minimize the terrain 
slope effect on the waveforms, statistical approaches have been 
developed and used in several studies to predict canopy height 

waveform metrics or on both waveform metrics and terrain in- 
formation derived from DEMs. 

The main  waveform  metrics  used  in these  models  are the 
waveform  extent defined as the height difference  between the 
signal begin and the signal end of a waveform (        , in meters), 
the leading edge extent (             , in meters) calculated  as the 
elevation difference  between the elevation of the signal begin 
and the fi rst elevation that is at half maximum intensity above 
the background noise value (highest detectable return), and the 
trailing edge extent (             , in meters) determined as the dif - 
ference between the signal end and the lowest bin at which the 
waveform is half of the maximum intensity (lowest detectable 
return) [7] (Fig. 4). 

The terrain information used in the regression models is the 
terrain index (    , in meters) derived from a DEM (from SRTM 
or airborne  sensors).        is defined as the difference  between 
maximum  and minimum terrain elevations in a given window 
centered on each GLAS footprint. The size of the window which 
depends on the spatial resolution of the DEM is generally 7    7 
for a 10-m resolution DEM (airborne) and 3    3 for a 90-m res- 
olution DEM (SRTM) (e.g., [6], [7], and [11]). 

The first statistical model was developed by Lefsky et al. [6] 
to estimate the maximum  canopy height                from GLAS 
waveforms: 

(2) 
 

This model is based on the waveform extent and terrain index 
calculated  from a high quality DEM. The coefficients     and 
are fitted using least squares regression              given by ground 
measurements or estimated from airborne LiDAR data,           is 
derived from the GLAS waveform, and      is calculated from the 
DEM). For our data set,      values were calculated from SRTM 
DEM range from 0 and 40 m. The incorporation  by Lefsky et 
al. [6] of the waveform leading edge extent in the (2) shows a 
slight improvement in canopy height estimation: 

(3) 

Xing et al. [13] observed a logarithmic behavior between the 
canopy height and the waveform extent. Thus, they proposed an 
adapted version of Lefsky�¶s model: 

(4) 

Lefsky et al. [7] and Pang et al. [10] proposed regression 
models with metrics derived only from waveforms. Lefsky et 
al. [7] observed that on sloping terrain, the waveform extent is 
insufficient for estimating canopy height. Hence, a new model 
based on the waveform extent, leading edge extent, and trailing 
edge extent was proposed. However, Pang et al. [10] observed 
inaccurate estimates of canopy heights with this new Lefsky 
model,  especially  for small  waveform  extents,  and thus pro- 
posed a simpler model to estimate canopy height using the fol- 
lowing equation: 

(5) 

Chen [2] proposed a linear model from Pang�¶s nonlinear 
model (5):

from GLAS data (e.g., [2], [6], [7], [10], [11], and [13]). These                      
approaches  proposed  regression  models  based  either  on only 

 
(6)



 
 

 
 

Fig. 5.  Leading edge and trailing edge compared to modified leading edge and 
modified trailing edge according to Hilbert and Schmullius (2012). 

 
 

Lefsky [8] proposed a modif ication of Lefsky�¶s 2007 model 
for a better estimation when the leading and trailing edges are 
small: 

 
(7) 

 
where  and                correspond  to the tenth percentile 
of waveform energy. 

The fitting coefficients                    of each of these different 
statistical models (they differ from one model to another) are de- 
pendent on vegetation type and terrain topographic conditions, 
and it is therefore necessary to recalibrate them ([2], [7], [10]). 

Hilbert and Schmullius [4] proposed a modified leading edge 
and trailing edge. The first new metric is defined as the ele- 
vation difference between signal begin and the canopy peak�¶s 
center, and the second metric as the difference between signal 
end and the ground peak�¶s center (Fig. 4). These modif ied met- 
rics more effectively represent the characteristics of the top of 
the canopy and the ground surface, especially for waveforms 
with a large difference in the intensity between the canopy and 
ground peaks. The results show that in the case of a low in- 
tensity return from the ground peak and a high intensity return 
from the canopy  peak, an overestimation  of the trailing  edge 
might be observed using Lefsky�¶s metrics. For a low-intensity 
return from the canopy peak and a high-intensity return from 
the ground peak, an overestimation of the leading edge might 
be observed using Lefsky�¶s metrics (Fig. 5). In this study, the 
modified leading and trailing edges were used. 

The different regression models defined in equations (2)�±(7) 
to estimate  forest height were evaluated  in this work, except 
for (7) where                and                were replaced by 

and   , respectively.  In fact, Lefsky [8]  proposed  using 
and instead of, and in order to obtain, a more 

stable  regression  model  between  the  canopy  height  and  the 
waveform  metrics.  The  use  in this  study  of,  and  as defined 
by, Hilbert and Schmullius  [4] makes the use of                and 

unjustified  (Hilbert  and  Schmullius  [4]  metrics  are 
more stable than those defined in Lefsky [8]). 

In  addition,  to  quantif y  the  contribution  of                  and 
in the  height  estimation  models,  four  other  models 

were  analyzed:  model  3  by  replacing                  by               , 
and models 5, 6, and 7 by removing                 (Table II). The 
best regression  model  was selected  from the set of these ten 
models using the Akaike information criterion (AIC), the mean 
difference  between  the  forest  height  predicted  from  GLAS 
and DEM metrics  and the measured  forest height  (Bias),  the 
coefficient  of determination          , and  the  root  mean-square 
error (RMSE).  The Akaike information  criterion  proposed  by 
Akaike  [21] is a measurement  of the relative  goodness  of fit 
of a statistical model to the truth. By calculating AIC values 
for  each  model,  the  acceptable  regression  models  based  on 
lowest AIC values were identified. Indeed, the best model is the 
one that minimizes the Kullback�±Leibler  distance between the 
model and the truth. In this analysis, a tenfold cross validation 
with  ten  replications  was  used.  Lower  AIC  values  indicate 
model parsimony,  i.e., a balance between  model performance 
(explained variability) and coefficient number in the model. 
 
B.  Aboveground  Biomass Estimation 

Several studies have shown that forest canopy metrics cal- 
culated from GLAS waveforms can be used to estimate above- 
ground biomass [1], [6], [12]. Lefsky et al. [6] proposed a linear 
relationship  between the aboveground  biomass (    in Mg/Ha) 
and the forest maximum height squared (height            is in me- 
ters): 

(8) 

Boudreau et al. [1] developed a model to estimate      for the 
entire forested region of the Province of Quebec, based on wave- 
form extent (in meters), terrain index (in meters), and the slope 
between signal begin and the first Gaussian canopy peak (   in 
radians): 

(9) 

The slope    depends on the canopy density and the vertical 
variabilit y of the upper canopy. For a given study site with only 
a few variations in      and   , the biomass in Boudreau�¶s model 
follows a second-order polynomial relationship with the forest 
height because the waveform extent is expressed in Fig. 6(a) as 
proportional to       . 

Saatchi et al. [12] used a power law relationship between the 
aboveground  biomass and Lorey�¶s height, calibrated on in situ 
forest plots and GLAS data collected over Latin America, sub- 
Saharan Africa and Southeast Asia: 
 

(10) 
 
where        is Lorey�¶s height, which weights the contribution of 
trees (all trees    10 cm in diameter) to the stand height by their 
basal area. The mean exponent    of the combined relation from



 
 
 

TABLE II 
REGRESSION  MODEL  FITTING  STATISTICS  CALCULATED   WITH  TEN-FOLD  CROSS  VALIDATION  FOR  ESTIMATING  FOREST  HEIGHT. 

ROOT  MEAN-SQUARE   ERROR, 
AKAIKE  INFORMATION CRITERION,           CROSS  VALIDATION 

 

 
 

the three continents is near 2.02 (with                    ) [12]. In this 
study, the relationship  defined in (10) was used by replacing 
Lorey�¶s  height with the dominant  height                            . In- 
deed, in these Eucalyptus plantations, Lorey�¶s height was very 
close to dominant height (       was lower than            by a max- 
imum of 0.9 m at the end of the rotation of the Eucalyptus plan- 
tation). To illustrate this, Fig. 7 shows the evolution of the dif- 
ferent stand height metrics on an experimental  stand during a 
full  rotation (height data of the Eucalyptus  monoculture  treat- 
ment described in [22]). Note also that the crown area weighted 
version of Lorey�¶s height gives values very close to        [10]. 

The coefficients    and   were fitted using the in situ measure- 
ments of dominant height and aboveground biomass. The fitted 
coefficients (   and   ) were used to estimate the biomass, based 
on the dominant height predicted from GLAS footprints by the 
direct method (model 1). 

 
IV.  RESULTS AND DISCUSSIONS 

 
A.  Forest Height Estimation 

First, both the optimum threshold levels above the mean 
background noise and the most relevant location of the ground 
peak that gave the best estimates of canopy heights were 
determined. The two thresholds of 3.5 and 4.5 times the noise 
standard deviation were evaluated, and the ground peak was 
derived from the Gaussian with the higher amplitude of the 
last two. The difference  between the canopy height estimated 
from GLAS waveforms using the direct method and in situ 
measurements showed better results with a noise threshold of 
4.5 and when choosing the Gaussian with the greater amplitude 
of the last two as the ground peak. The bias and standard devi- 
ation of the difference between dominant height estimates and 
measurements  decreased  from 2 to 1.5 m when the Gaussian 
with the higher amplitude of the last two was used as the ground 
return  instead  of the  last  one  (Fig.  8).  However,  the  results 

were similar  with thresholds  of 3.5 and 4.5 (similar  standard 
deviation but bias lower by 0.5 m with a threshold of 4.5). With 
the optimum  configuration  (threshold  of 4.5 and  the highest 
Gaussian), the mean difference between height estimates using 
the  direct  method  (model  1)  and  in  situ  measurements  was 
0.33 m with a standard deviation of 2.2 m. 

The regression  models  fitting the statistics  calculated  with 
tenfold  cross  validation  for  estimating  forest  height  showed 
that  the  models  using  the  trailing  edge  extent  (models  5 to 
7a,  Table  II )  provided  a  good  estimation  of  canopy  height. 
For  these  models,  RMSE cv  (cross-validation   RMSE)  was 
between  1.89  m and  2.16  m, AIC cv (cross-validation  AIC) 
was  between  1138  and  1211,  and                 (cross-validation 

) was  between  0.89  and  0.92.  The  best  fitting results  for 
estimating  forest  height  were obtained  with model  7 (lowest 
AIC cv and RMSE cv and highest            values, 1138, 1.89 m, 
and 0.92, respectively). Fig. 9 compares the canopy height 
estimates obtained with model 7 in comparison to measured 
canopy heights (field measurements). The results also showed 
that the contribution of the leading edge extent in the regression 
models was weak for height estimation accuracy. Indeed, the 
fitting statistics obtained with models 5, 6, and 7 (including the 
leading edge extent) showed a slight improvement over those 
obtained with models 5a, 6a, and 7a (Table II). For example, 
RMSE cv was better than 15 cm at best when the leading edge 
extent was used. Hence, using the leading edge extent in the 
regression models was not necessarily justified. 

Moreover, use of information in the model calibration cal- 
culated from an insufficiently accurate DEM (terrain index) 
led to poor estimation of the canopy height (models 2, 3, and 
4) except for model 3a where the use of                instead of 

led to good model fitting statistics (for model 3a, 
AIC cv  and  RMSE cv  were  1198  and  2.10  m,  respectively, 
instead of 1421 and 3.16 m for model 3). Models 2, 3, and 4 
provided  a lower                 (between  0.63 and 0.76),  a higher



 
 
 

 
 

Fig. 6.  Behavior of canopy height according to waveform extent, leading edge 
extent, traili ng edge extent, and terrain index. 

 
RMSE cv (between  3.16  and  3.97  m),  and  a higher  AIC cv 
(between 1421 and 1546). The results also showed that the 
nonlinear form of model 5 did not appear to be justified because 

 
 

 
 
Fig. 7.  Comparison of three stand level height metrics in a Eucalyptus plan- 
tation experimental stand during a full  rotation. Mean height is the arithmetic 
mean of all  tree heights, dominant height is the height of the trees that have the 
highest basal area (8% biggest trees), and Lorey�¶s height is a basal area weighted 
average height. 
 

 
 
Fig. 8.  Comparison between canopy dominant height estimates and in situ 
measurements. The �³highest Ga�X�V�V�´ estimates use the Gaussian with the higher 
amplitude of the last two as the ground return while the �³Last Gau�V�V�´ estimates 
use the last Gaussian as the ground return. The threshold of 4.5 times the noise 
standard deviation was used. Both correspond to model 1 (direct method). 
 
 
the observed improvements with this model in comparison 
to model 6 (linear form) were weak. Lastly, the logarithmic 
relation between canopy height and waveform extent did not 
appear to be relevant (model 4). 

For our study site where the terrain was flat or slightly sloping 
(slope under 7 ), the results showed that the accuracy of the 
canopy height estimates was similar between the direct method 
and the best statistical models (RMSE about 2 m). Numerous 
studies using GLAS data over natural forest ecosystems  have 
shown that the estimated forest height accuracy varied between 
2 and 10 m (RMSE), depending on the forest type (tropical, 
boreal, temperate deciduous, temperate conifer, etc.) and the 
characteristics of the study site (mainly the terrain slope) (e.g., 
[3]�±[5], [7], [8], [10], [11], and [13]). However, no studies using 
GLAS data (larger footprint LiDAR) were found in the literature 
over forests with intra-plot homogeneity  similar to tree planta- 
tions (littl e variation in tree heights, same species, etc.), and well



 

   
  
 

 
 

 
 

Fig. 9.  Canopy height estimates from model 7 in comparison to measured 
canopy height. Statistics are given in Table II. 

 
 
 

documented (high quality in situ measurements of forest height 
and biomass), and with a gently sloping terrain. 

The  analysis  of  dependency  between  the  in  situ  canopy 
height  and  the  GLAS  waveform  extent  showed  a linear  re- 
lationship  between  the  two  parameters  with  an         of  0.66 

[Fig.  6(a)].  The  coefficient 
decreased with the trailing edge 

extent and leading edge extent (Hilbert Gauss) [Figs. 6(b) and 
(c)]. Linear relationships were found between     and the trailing 
extent, leading extent, and the sum of trailing and leading ex- 
tents [Fig. 6(d)]. This analysis confirmed the great importance 
of the trailing edge extent in the regression models for canopy 
height estimations.  The importance  of the leading extent was 
lower (            44% with leading, 75% with trailing, and 78% 
with both trailing and leading). Fig. 6(e) also shows that     was 
almost constant with the terrain index for the TI values at our 
study site under 40 m. 

 
B.  Aboveground  Biomass Estimation 

 

Aboveground biomass estimation using the models defined 
in (8) and (10) was inferred from the forest height. In model 9, 
the biomass was defined as the forest height squared           with 
the forest height defined as                                                         . 
This equation of forest height was close to that given in model 
2 (Table II). However, in the previous section (Section IV-A), 
the different regression models for estimating forest height from 
waveforms and DEM metrics showed that the models using the 
terrain index (TI) gave the poorest accuracies (models 2, 3, 4). 
This is probably due to the resolution of the SRTM DEM used 
(90 m    90 m), which was not optimal for a study site with 
gentle terrain slopes. For this reason, only models 8 and 10 were 
evaluated for the biomass estimation using the forest height es- 
timated by the direct method. 

The in situ measurements of forest height and aboveground 
biomass were not totally independent since           was used in 
the calculation of tree volumes (Fig. 10, cf. Section II -B). The 
simple model of (10)  (                                     was estimated  by 
the direct method)  gave a fairly good estimate  of stand-scale 

 
 

 
 
Fig. 10.  Al lometric relation between aboveground biomass and dominant 
forest height from in situ measurements (stand-scale biomass from stand-scale 
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Fig. 11.  Comparison between estimated and measured biomass. 
 
 
 
biomass from stand-scale             (                  9.57 Mg/ha). The 
mean difference between estimated and measured biomass was 
2.13 Mg/ha with a RMSE of 16.11 Mg/ha (the relative error was 
25.2% of the biomass average) (Fig. 11). 

The obtained exponent     for the planted Eucalyptus  forests 
we studied                        was very close to that found by Saatchi 
et al. [12] and Lefsky et al. [6] over natural forests (               and 
, respectively).  In addition, the coefficients     obtained in this 

study and in Lefsky et al. [6] were very close (                    and 
, respectively). However, a comparison with Saatchi�¶s 

results ([12]) shows that our coefficient   was 3.5 times smaller 
than    in Saatchi et al. [12] (                    against                    ): 
For the same canopy height, the biomass for Eucalyptus planta- 
tions was 3.5 times smaller than the biomass in tropical forests. 
This difference is probably due to 1) the metrics of the forest 
height used in (10), which was the dominant height in this study 
and Lorey�¶s height in Saatchi et al. [12], and because 2) natural 
tropical forests have higher basal areas than Eucalyptus forests. 

Model 8 (                                                     and                   ) 
and model 10 produced a similar performance, with a mean dif- 
ference between estimated and measured biomass of 2.17 Mg/ha 
and an RMSE of 16.26 Mg/ha (the relative error was 25.5% of 
the biomass average). 

The United Nations REDD Programme on Reducing Emis- 
sions from Deforestation and forest Degradation (REDD) rec- 
ommends biomass errors within 20 Mg/ha or 20% of fi eld esti- 
mates for evaluating forest carbon stocks, but should not exceed 
errors of 50 Mg/ha for a global biomass map at a resolution of 
1 ha [23], [24].



 
 

Zolkos et al. [25] conducted a meta-analysis of reported 
terrestrial  aboveground  biomass accuracy estimates  from sev- 
eral refereed articles using different remote sensing techniques 
(optical, radar, LiDAR). The residual standard error (RSE) 
showed higher values for the radar and optical models (about 
65 Mg/ha) in comparison to the models using the GLAS space- 
borne LiDA R (about 40 Mg/ha). The LiDAR-Biomass  model 
RSE increases with the mean of fi eld-estimated Biomass (RSE 
about 20 Mg/ha  for            50 Mg/ha  and 85 Mg/ha  for 
450 Mg/ha). The LiDAR model errors were also analyzed by 
forest type. The errors were lower for tropical forest (relative 

20.7%) than for temperate deciduous, temperate 
mixed, temperate conifer and boreal forests (higher for boreal 
forests with a relative                34.3%). The RSE of this study 
on Eucalyptus plantations (25.2%) was within the lower range 
of this meta-analysis. 

 
 

V.  CONCLUSION 
 

The objective of this paper was to evaluate the most common 
models for estimating forest heights and aboveground biomass 
from GLAS waveforms. The evaluation of different models was 
based on a large database consisting of GLAS data and ground 
measurements (forest height and aboveground biomass). 

Regression  models were constructed  to estimate  maximum 
forest height and aboveground  biomass from a GLAS dataset. 
For our study site defined by flat and gently  sloping  terrains 

7  ), the direct method estimated canopy height very 
well with an accuracy  of about  2.2 m. The use of statistical 
models based on waveform  metrics and digital elevation  data 
showed an accuracy for forest height estimates similar to that 
obtained by the direct method (1.89 m). A correlation analysis 
between plantation dominant heights measured in the field and 
those estimated by the most common statistical models showed 
that the most relevant metrics for estimating forest heights are 
the waveform extent and the modified trailing edge extent ([4]). 
The  best  statistical  model  for estimating  forest  height  is de- 
fined as a linear regression of waveform extent and trailing edge 
extent. 

Aboveground  biomass was modeled following a power law 
with the canopy height                        . The results showed that 
aboveground biomass could be estimated with an accuracy of 
16.1 Mg/ha (relative              25.2% of the biomass average). 

Our results (tree plantation) showed that the precision rec- 
ommended by the UN-REDD program is achievable with 
spaceborne LiDAR in the case of gently sloping terrains (the 
biomass estimation error was lower than the maximum error 
recommended of 50 Mg/ha). For natural forests with low to 
moderate terrain slopes, the relative error of forest height 
estimations can reach two or three times that obtained in this 
study (e.g., [2], [6], and [10]). As biomass  is proportional  to 
the forest height squared (8), (9), (10), the relative error of the 
estimated biomass is proportional to twice that of the relative 
error of the estimated forest height. Therefore, an increase in 
the relative error of the estimated forest height would greatly 
affect the relative error of the estimated biomass. Research 
perspectives  include  1) improvement  of the processing  tech- 
niques for LiDA R waveforms  in the case of a sloping terrain, 
and 2) the recommendation  to space  agencies  of spaceborne 

LiDAR specifications with higher transmitted energies in order 
to more effectively reach the ground in forested areas, smaller 
footprints to minimize the impact of the terrain slope on forest 
height estimations, and a higher temporal resolution. 
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