Pierre Roux 
email: pierre.roux@onera.fr
  
Romain Jobredeaux 
email: jobredeaux@gatech.edu
  
Pierre-Loïc Garoche 
email: pierre-loic.garoche@onera.fr
  
Closed Loop Analysis of Control Command Software *

Recent work addressing the stability analysis of controllers at code level has been mainly focused on the controller alone. However, most of the properties of interest of control software lie in how they interact with their environment. We introduce an extension of the analysis framework to reason on the stability of closed loop systems, i.e., controllers along with a model of their physical environment, the plant. The proposed approach focuses on the closed loop stability of discrete linear control systems with saturations, interacting with a discrete linear plant. The analysis is performed in the state space domain using Lyapunov-based quadratic invariants. We specifically address the automatic synthesis of such invariants and the treatment of floating point imprecision.

INTRODUCTION

While control theorists are familiar with the notion of open and closed-loop stability and have developed various means to study it -e.g. Routh-Hurwitz Criteria, Root-Locus or Nyquist Stability Criteria -, its evaluation or formal verification at code or system level still remains an open question.

At the computer science level, these control level properties are rarely known and hard to express or evaluate in the latest stages of system development. In other words, these meaningful requirements of the system tend to disappear when defining the software requirements. This absence precludes a precise analysis of the interaction between the real arithmetic equations characterizing the dynamic of the plant and the actual implementation of the controller in a computer, with all its associated limitations: bounded memory, real time issues, floating point computations, etc.

Addressing these questions, i.e., evaluating control level properties at code level, would allow for a clearer understanding of the behavior of the final system and could avoid detecting issues too late in the development process.

In this paper we adopted the usual approach of control theorists while performing static analysis: our input is a linear and discrete model of the controlled system, i.e., the plant, and a linear controller as typically defined in Matlab Simulink or Esterel Scade. This controller represents the actual code that will be compiled and embedded in the final product. We focus here on the closed-loop stability of this system: the plant (described with real arithmetic) + the controller (described with floating point arithmetic).

Stability as considered in control theory can be expressed in different manners. In the so-called temporal domain, it amounts to guarante a BIBO property: Bounded Input, Bounded Output. I.e., assuming a bounded command, the system starting in a stable position (typically 0) should remain in a bounded set of states. The theory of Lyapunov functions is the most famous tool to perform such proofs.

We propose to extend previous work focused on static analysis of open-loop stable controllers to closed-loop systems. We perform the analysis by first characterizing an invariantthe Lyapunov function -over the global system as a quadratic template; then we compute bounds on this template, using a method called policy iterations. This allows us to bound the set of reachable states of the system. Our analysis also ensures that floating point computations won't break the stability property computed.

Related work.

Few analyses address this issue of closed-loop stability in settings comparable to ours.

At control level, this property is historically the earliest considered. Lots of techniques address it through different means, we refer the interested (computer scientist) reader to an introductory lecture on control theory [START_REF] Levine | The control handbook. The electrical engineering handbook series[END_REF]. In control theory, two main approaches exist to analyze systems. Either the temporal domain, mentionned above, or the frequency domain, more commonly used. In the frequency domain, stability is usually analyzed by studying the pole placement of the transfer function, either on the Laplace transform of the signal (negative-real part), or on its Z-transform (within the unit circle). In both cases, the system has to be fully linearized (ie removing saturation around the linearization point) and the analysis assumes a real semantics, without considering floating points computations.

Even in the temporal domains analyses, as computed by control theorists, the effect of floating point computations performed at the controller level and those potentially done during the analysis itself are typically forgotten.

Lyapunov functions rely on a temporal-domain expression of the system. Basically a Lyapunov function expresses a notion of energy that is shown to (strictly) decrease along the evolution of the system. In computer science terms, they act as both a loop invariant -when they are loose -and a variant -when they are strict. In 2010, Féron [START_REF] Féron | From control systems to control software[END_REF] proposed to annotate the closed-loop system with Lyapunov based Hoare triples in order to express closed-loop stability at code level. Since then, open-loop stability has been verified at code level, either by proving these Lyapunov annotations [START_REF] Herencia-Zapana | Pvs linear 7 Currently only prototyped as a Scilab script. algebra libraries for verification of control software algorithms in c/acsl[END_REF][START_REF] Wang | From design to implementation: an automated, credible autocoding chain for control systems[END_REF] or by automatically synthesizing them [START_REF] Roux | Integrating policy iterations in abstract interpreters[END_REF][START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF].

On the static analysis side, few existing analyses are able to express the simple property of stability. Most of the existing abstract domains, used to compute an over-approximation of reachable states, rely on linear approximations. Some classes of non linear domains have been introduced specifically to analyze control software, e.g., second order linear filters [START_REF] Feret | Static analysis of digital filters[END_REF]. Another static analysis approach named policy iteration, see [START_REF] Gawlitza | Abstract interpretation meets convex optimization[END_REF] for a global survey, allows to manipulate quadratic properties using semidefinite programming (SDP) numerical solvers [START_REF] Vandenberghe | Semidefinite programming[END_REF]. However, an appropriate quadratic template must be provided, and is usually not computed in a tool but rather as a set of scripts in Matlab. In [START_REF] Roux | Integrating policy iterations in abstract interpreters[END_REF], we presented our approach to perform those policy iterations in an automatic manner using the template synthesis of [START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF]; our analysis is implemented and can be applied on any linear controller.

Finally a last line of work has to be mentioned: the vast set of work focusing on hybrid systems. It is difficult to summarize in a few words those analyses. We could however say that usually (1) they address systems of a somewhat different nature with a central continuous behavior described by differential equations and few discrete events (for instance a bouncing ball or an overflowing water tank) whereas controllers perform discrete transitions on a periodical basis, and (2) focus on bounded time properties rather than invariant generation.

Outline.

The paper is structured as follows. Section 2 presents the running example, inspired from [START_REF] Féron | From control systems to control software[END_REF]. Section 3 gives the global approach of our analysis. It performs a static analysis of the closed-loop system by computing an over-approximation of all reachable states. It relies on a policy iteration algorithm parametrized by an appropriate quadratic template. In this first setting, we assume the quadratic template given as well as real arithmetic computation.

Then Section 4 offers ways to automatically compute a quadratic template for closed-loop stable linear systems with saturations.

Finally, Sections 5 and 6 address technical details when analyzing automatically a closed-loop system and how to solve them: removing linear redundancy from the closed-loop system and taking floating point computations into account.

MOTIVATING EXAMPLE

We reuse the running example of [START_REF] Féron | From control systems to control software[END_REF][START_REF] Franklin | Digital Control of Dynamic Systems[END_REF] and achieve an automatic closed-loop stability analysis of this system. This dynamical system is composed of a single mass and a single spring. The control is performed by a lead-lag controller obtained through classical control recipes where the input is defined as SAT(y -y d,k ) with y the measure of the mass position and |y d | ≤ .45 a bounded command.

Both controller and plant have been discretized at an execution rate of 100Hz. The plant is described by a linear system over the state variables p = [xp1 xp2] T ∈ R 2 , characterized by the matrices AP ∈ R 2×2 , BP ∈ R 1×2 and CP ∈ R 2×1 where u denotes the actuator command of the plant and y the projection of the plant state p over the y sensor:

p k+1 = AP p k + BP u k y k+1 = CP p k+1 (1) 
with AP := 1. 0.01 -0.01 1.

BP := 0.00005 0.01

CP := 1 0
The controller without saturation is similarly described by a linear system over the state variables c = [xc1 xc2] T ∈ R 2 , controlled by both the feedback from the plant sensors y ∈ R dy and the user command y d ∈ R, and parametrized by the four real matrices AC ∈ R 2×2 , BC ∈ R 1×2 , CC ∈ R 2×1 and DC ∈ R:

c k+1 = AC c k + BC (y k -y d,k ) u k+1 = CC c k+1 + DC (y k+1 -y d,k+1 ) (2) 
with AC := 0.4990 -0.05 0.01 1.

BC := 1. 0 CC := 564.48 0 DC := -1280

These numerical values have been obtained by control theorists applying any of their classical control recipes. The resulting closed-loop system is defined by considering Equations (1) and (2) at once. It can be expressed over the state space x := [c p] T as Or, with the saturation over (y -y d ):

x k+1 = Ax k + By d,k (3) 
x k+1 = Ax k + B SAT(Cx k -y d,k ) (4) 
where 

A := AC 0 BP CC AP =     0.
B := BC BP DC =     1. 0. -0.064 -12.8     C := 0 CP T =     0 0 1 0    
T and SAT is defined as

SAT(x) =    -1 if x < -1 x if -1 ≤ x ≤ 1 1 if x > 1
The closed-loop stability will be expressed as a bounded input bounded output property: given a bound on the input y d , find a bound on the vector x.

COMPUTING QUADRATIC INVARIANTS

FROM GIVEN TEMPLATES

Without Saturation

An ideal system is first considered in this section. Thus, an already discretized model of the plant is considered, the controller is purely linear, without any saturation, and its computations are assumed to be performed in the real field R. Moreover, we assume a quadratic Lyapunov function for the closed loop system is already known. Most of these limitations will be alleviated, one by one, in further sections of the paper.

Figure 2 displays the analyzed code for the closed loop system described in the previous section. From such a code, our analyzer extracts the control flow graph of Figure 3. From this control flow graph and a set of expressions ti on program variables, called templates, policy iterations techniques [START_REF] Gawlitza | Abstract interpretation meets convex optimization[END_REF] can compute, for each graph vertex, bounds bi such that i ti ≤ bi is an invariant. This is basically done by reducing the problem to subproblems, called policies1 , which can be solved thanks to some numerical solver. For instance, linear programming could be used with linear templates. Focusing on quadratic templates, semidefinite programming [START_REF] Vandenberghe | Semidefinite programming[END_REF] is used here.

Given the templates t1 := x T P x, t2 := x 2 c1 , t3 := x 2 c2 , t4 := x 2 p1 and t5 := x 2 p2 where x is the vector [xc1 xc2 xp1 xp2] T and (rounded to four digits) 

P :=     1.

With Saturation

Actual controllers usually contain saturations to bound the values read from sensors or sent to actuators, in order to ensure that these values remain in the operating ranges of those devices. With such a saturation on its input, the control flow graph of our running example changes to the one shown in Figure 4. -0.0672 0.0264 -0.0995 -0.0672 0.0890 -0.0075 0.0197 0.0264 -0.0075 0.0016

    ,
policy iterations compute the invariant

t1 ≤ 0.1754 ∧ t2 ≤ 6.1265 ∧ t3 ≤ 0.3505 ∧ t4 ≤ 4.1586 ∧ t5 ≤ 1705.1748 which implies |xc1| ≤ 2.4752 ∧ |xc2| ≤ 0.5921 ∧ |xp1| ≤ 2.0393 ∧ |xp2| ≤ 41.2938.
Our static analyzer took 1.39s to produce this result on an Intel Core2 @ 1.2GHz. In the previous section, a quadratic template P was required to perform the analysis. In order to get a fully automatic analysis method, this section addresses the computation of such templates.

Without Saturation

Given a system with x0 = 0 and x k+1 = Ax k + By k with a bounded input y ( y k ∞ ≤ 1 for all k), control theorist have known for long that this system is stable (i.e., x remains bounded) if and only if the Lyapunov equation 2 [2, 12] A T P A -P ≺ 0 admits as solution a positive definite matrix P (i.e. for all x = 0, x T P x > 0). This equation can be numerically solved thanks to a semidefinite programming solver [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF][START_REF] Vandenberghe | Semidefinite programming[END_REF]. However, in practice, it has many solutions, some dramatically worse than others (i.e., leading to much less precise invariants). Fortunately enough, simple heuristics [START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF] allow to easily compute good templates P . The matrix P used in Section 3.1 was computed this way. Thus, the analysis becomes completely automatic, since matrices A and B, needed to compute P , can just be extracted from the control flow graph of Figure 3. Our static analyzer took 0.76s to produce this template on an Intel Core2 @ 1.2GHz, hence a fully automatic computation in a total of 2.19s.

With Saturation

The previous method does not readily applies for a system with saturation such as the one of Section 3.2.

A first idea could be to try to generate, as previously described, a quadratic template P for each edge of the control flow graph of Figure 4. This approach sometimes proves successful but fails on our running example. Indeed, only one of the edges of the graph on Figure 4 leads to a template P (for other edges, the Lyapunov equation has no solution) and this template does not allow policy iterations to compute a worthwhile invariant on the whole program.

Using common Lyapunov functions constitutes a second idea. That is, looking for a solution to the conjunction of Lyapunov equations for each edge. Again, this fails since Lyapunov equations have no solution for some of the edges.

Linearizing the Saturation

One solution in this case, strongly inspired from [START_REF] Féron | From control systems to control software[END_REF], provides a heuristic that can be used on systems with saturations, such as the one described in equation ( 4). Indeed, let P be a candidate matrix describing an invariant ellipsoid for the system. We try to characterize P as closely as possible while keeping the solving process tractable: 

Assuming x T k P x k ≤ 1, a bound on |Cx k | is given by γ := √ CP -1 C T . Since
y c,k - 1 γ (Cx k -y d,k ) (y c,k -(Cx k -y d,k )) ≤ 0. ( 5 
)
2 In which M ≺ 0 means that M is negative definite (i.e., -M is positive definite). We thus look for a matrix P such that

!! -!! ! -1! ! 1! ! = 1 ! !! ! = !! !! ! + ! !,! ! ! !,! = SAT(!! ! + ! !,! )!
√ CP -1 C T ≤ γ (6) 
and 

x T k P x k ≤ 1 ∧ y 2 d,k ≤ 0.45 2 ∧ (5) =⇒ x T k+1 P x k+1 ≤ 1 (7) 
U :=     A T P A A T P B 04×1 04×1 B T P A B T P B 0 0 01×4 0 0 0 01×4 0 0 -1     V :=     P 04×1 04×1 04×1 01×4 0 0 0 01×4 0 0 0 01×4 0 0 -1     , W :=       2 γ C T C -1 + 1 γ C T -2 γ C T 04×1 -1 + 1 γ C 2 1 + 1 γ 0 -2 γ C 1 + 1 γ 2 γ 0 01×4 0 0 0       , Y :=     04×4 04×1 04×1 04×1 01×4 0 0 0 01×4 0 1 0 01×4 0 0 -0.45 2     ,
we can rewrite equation ( 7) as

ǫ T k Vǫ k 0 ∧ ǫ T k Yǫ k 0 ∧ ǫ T k Wǫ k 0 =⇒ ǫ T k Uǫ k 0.
Equation [START_REF] Gawlitza | Abstract interpretation meets convex optimization[END_REF] can then be relaxed by S-procedure: it will hold if there exists positive coefficients λ, µ, and ν, such that

U -λV -µW -νY 0. (8) 
Equation ( 6) can be rewritten using Schur complement:

γ 2 C C T P 0. (9) 
Note that for fixed λ and γ, equations ( 8) and ( 9) form a Linear Matrix Inequality (LMI) in P , µ and ν, which means it can be solved thanks to a semidefinite programming solver [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. γ = γ + 0.45 is expected to be larger than 1 (otherwise the saturation would never be activated), moreover since the saturation should somewhat "bound" this value, we can expect it not to span over multiple orders of magnitude. We also know that λ ∈ (0, 1) thanks to the bottom right coefficient of the LMI [START_REF] Herencia-Zapana | Pvs linear 7 Currently only prototyped as a Scilab script. algebra libraries for verification of control software algorithms in c/acsl[END_REF]. One possible strategy is then to iterate on potential values of λ and γ, and solving the corresponding LMI at each iteration. If a solution exists, it will provide the invariant x T P x ≤ 1 for the system with saturation. A constraint on the ellipsoid described by P can be added in order to enforce some tightness of the invariant, such as a condition number constraint.

For our running example, we were only able to generate a suitable template P under the additional assumption |y d | ≤ 0.45 (instead of |y d | ≤ 0.5). This took 347s on an Intel Core2 @ 2.4GHz since we had to iterate through many candidate values for γ and λ.

First Abstracting the Disturbance

We then need to actually take the saturation into account to generate a suitable template. Let us however first neglect the disturbance y d and look for a function for the following system:

x k+1 =    Ax k -B if Cx k ≤ -0.5 (A + BC)x k if -1.5 ≤ Cx k ≤ 1.5 Ax k + B if Cx k ≥ 0.5 (10) 
where A, B and C are the matrices given in (4).

remark 4. In case -1.5 ≤ x k ≤ -0.5 or 0.5 ≤ x k ≤ 1.5, the system non deterministically takes one of the two available transitions, the transition taken by the actual system (4) being determined by the value of the abstracted variable y d .

A quadratic Lyapunov function x → x T P x for this system must then satisfy x T k+1 P x k+1 ≤ x T k P x k for all x k ∈ R 4 and all possible transitions from x k to x k+1 . Hence for all x ∈ R 4

   Cx ≤ -0.5 ⇒ (Ax -B) T P (Ax -B) ≤ x T P x -1.5 ≤ Cx ≤ 1.5 ⇒ ((A + BC)x) T P ((A + BC)x) ≤ x T P x Cx ≥ 0.5 ⇒ (Ax + B) T P (Ax + B) ≤ x T P x.
It is worth noting that we can get rid of the first constraint by a symmetry argument. Indeed, the first constraint holds for some x if and only if the third one holds for -x. Similarly, we can throw out the left part of the implication in the second constraint. Indeed, the right part of the implication holds for some x if and only if it holds for αx and, for α small enough, αx will satisfy the left part of the implication. Thus x → x T P x is a Lyapunov equation for [START_REF]IEEE Standard for Floating-Point Arithmetic[END_REF] if and only if for all x ∈ R 4

((A + BC)x) T P ((A + BC)x) ≤ x T P x Cx ≥ 0.5 ⇒ (Ax + B) T P (Ax + B) ≤ x T P x. (11) 
By defining the vector x ′ := [x T 1] T , this can be rewritten

x T (A + BC) T P (A + BC)x ≤ x T P x [C 0] x ′ ≥ 0.5 ⇒ x ′T [A B] T P [A B] x ′ ≤ x ′T [I4 0] T P [I4 0] x ′ .
By a langrangian relaxation, this holds when there exists a λ ≥ 0 such that

   P -(A + BC) T P (A + BC) 0 [I4 0] T P [I4 0] -[A B] T P [A B] -λ 0 C T C -1 0
where M 0 means that the matrix M is positive semidefinite (i.e., for all x, x T P x ≥ 0).

We plan to account for the disturbance y d later. For that purpose, we not only want (A + BC) T P (A + BC) in the first inequality to be less than P but rather the least possible. That is, we look for τmin, the least possible τ ∈ (0, 1) satisfying τ P -(A + BC) T P (A + BC) 0 for some positive definite matrix P . For any given value of τ , this is a Linear Matrix Inequality (LMI) and a semi-definite programming (SDP) solver [START_REF] Vandenberghe | Semidefinite programming[END_REF] can be used to decide whether a P satisfying it exists or not. Thus, τmin can be efficiently approximated by a bisection search in the interval (0, 1). remark 5. τmin is also called minimum decay rate [START_REF] Yang | Minimum Decay Rate of a Family of Dynamical Systems[END_REF].

We are thus looking for a positive definite matrix P satisfying

   τminP -(A + BC) T P (A + BC) 0 [I4 0] T P [I4 0] -[A B] T P [A B] -λ 0 C T C -1 0.
This is a LMI and could then be fed to a SDP solver. Unfortunately, it has no solution. Indeed, A has eigenvalues larger than 1 and taking x large enough can break the second constraint in [START_REF] Levine | The control handbook. The electrical engineering handbook series[END_REF] for any value of P . However, x is saturated when Cx ≥ 1.5 and it is then reasonable to expect Cx not to go to far beyond this threshold. We thus need to add a constraint Cx ≤ γ for some γ > 1.5, in the hope that the generated invariant will eventually satisfy it. This results in the following LMI

τminP -(A + BC) T P (A + BC) 0 [I4 0] T P [I4 0] -[A B] T P [A B] -λD 0 ( 12 
)
where

D := [C -0.5] T [-C γ] + [-C γ] T [C -0.5] .
Finally, for a solution P of the above LMI, x T P x ≤ rmax should be a good candidate invariant for the original system (4), with rmax := γ 2 CP -1 C T the largest r such that x T P x ≤ r implies Cx ≤ γ.

On our running example, 15 bisection search iterations first enable to compute τmin = 0.9804 (rounded to four digits). Then, the values 2, 3, 4,. . . are successively tried for γ in [START_REF] Lyapunov | Problème général de la stabilité du mouvement[END_REF]. The LMI appears to have a solution for γ = 2 and γ = 3 but not for γ = 4. The value of P obtained for the last succeeding value of γ (γ = 3) is then kept as a template and fed to policy iterations along with rmax = 0.26. This is the matrix P used in Section 3.2 in which it had been seen that policy iterations were able to refine the radius rmax = 0.26 down to 0.1754 and infer bounds for each dimension. All these computations (bisection search for τmin, tests for γ and computation of rmax) took 0.83s on an Intel Core2 @ 1.2GHz. remark 6. Although quite heuristic, the choice for γ seems not that difficult since any value in the interval (2.40, 3.85) would also have led to a good template.

Noise Considerations.

When looking solely at the property of bounded input, bounded output stability, it is relatively easy to show the robustness of the plant-controller interconnection to noise.

The proposed approach naturally takes sensor noise into account: as far as preserving the property of Lyapunov stability of the closed loop, adding a bounded noise would only add to γ, and result in the same set of equations to solve.

In order to take actuation noise into account, an additional noise variable needs to be introduced in equation ( 1), but the proposed method would still apply to this setup.

REMOVING REDUNDANT VARIABLES

In previous sections, the analyzed closed loop system was written as a single set of equations mixing the controller and the model of the plant (c.f., code of Figures 2 and4). However, it would be a lot more convenient to clearly separate code of the controller (which is intended to be compiled and executed on the actual device) and the model of the plant (a model of the controlled physical system, part of the specification but not intended to be compiled nor executed). For our running example, this results in the control flow graph of Figure 6.

Along the rightmost edge of this graph, the assignment can be written x k+1 = Ax k + By d,k+1 where x denotes the vector [xc1 xc2 xp1 xp2 yc u] T and 

A :=        0.499 -0.05 0 0 1 0 0.01 1 0 0 0 0 0 0 1 0.01 0 0.00005 0 0 -0.
       , B :=        0 0 0 0 -1 1280        . ( 13 
) Matrix A is noticeably singular (for instance, its fifth line is equal to its third one) and we incur less precise or more computationally expensive invariants at best, serious numerical troubles at worse, if we try to compute invariants from it as described in Section 4. Thus, we first have to reduce the number of variables from six to four (the rank of matrix A). it appears that x 1,k+1 = 0.5 x 0,k+1 +4.5 y k+1 for all k. Hence3 x0,0 = 0 and x 0,k+1 = 0.55 x 0,k + 0.45 y k . Assuming that y k is bounded by 1, this enables to prove that x 0,k lies in the interval (ellipsoid of dimension 1) [-1, 1] (hence x 1,k remains in [-5, 5]). In comparison, directly analyzing the two-variable system with an ellipsoid of dimension 2 would lead to much larger bounds as illustrated on Figure 7.

From edges of the control flow graph of Figure 6, matrices such as the one of Equation 13 can be extracted. From such matrices, a Gaussian elimination implemented with rational arithmetic allows to discover linear dependencies such as y c,k+1 = x p1,k+1 -y d,k+1 and u k+1 = 564.48 x c1,k+1 -1280 x p1,k+1 + 1280 y d,k+1 along the rightmost edge of Figure 6. Unfolding these dependencies finally leads to a control flow graph without the redundant variables. For our running example, we obtain the graph of Figure 4.

After this preprocessing, the analysis can proceed from the freshly computed graph as in Sections 3 and 4.

FLOATING POINT ROUNDING ERRORS

Two fundamentally different issues arise with floating-point arithmetic:

The analysis itself is carried out with floating-point computations for the sake of efficiency, this usually works well in practice but might give erroneous results, hence the need for some a-posteriori validation;

The analyzed system uses floating-point arithmetic with rounding errors, making it behave differently from the way it would using real arithmetic.

Floating-Point Arithmetic in the Analyzer

For the sake of efficiency, the semi-definite programming solvers we use perform all their computations on floatingpoint numbers and do not offer any strict soundness guarantee on their results. To address this issue, we adopt the following strategy:

• first perform policy iterations with unsound solvers, just padding the equations to hopefully get a correct result;

• then check the soundness of previous result.

From a control flow graph and a set of templates tj, policy iterations return a vector of values bv,j ∈ R such that, at each vertex v of the control flow graph, j tj ≤ bv,j should be an invariant. Since this result was computed using floating-point arithmetic, we have to check it. This amounts to check that for each edge from v to v ′ in the control flow graph and for each template tj, the following inequality holds

b v ′ ,j ≥ max    r(tj) e ≤ c ∧ j ′ (t j ′ ≤ b v,j ′ )    (14) 
where e ≤ c and r are respectively the constraint and the assignments associated to the edge between v and v ′ . Informally, this inequalities mean that, if for all j the constraints tj ≤ bj hold in vertex v, then they also hold in vertex v ′ . This can be checked efficiently [START_REF] Roux | Computing quadratic invariants with min-and max-policy iterations: A practical comparison[END_REF], although details are outside the scope of this paper.

Floating-Point Arithmetic in the Analyzed Program

Up to this point, all computations performed by the analyzed code were assumed to be done in the real field R. However, such computations are impossible to implement efficiently on a computer. Instead, developers of control systems commonly resort to floating point numbers. The dark gray parallelogram represents the invariant that can be computed after eliminating the redundant variable whereas the light gray ellipse is an invariant directly computed on the two variables system (other choices of ellipses are possible, we chose the one contained in the smallest possible disc). The latter is noticeably much larger than the former.

The sum or product of two floating point values is, in all generality, not representable as a floating point value and must consequently be rounded. The accumulation of rounding errors can potentially lead to far different results than the ones expected with real numbers [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Monniaux | The pitfalls of verifying floating-point computations[END_REF][START_REF] Rump | Verification methods: Rigorous results using floating-point arithmetic[END_REF], thus floating point computations must be taken into account in our analysis. Definition 1. F ⊂ R denotes the set of floating point values and fl(e) ∈ F represents the floating point evaluation of expression e with any rounding mode and any order of evaluation 4 . example 2. The value fl(1 + 2 + 3) can be either round(1+ round(2 + 3)) or round(round(1 + 2) + 3) with round any valid rounding mode (toward +∞ or to nearest for instance).

Taking floating-point arithmetic into account, ( 14) becomes

b v ′ ,j ≥ max    fl(r(tj)) fl(e) ≤ fl(c) ∧ j ′ (t j ′ ≤ b v,j ′ )    (15) 
since guards e ≤ c and assignments r are now performed in F. All the remaining of ( 14) is kept unchanged since it only corresponds to mathematical expressions (in R) and not to parts of the analyzed program (in F).

We will first see how to handle the guards fl(e) ≤ fl(c) then the assignments fl(r(tj)). Our goal is to obtain a slightly modified version of ( 14) to be able to proceed as in the previous Section 6.1.

Guards.

For all guards e ≤ c, the actually implemented guard is fl(e) ≤ fl(c) and there can be values of program variables such that the later holds but not the former. Our goal is to define a c ′ ≥ c such that fl(e) ≤ fl(c) implies e ≤ c ′ . We will only consider the case of linear guards a T x ≤ c with a ∈ R n , c ∈ R, x ∈ F n . Definition 2. eps is the precision of the floating point format F and eta its precision in case of underflows. In particular, we have for all x, y ∈ F ∃δ ∈ R, |δ| ≤ eps ∧ fl(x + y) = (1 + δ)(x + y) and ∃δ, η ∈ R, |δ| ≤ eps∧|η| ≤ eta∧fl(x × y) = (1+δ)(x×y)+η. remark 7. Those are fairly classic notations and results [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Rump | Verification methods: Rigorous results using floating-point arithmetic[END_REF]. eps and eta are very small constants defined by the floating-point format in use. For instance, eps = 2 -53 (≃ 10 -16 ) and eta = 2 -1075 (≃ 10 -323 ) for the IEE754 binary64 format with a rounding to nearest 5 [START_REF]IEEE Standard for Floating-Point Arithmetic[END_REF]. This theorem gives us the desired property: for all c ′ ≥ fl(c)+γn+1 |a| T |x|+2(n+ x 1)eta, the inequality fl a T x ≤ fl(c) implies a T x ≤ c ′ . Since we used templates x 2 i for each variable xi of the analyzed program, we actually have a bound on x 1 and it is easy to compute such an appropriate c ′ (for instance with floating-point arithmetic and rounding toward +∞).

Assignments.

Things are a bit more involved than in the case of guards. We are now looking for a b

′ v ′ ,j ≤ b v ′ ,j such that r(tj) ≤ b ′ v ′ ,j implies fl(r(tj)) ≤ b v ′ ,j , that is [x T 1]R T r Pt j Rr[x T 1] T ≤ b ′ v ′ ,j implies fl [x T 1]R T r Pt j fl Rr[x T 1] T ≤ b v ′ ,j
where Rr and Pt j are matrix representations of assignment r and template tj respectively 6 . The next theorem will guarantee us that this property holds for any b

′ v ′ ,j ≤ b v ′ ,j - √ s e 2 2 with
s ∈ R such that Pt j s I and ei := γn+1 |Rr i,. | [|x| T 1] T + 2 (n + 2 + x 1) eta. Again, such a b ′ v ′ ,j is easy to compute (with a SDP solver for s and rounding toward +∞ for e).

Theorem 2. Given matrices P, R ∈ R (n+1)×(n+1) , with 2(n+2)eps < 1, and scalars s, b ∈ R such that P is symmetric positive semi-definite (i.e., P T = P and P 0) and P s I, for any x ∈ F n , denoting ei :

= γn+2 |Ri,.| [ |x| T 1] T + 2 (n + 2 + x 1) eta, if s e 2 2 ≤ b and x 1 T R T P R x 1 ≤ √ b - √ s e 2 2 then fl x 1 T R T P fl R x 1 ≤ b
where Ri,. denotes the i-th line of the matrix R.

Finally, if the following holds

b ′ v ′ ,j ≥ max    r(tj) e ≤ c ′ ∧ j ′ (t j ′ ≤ b v,j ′ )    (16) 
then ( 15) holds and we can now proceed as in Section 6.1 by just replacing [START_REF] Monniaux | The pitfalls of verifying floating-point computations[END_REF] with the above [START_REF] Roux | Integrating policy iterations in abstract interpreters[END_REF]. The check should still succeed since the differences between the values in ( 14) and ( 16) are orders of magnitude smaller than the accuracy the bv,j were initially computed with using SDP solvers.

A possible improvement would be to avoid overapproximating the computations of the model of the plant since they do not need to be performed with floating point values like the computations of the controller.

CONCLUSION AND PERSPECTIVES

The presented analyses extended previous work of the authors focused on the software part of a controlled system. In the present work addressing the complete system, the choice has been made to follow the usual approach of control engineers and consider the behavior of the controller with respect to a linear approximation of the plant, i.e., a linearized plant. It differs from the vast state of the art of the analysis of hybrid systems.

However this simplified setting, where the non linearity of the plant is hidden, remains an interesting challenge. First it is meaningful with respect to the design process of the controller, it is important to ensure that the stability properties targeted at design level remain valid at the implementation level. Second the analysis we propose achieves an overapproximation of all reachable states while arguing about a control level property, closed-loop stability of the controlled system.

We are currently completing the implementation 7 of the template generation method of Section 4.2.2 in our static analyzer. Everything is available at http://cavale.enseeiht. fr/closedloop2014/.

To the best of authors' knowledge, none of the existing static analysis tools performs a computation by taking the plant into account and computing an over-approximation of all reachable states. Furthermore our proposal also considers the mix of floating point computations at the software level with real computations for the plant part. The extension of previous work on stability of the controller to the complete system also enlightened the need for new Lyapunov-based heuristics to deal with saturations.

In terms of future work, the presented analysis would have to be applied on more examples of control systems as shared by our academic and industrial partners (e.g., control command of aircraft, full-authority digital engine control (FADEC), etc). Another exciting outcome of this work is the now open possibility to deal with control level properties when dealing with the actual code. Our next goal would address the analysis of robustness and performances properties with a similar approach.

APPENDIX A. PROOFS OF THEOREMS

This appendix contains proofs of theorems that are not included in the paper.

To prove Theorem 1, we first need the following lemma.

Lemma 1. Assuming (n -1)eps < 1, for all x ∈ F n , there exists θ ∈ R n such that for all i, |θi| ≤ γn-1 and (1 + θ ′′ i )η ′ i xi + (1 + θi)ηi . 8 A similar proof can be performed if the sum is not computed in this left-right order.

We can notice that . remark 8. These proofs being rather painful and error prone, they were mechanically checked using the proof assistant Coq [START_REF] Development Team | The Coq proof assistant reference manual[END_REF] which gives us a very high level of confidence in these results. Our development (3.8 kloc of COQ) is available at http: // cavale. enseeiht. fr/ formalbounds2014/ and based on the Flocq library [START_REF] Boldo | Flocq: A Unified Library for Proving Floating-point Algorithms in Coq[END_REF] for the formal definition of floating-point arithmetic.

Figure 1 :

 1 Figure 1: Motivating example: a spring-mass damper

remark 1 .

 1 This corresponds to the system presented in Equation (3) with the input y d bounded by 0.5 (|y d,k | ≤ 0.5 for all k).

remark 3 .

 3 This corresponds to the system presented in Equation (4) with the input y d bounded by 0.5 (|y d,k | ≤ 0.5 for all k).Given the templates t1 := x T P x, t2 := x 2 c1 , t3 := x 2 c2 , t4 := x 2 p1 and t5 := x 2 p2 where x is the vector [xc1 xc2 xp1 xp2] T and (rounded to four digits)

Figure 2 :Figure 3 :

 23 Figure 2: Analyzed code for the closed loop system.

Figure 4 :

 4 Figure 4: Control flow graph for the system with a saturation.

  |y d,k | ≤ 0.45, the constant γ := γ + 0.45 is an upper bound on |Cx k -y d,k |. Letting y c,k := SAT(Cx ky d,k ), we have the following sector bound:

Figure 5 :

 5 Figure 5: Illustration of the sector bound relationship between y c,k and Cx k -y d,k .

Figure 5 1 γ

 51 Figure 5 illustrates the reason for this inequality. y c,k = SAT(Cx k -y d,k ) is represented as a thick line. With the added bound γ on |Cx k -y d,k |, we see that y c,k necessarily lies between Cx k -y d,k and 1 γ (Cx k -y d,k ). Then y c,k -1 γ (Cx k -y d,k ) and y c,k -(Cx k -y d,k ) must be of opposite signs, hence the inequality.We thus look for a matrix P such that √ CP -1 C T ≤ γ (6)

  Defining an extended state vector ǫ k := [x k y c,k y d,k 1] T and the matrices

example 1 .

 1 Considering the system defined by x0 = 0 and x k+1 = Ax k + By k+1 where x denotes the vector [x0 x1] T and

  5 ≤ y d ≤ 0.5 x ′ p1 -y d > 1 , xc1 := 0.499 xc1 -0.05 xc2 + yc xc2 := 0.01 xc1 + xc2 xp1 := xp1 + 0.01 xp2 + 0.00005 u xp2 := -0.01 xp1 + xp2 + 0.01 u yc := 1 u := 281.67552 xc1 -28.224 xc2 + 564.48 yc -1280 -0.5 ≤ y d ≤ 0.5 -1 ≤ x ′ p1 -y d ≤ 1 , xc1 := 0.499 xc1 -0.05 xc2 + yc xc2 := 0.01 xc1 + xc2 xp1 := xp1 + 0.01 xp2 + 0.00005 u xp2 := -0.01 xp1 + xp2 + 0.01 u yc := xp1 + 0.01 xp2 + 0.00005 uy d u := xc1 -28.224 xc2 -1280 xp1 -12.8 xp2 +564.48 yc -0.064 u + 1280 y d -0.5 ≤ y d ≤ 0.5 x ′ p1 -y d < -1 , xc1 := 0.499 xc1 -0.05 xc2 + yc xc2 := 0.01 xc1 + xc2 xp1 := xp1 + 0.01 xp2 + 0.00005 u xp2 := -0.01 xp1 + xp2 + 0.01 u yc := -1 u := 281.67552 xc1 -28.224 xc2 + 564.48 yc + 1280

Figure 6 :

 6 Figure 6: Control flow graph with extra variables (x ′ p1 denotes xp1 + 0.01 xp2 + 0.00005 u).

Figure 7 :

 7 Figure 7: Illustration of Example 1.The dark gray parallelogram represents the invariant that can be computed after eliminating the redundant variable whereas the light gray ellipse is an invariant directly computed on the two variables system (other choices of ellipses are possible, we chose the one contained in the smallest possible disc). The latter is noticeably much larger than the former.

Theorem 1 . 4

 14 Assuming 2(n + 1)eps < 1, we have for all a ∈ R n and x ∈ F n Order of evaluation matters since floating point addition is not associative.5 Usual implementation of type double in C.

  where γn+1 := (n+1)eps 1-(n+1)eps .

( 1 + 1 ( 1 +( 1 +( 1 +

 11111 θi)xi.Proof Lemma 1. According to Definition 2, if the sum is computed from left to right, there exists δn-1 ∈ R such that |δn-1| ≤ eps and fl .Then, by an immediate induction, there exists δ ∈ R n-1 such that for all i, |δi| ≤ eps and fl δj) xi .According to classic results [9, Lemma 3.3] about the terms γ k := keps 1-keps , for all i, there exists θi ∈ R such that |θi| ≤ γn-i+1 and n-1 j=i-1 (1 + δj) = 1 + θi, hence the result8 . Proof Theorem 1. According to Lemma 1, there exists θ ∈ R n such that for all i, |θi| ≤ γn-1 and fl θi)fl(aixi) .Then, according to Definition 2, there exist δ, η ∈ R n such that for all i, |δi| ≤ eps, |ηi| ≤ eta and fl θi) ((1 + δi)fl(ai) fl(xi) + ηi) .Since xi ∈ F, fl(xi) = xi but ai ∈ R hence fl(ai) = (1+δ ′ i )ai + η ′ i for some δ ′ i , η ′ i ∈ R, |δ ′ i | ≤ eps and |η ′ i | ≤ eta. (1+δi)(1+δ ′ i )aixi+(1+θi)(1+δi)η ′ i xi+(1+θi)ηi.According to classic results [9, Lemma 3.3] about the terms γ k , for all i, there existsθ ′ i ∈ R such that |θ ′ i | ≤ γn+1 and (1 + θi)(1 + δi)(1 + δ ′ i ) = 1 + θ ′ i . Similarly, there exists θ ′′ i ∈ R such that |θ ′′ i | ≤ γn and (1 + θi)(1 + δi) = (1 + θ ′′ i θ ′ i )aixi + (1 + θ ′′ i )η ′ i xi + (1 + θi)ηi .

2 .

 2 θ ′′ i )η ′ i xi + (1 + θi)ηi ≤ 2 n + n i=1 |xi| eta since |θ ′′ i | ≤ γn ≤ 1 and |θi| ≤ γn-1 ≤ 1, which finally gives the result. Proof Theorem 2. Denoting y := R[x 1] T we have, thanks to Theorem 1, |fl(yi) -yi| ≤ ei, hence fl(y) i = yi + δiei for some δi ∈ R such that |δi| ≤ 1. Thus, denoting D the diagonal matrix such that for all i, Di,i = δi, we have fl(y) T P fl(y) = (y + De) T P (y + De) = y T P y + e T D T P D e + 2y T P D e. Then, by Cauchy-Schwartz inequality fl(y) T P fl(y) ≤ y T P y+e T D T P D e+2 y T P y √ e T D T P D e and since P s I fl(y) T P fl(y) ≤ y T P y + s e 2 2 + 2 y T P y √ s e Hence the result, since y T P y ≤ √ b -√ s e 2 2

  The actual maximal reachable values for xc1, xc2, xp1 and xp2 are 2.0234, 0.0850, 0.7796 and 23.1525 respectively. The bounds above are then rather conservative.

	7776 1.3967 0.1399 -0.6730 -0.4877 0.3496 -0.0529 1.3967 -0.6730 0.1399 1.1163 -0.4877 0.1099 0.1099 -0.0529 0.0111	    ,
	policy iterations compute the invariant	
	t1 ≤ 0.2302 ∧ t2 ≤ 51.0162 ∧ t3 ≤ 15.4720 ∧ t4 ≤ 10.1973 ∧ t5 ≤ 1767.75	
	which implies	
	|xc1| ≤ 7.1426 ∧ |xc2| ≤ 3.9334 ∧ |xp1| ≤ 3.1933 ∧ |xp2| ≤ 42.0446.

Our static analyzer took 1.28s to produce this result on an Intel Core2 @ 1.2GHz. remark 2.

The word "strategies" is also used in the literature, with equivalent meaning.

Assuming that y0 = 0, we have x 1,k = 0.5 x 0,k +

4.5 y k for all k.

Again, the assignment r is actually computed with floating point arithmetic whereas r(tj) ≤ b v ′ ,j is a purely mathematical property.That's why we don't need fl [x 1]R T r Pt j Rr[x 1] T ≤ b v ′ ,j .

* This work has been partially supported by the following grants: ANR-INSE-2012-CAFEIN and NSF CrAVES.