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Various problems in manifold estimation make use of a quantity called the reach, denoted by τ M , which is a measure of the regularity of the manifold. This paper is the first investigation into the problem of how to estimate the reach. First, we study the geometry of the reach through an approximation perspective. We derive new geometric results on the reach for submanifolds without boundary. An estimator τ of τ M is proposed in an oracle framework where tangent spaces are known, and bounds assessing its efficiency are derived. In the case of i.i.d. random point cloud Xn, τ (Xn) is showed to achieve uniform expected loss bounds over a C 3 -like model. Finally, we obtain upper and lower bounds on the minimax rate for estimating the reach.

Introduction

Background and Related Work

Manifold estimation has become an increasingly important problem in statistics and machine learning. There is now a large literature on methods and theory for estimating manifolds. See, for example, [START_REF] Kim | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF][START_REF] Genovese | Minimax manifold estimation[END_REF][START_REF] Fefferman | Testing the manifold hypothesis[END_REF][START_REF] Boissonnat | Manifold reconstruction using tangential Delaunay complexes[END_REF][START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF][START_REF] Belkin | Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[END_REF][START_REF] Giné | Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results[END_REF].

Estimating a manifold, or functionals of a manifold, requires regularity conditions. In nonparametric function estimation, regularity conditions often take the form of smoothness constraints. In manifold estimation problems, a common assumption is that the reach τ M of the manifold M is non-zero.

First introduced by Federer [START_REF] Federer | Curvature measures[END_REF], the reach τ M of a set M ⊂ R D is the largest number such that any point at distance less than τ M from M has a unique nearest point on M . If a set has its reach greater than τ min > 0, then one can roll freely a ball of radius τ min around it [START_REF] Cuevas | On statistical properties of sets fulfilling rolling-type conditions[END_REF]. The reach is affected by two factors: the curvature of the manifold and the width of the narrowest bottleneck-like structure of M , which quantifies how close M is from being self-intersecting.

Positive reach is the minimal regularity assumption on sets in geometric measure theory and integral geometry [START_REF] Federer | Geometric measure theory[END_REF][START_REF] Thäle | 50 years sets with positive reach-a survey[END_REF]. Sets with positive reach exhibit a structure that is close to being differential -the so-called tangent and normal cones. The value of the reach itself quantifies the degree of regularity of a set, with larger values associated to more regular sets. The positive reach assumption is routinely imposed in the statistical analysis of geometric structures in order to ensure good statistical properties [START_REF] Cuevas | On statistical properties of sets fulfilling rolling-type conditions[END_REF] and to derive theoretical guarantees. For example, in manifold reconstruction, the reach helps formalize minimax rates [START_REF] Genovese | Minimax manifold estimation[END_REF][START_REF] Kim | Tight minimax rates for manifold estimation under Hausdorff loss[END_REF]. The optimal manifold estimators of [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF] implicitly use reach as a scale parameter in their construction. In homology inference [START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF][START_REF] Balakrishnan | Minimax rates for homology inference[END_REF], the reach drives the minimal sample size required to consistently estimate topological invariants. It is used in [START_REF] Cuevas | A nonparametric approach to the estimation of lengths and surface areas[END_REF] as a regularity parameter in the estimation of the Minkowski boundary lengths and surface areas. The reach has also been explicitly used as a regularity parameter in geometric inference, such as in volume estimation [START_REF] Arias-Castro | Minimax Estimation of the Volume of a Set Under the Rolling Ball Condition[END_REF] and manifold clustering [START_REF] Arias-Castro | Spectral clustering based on local PCA[END_REF]. Finally, the reach often plays the role of a scale parameter in dimension reduction techniques such as vector diffusions maps [START_REF] Singer | Vector diffusion maps and the connection Laplacian[END_REF]. Problems in computational geometry such as manifold reconstruction also rely on assumptions on the reach [START_REF] Boissonnat | Manifold reconstruction using tangential Delaunay complexes[END_REF].

In this paper we study the problem of estimating reach. To do so, we first provide new geometric results on the reach. We also give the first bounds on the minimax rate for estimating reach. As a first attempt to study reach estimation in the literature, we will mainly work in a framework where a point cloud is observed jointly with tangent spaces, before relaxing this constraint in Section 6. Such an oracle framework has direct applications in digital imaging [START_REF] Klette | Digital geometry[END_REF][START_REF] Hug | Voronoi-based estimation of Minkowski tensors from finite point samples[END_REF], where a very high resolution image or 3D-scan, represented as a manifold, enables to determine precisely tangent spaces for arbitrary finite set of points [START_REF] Hug | Voronoi-based estimation of Minkowski tensors from finite point samples[END_REF].

There are very few papers on this problem. When the embedding dimension is 3, the estimation of the local feature size (a localized version of the reach) was tackled in a deterministic way in [START_REF] Dey | Normal and feature approximations from noisy point clouds[END_REF]. To some extent, the estimation of the medial axis (the set of points that have strictly more than one nearest point on M ) and its generalizations [START_REF] Cuevas | On the estimation of the medial axis and inner parallel body[END_REF][START_REF] Attali | Stability and computation of medial axes: a state-of-the-art report[END_REF] can be viewed as an indirect way to estimate the reach. A test procedure designed to validate whether data actually comes from a smooth manifold satisfying a condition on the reach was developed in [START_REF] Fefferman | Testing the manifold hypothesis[END_REF]. The authors derived a consistent test procedure, but the results do not permit any inference bound on the reach. When a sample is uniformly distributed over a full-dimensional set, [START_REF] Rodríguez-Casal | A fully datadriven method for estimating the shape of a point cloud[END_REF] proposes a selection procedure for the radius of rconvexity of the set, a quantity closely related to the reach.

Outline

In Section 2 we provide some differential geometric background and define the statistical problem at hand. New geometric properties of the reach are derived in Section 3, and their consequences for its inference follow in Section 4 in a setting where tangent spaces are known. We then derive minimax bounds in Section 5. An extension to a model where tangent spaces are unknown is discussed in Section 6, and we conclude with some open questions in Section 7. For sake of readability, the proofs are given in the Appendix.

Framework

Notions of Differential Geometry

In what follows, D ≥ 2 and R D is endowed with the Euclidean inner product •, • and the associated norm • . The associated closed ball of radius r and center x is denoted by B(x, r). We will consider compact connected submanifolds M of R D of fixed dimension 1 ≤ d < D and without boundary [START_REF] Do Carmo | Riemannian geometry. Mathematics: Theory & Applications[END_REF]. For every point p in M , the tangent space of M at p is denoted by T p M : it is the d-dimensional linear subspace of R D composed of the directions that M spans in the neighborhood of p. Besides the Euclidean structure given by R D ⊃ M , a submanifold is endowed with an intrinsic distance induced by the ambient Euclidean one, and called the geodesic distance. Given a smooth path c : [a, b] → M , the length of c is defined as Length(c) = b a c (t) dt. One can show [START_REF] Do Carmo | Riemannian geometry. Mathematics: Theory & Applications[END_REF] that there exists a path γ p→q of minimal length joining p and q. Such an arc is called geodesic, and the geodesic distance between p and q is given by d M (p, q) = Length(γ p→q ). We let B M (p, s) denote the closed geodesic ball of center p ∈ M and of radius s.

A geodesic γ such that γ (t) = 1 for all t is called arc-length parametrized. Unless stated otherwise, we always assume that geodesics are parametrized by arc-length. For all p ∈ M and all unit vectors v ∈ T p M , we denote by γ p,v the unique arc-length parametrized geodesic of M such that γ p,v (0) = p and γ p,v (0) = v. The exponential map is defined as exp p (vt) = γ p,v (t). Note that from the compactness of M , exp p : T p M → M is defined globally on T p M . For any two nonzero vectors u, v ∈ R D , we let ∠(u, v) = d S D-1 ( u u , v v ) be the angle between u and v.

Reach

First introduced by Federer [START_REF] Federer | Curvature measures[END_REF], the reach regularity parameter is defined as follows. Given a closed subset A ⊂ R D , the medial axis M ed(A) of A is the subset of R D consisting of the points that have at least two nearest neighbors on A. Namely, denoting by d(z, A) = inf p∈A p -z the distance function to A,

M ed(A) = z ∈ R D |∃p = q ∈ A, p -z = q -z = d(z, A) .
(2.1)

The reach of A is then defined as the minimal distance from A to M ed(A).

Definition 2.1. The reach of a closed subset A ⊂ R D is defined as

τ A = inf p∈A d (p, M ed(A)) = inf z∈M ed(A) d (z, A) . (2.2)
Some authors refer to τ -1 A as the condition number [START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF][START_REF] Singer | Vector diffusion maps and the connection Laplacian[END_REF]. From the definition of the medial axis in (2.1), the projection π A (x) = arg min p∈A p -x onto A is well defined outside M ed(A). The reach is the largest distance ρ ≥ 0 such that π A is well defined on the ρ-offset x ∈ R D |d(x, A) < ρ . Hence, the reach condition can be seen as a generalization of convexity, since a set A ⊂ R D is convex if and only if τ A = ∞. In the case of submanifolds, one can reformulate the definition of the reach in the following manner.

Theorem 2.2 (Theorem 4.18 in [START_REF] Federer | Curvature measures[END_REF]).

τ M = inf q =p∈M q -p 2 2d(q -p, T p M ) . (2.3) 
M p + T p M d (q -p, T p M ) q -p q-p 2 2d(q-p,TpM ) C q p Figure 1: Geometric interpretation of quantities involved in (2.3).
This formulation has the advantage of involving only points on M and its tangent spaces, while (2.2) uses the distance to the medial axis M ed(M ), which is a global quantity. The formula (2.3) will be the starting point of the estimator proposed in this paper (see Section 4).

The ratio appearing in (2.3) can be interpreted geometrically, as suggested in Figure 1. This ratio is the radius of an ambient ball, tangent to M at p and passing through q. Hence, at a differential level, the reach gives a lower bound on the radii of curvature of M . Equivalently, τ -1

M is an upper bound on the curvature of M . Proposition 2.3 (Proposition 6.1 in [START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF]). Let M ⊂ R D be a submanifold, and γ p,v an arc-length parametrized geodesic of M . Then for all t, γ p,v (t) ≤ 1/τ M .

In analogy with function spaces, the class M ⊂ R D |τ M ≥ τ min > 0 can be interpreted as the Hölder space C 2 (1/τ min ). In addition, as illustrated in Figure 2, the condition τ M ≥ τ min > 0 also prevents bottleneck structures where M is nearly self-intersecting. This idea will be made rigorous in Section 3.

τ M M M ed(M )
Figure 2: A narrow bottleneck structure yields a small reach τ M .

Statistical Model and Loss

Let us now describe the regularity assumptions we will use throughout. To avoid arbitrarily irregular shapes, we consider submanifolds M with their reach lower bounded by τ min > 0. Since the parameter of interest τ M is a C 2 -like quantity, it is natural -and actually necessary, as we shall see in Proposition 2.9to require an extra degree of smoothness. For example, by imposing an upper bound on the third order derivatives of geodesics. The regularity bounds τ min and L are assumed to exist only for the purpose of deriving uniform estimation bounds. However, we emphasize the fact that the forthcoming estimator τ (4.1) does not require them in its construction.

It is important to note that any compact d-dimensional

C 3 -submanifold M ⊂ R D belongs to such a class M d,D
τmin,L , provided that τ min ≤ τ M and that L is large enough. Note also that since the third order condition γ p,v (0) ≤ L needs to hold for all (p, v), we have in particular that γ p,v (t) ≤ L for all t ∈ R. To our knowledge, such a quantitative C 3 assumption on the geodesic trajectories has not been considered in the computational geometry literature.

Any submanifold M ⊂ R D of dimension d inherits a natural measure vol M from the d-dimensional Hausdorff measure H d on R D [23, p. 171]. We will consider distributions Q that have densities with respect to vol M that are bounded away from zero. As for τ min and L, the knowledge of f min will not be required in the construction of the estimator τ (4.1) described below.

In order to focus on the geometric aspects of the reach, we will first consider the case where tangent spaces are observed at all the sample points. As mentioned in the introduction, the knowledge of tangent spaces is a reasonable assumption in digital imaging [START_REF] Klette | Digital geometry[END_REF]. This assumption will eventually be relaxed in Section 6.

We let

G d,D denote the Grassmannian of dimension d of R D , that is the set of all d-dimensional linear subspaces of R D . Definition 2.6. For any distribution Q ∈ Q d,D
τmin,L,fmin with support M we associate the distribution P of the random variable (X,

T X M ) on R D × G d,D
, where X has distribution Q. We let P d,D τmin,L,fmin denote the set of all such distributions. Formally, one can write P (dx dT ) = δ TxM (dT )Q(dx), where δ • denotes the Dirac measure. An i.i.d. n-sample of P is of the form (X 1 , T 1 ), . . . ,

(X n , T n ) ∈ R D × G d,D , where X 1 , . . . , X n is an i.i.d. n-sample of Q and T i = T Xi M with M = supp(Q).
For a distribution Q with support M and associated distribution P on R D × G d,D , we will write τ P = τ Q = τ M , with a slight abuse of notation.

Note that the model does not explicitly impose an upper bound on τ M . Such an upper bound would be redundant, since the lower bound on f min does impose such an upper bound, as we now state in the following result. The proof relies on a volume argument (Lemma A.2), leading to a bound on the diameter of M , and on a topological argument (Lemma A.3) to link the reach and the diameter. Proposition 2.7. Let M ⊂ R D be a connected closed d-dimensional manifold, and let Q be a probability distribution with support M . Assume that Q has a density f with respect to the Hausdorff measure on M such that inf x∈M f (x) ≥ f min > 0. Then,

τ d M ≤ C d f min ,
for some constant C d > 0 depending only on d.

To simplify the statements and the proofs, we focus on a loss involving the condition number. Namely, we measure the error with the loss

(τ, τ ) = 1 τ - 1 τ p , p ≥ 1. (2.4)
In other words, we will consider the estimation of the condition number τ -1 M instead of the reach τ M . Remark 2.8. For a distribution P ∈ P d,D τmin,L,fmin , Proposition 2.7 asserts that τ min ≤ τ P ≤ τ max := (C d /f min )

1/d . Therefore, in an inference set-up, we can always restrict to estimators τ within the bounds τ min ≤ τ ≤ τ max . Consequently, 1

τ 2p max |τ P -τ | p ≤ 1 τ P - 1 τ p ≤ 1 τ 2p min |τ P -τ | p ,
so that the estimation of the reach τ P is equivalent to the estimation of the condition number τ -1 P , up to constants. With the statistical framework developed above, we can now see explicitly why the third order condition γ ≤ L < ∞ is necessary. Indeed, the following Proposition 2.9 demonstrates that relaxing this constraint -i.e. setting L = ∞ -renders the problem of reach estimation intractable. Its proof is to be found in Section D. [START_REF] Alexander | Gauss equation and injectivity radii for subspaces in spaces of curvature bounded above[END_REF] 

E P n 1 τ P - 1 τn p ≥ c τ min p ,
where the infimum is taken over the estimators τn = τn (X 1 , T 1 , . . . , X n , T n ).

Thus, one cannot expect to derive consistent uniform approximation bounds for the reach solely under the condition τ M ≥ τ min . This result is natural, since the problem at stake is to estimate a differential quantity of order two. Therefore, some notion of uniform C 3 regularity is needed.

Geometry of the Reach

In this section, we give a precise geometric description of how the reach arises. In particular, below we will show that the reach is determined either by a bottleneck structure or an area of high curvature (Theorem 3.4). These two cases are referred to as global reach and local reach, respectively. All the proofs for this section are to be found in Section B.

Consider the formulation (2.2) of the reach as the infimum of the distance between M and its medial axis M ed(M ). By definition of the medial axis (2.1), if the infimum is attained it corresponds to a point z 0 in M ed(M ) at distance τ M from M , which we call an axis point. Since z 0 belongs to the medial axis of M , it has at least two nearest neighbors q 1 , q 2 on M , which we call a reach attaining pair (see Figure 3b). By definition, q 1 and q 2 belong to B(z 0 , τ M ) and cannot be farther than 2τ M from each other. We say that (q 1 , q 2 ) is a bottleneck of M in the extremal case q 2 -q 1 = 2τ M of antipodal points of B(z 0 , τ M ) (see Figure 3a). Note that the ball B(z 0 , τ M ) meets M only on its boundary ∂B(z 0 , τ M ). Definition 3.1. Let M ⊂ R D be a submanifold with reach τ M > 0.

• A pair of points (q 1 , q 2 ) in M is called reach attaining if there exists z 0 ∈ M ed(M ) such that q 1 , q 2 ∈ B(z 0 , τ M ). We call z 0 the axis point of (q 1 , q 2 ), and q 1 -q 2 ∈ (0, 2τ M ] its size. • A reach attaining pair (q 1 , q 2 ) ∈ M 2 is said to be a bottleneck of M if its size is 2τ M , that is q 1 -q 2 = 2τ M .

As stated in the following Lemma 3.2, if a reach attaining pair is not a bottleneck -that is q 1 -q 2 < 2τ M , as in Figure 3b -, then M contains an arc of a circle of radius τ M . In this sense, this "semi-local" case -when q 1 -q 2 can be arbitrarily small -is not generic. Though, we do not exclude this case in the analysis. Lemma 3.2. Let M ⊂ R D be a compact submanifold with reach τ M > 0.

Assume that M has a reach attaining pair (q 1 , q 2 ) ∈ M 2 with size q 1 -q 2 < 2τ M . Let z 0 ∈ M ed(M ) be their associated axis point, and write c z0 (q 1 , q 2 ) for the shorter arc of the circle with center z 0 and endpoints as q 1 and q 2 .

Then c z0 (q 1 , q 2 ) ⊂ M , and this arc (which has constant curvature 1/τ M ) is the geodesic joining q 1 and q 2 . In particular, in this "semi-local" situation, since τ -1 M is the norm of the second derivative of a geodesic of M (the exhibited shorter arc of the circle of radius τ M ), the reach can be viewed as arising from directional curvature. Now consider the case where the infimum (2.2) is not attained. In this case, the following Lemma 3.3 asserts that τ M is created by curvature.

Lemma 3.3. Let M ⊂ R D be a compact submanifold with reach τ M > 0.
Assume that for all z ∈ M ed(M ), d(z, M ) > τ M . Then there exists q 0 ∈ M and a geodesic γ 0 such that γ 0 (0) = q 0 and γ 0 (0) = 1 τ M . To summarize, there are three distinct geometric instances in which the reach may be realized:

• (See Figure 3a) M has a bottleneck: by definition, τ M originates from a structure having scale 2τ M . • (See Figure 3b) M has a reach attaining pair but no bottleneck: then M contains an arc of a circle of radius τ M (Lemma 3.2), so that M actually contains a zone with radius of curvature τ M . • (See Figure 3c) M does not have a reach attaining pair: then τ M comes from a curvature-attaining point (Lemma 3.3), that is a point with radius of curvature τ M .

From now on, we will treat the first case separately from the other two. We are now in a position to state the main result of this section. It is a straightforward consequence of Lemma 3.2 and Lemma 3.3. Theorem 3.4. Let M ⊂ R D be a compact submanifold with reach τ M > 0. At least one of the following two assertions holds.

• (Global Case) M has a bottleneck (q 1 , q 2 ) ∈ M 2 , that is, there exists z 0 ∈ M ed(M ) such that q 1 , q 2 ∈ ∂B(z 0 , τ M ) and q 1 -q 2 = 2τ M . • (Local Case) There exists q 0 ∈ M and an arc-length parametrized geodesic γ 0 such that γ 0 (0) = q 0 and γ 0 (0) = 1 τ M . Let us emphasize the fact that the global case and the local case of Theorem 3.4 are not mutually exclusive. Theorem 3.4 provides a description of the reach as arising from global and local geometric structures that, to the best of our knowledge, is new. Such a distinction is especially important in our problem. Indeed, the global and local cases may yield different approximation properties and require different statistical analyses. However, since one does not know a priori whether the reach arises from a global or a local structure, an estimator of τ M should be able to handle both cases simultaneously.

q 1 M ed(M ) B(z 0 , τ M ) M q 1 -q 2 = 2τ M q 2 z 0 (a) A bottleneck. q 1 q 2 z 0 τ M B(z 0 , τ M ) q 1 -q 2 < 2τ M M ed(M ) M (b) A non-bottleneck reach attaining pair. q 0 z 0 τ M B(z 0 , τ M ) M ed(M ) M (c) Curvature-attaining point.

Reach Estimator and its Analysis

In this section, we propose an estimator τ (•) for the reach and demonstrate its properties and rate of consistency under the loss (2.4). For the sake of clarity in the analysis, we assume the tangent spaces to be known at every sample point. This assumption will be relaxed in Section 6.

We rely on the formulation of the reach given in (2.3) (see also Figure 1), and define τ as a plugin estimator as follows: given a point cloud

X ⊂ M , τ (X) = inf x =y∈X y -x 2 2d(y -x, T x M ) . (4.1)
In particular, we have τ (M ) = τ M . Since the infimum (4.1) is taken over a set X smaller than M , τ (X) always overestimates τ M . In fact, τ (X) is decreasing in the number of distinct points in X, a useful property that we formalize in the following result, whose proof is immediate. We now derive the rate of convergence of τ . We analyze the global case (Section 4.1) and the local case (Section 4.2) separately. In both cases, we first determine the performance of the estimator in a deterministic framework, and then derive an expected loss bounds when τ is applied to a random sample.

Respectively, the proofs for Section 4.1 and Section 4.2 are to be found in Section C.1 and Section C.2.

Global Case

Consider the global case, that is, M has a bottleneck structure (Theorem 3.4). Then the infimum (2.3) is achieved at a bottleneck pair (q 1 , q 2 ) ∈ M 2 . When X contains points that are close to q 1 and q 2 , one may expect that the infimum over the sample points should also be close to (2.3): that is, that τ (X) should be close to τ M . Proposition 4.2. Let M ⊂ R D be a submanifold with reach τ M > 0 that has a bottleneck (q 1 , q 2 ) ∈ M 2 (see Definition 3.1), and X ⊂ M . If there exist x, y ∈ X with q 1 -x < τ M and q 2 -y < τ M , then

0 ≤ 1 τ M - 1 τ (X) ≤ 1 τ M - 1 τ ({x, y}) ≤ 4 τ 2 M max {d M (q 1 , x), d M (q 2 , y)} .
The error made by τ (X) decreases linearly in the maximum of the distances to the critical points q 1 and q 2 . In other words, the radius of the tangent sphere in Figure 1 grows at most linearly in t when we perturb by t < τ M its basis point p = q 1 and the point q = q 2 it passes through.

Based on the deterministic bound in Proposition 4.2, we can now give an upper bound on the expected loss under the model P d,D τmin,L,fmin . We recall that, throughout the paper, X n = {X 1 , . . . , X n } is an i.i.d. sample with common distribution Q associated to P (see Definition 2.6).

Proposition 4.3. Let P ∈ P d,D
τmin,L,fmin and M = supp(P ). Assume that M has a bottleneck (q 1 , q 2 ) ∈ M 2 (see Definition 3.1). Then,

E P n 1 τ M - 1 τ (X n ) p ≤ C τ M ,fmin,d,p n -p d ,
where C τ M ,fmin,d,p depends only on τ M , f min , d, and p, and is a decreasing function of τ M .

Proposition 4.3 follows straightforwardly from Proposition 4.2 combined with the fact that with high probability, the balls centered at the bottleneck points q 1 and q 2 with radii O(n -1/d ) both contain a sample point of X n .

Local Case

Consider now the local case, that is, there exists q 0 ∈ M and v 0 ∈ T q0 M such that the geodesic γ 0 = γ q0,v0 has second derivative γ 0 (0) = 1/τ M (Theorem 3.4). Estimating τ M boils down to estimating the curvature of M at q 0 in the direction v 0 .

We first relate directional curvature to the increment y-x 2 2d(y-x,TxM ) involved in the estimator τ (4.1). Indeed, since the latter quantity is the radius of a sphere tangent at x and passing through y (Figure 1), it approximates the radius of curvature in the direction y -x when x and y are close. For x, y ∈ M , we let γ x→y denote the arc-length parametrized geodesic joining x and y, with the convention γ x→y (0) = x.

Lemma 4.4. Let M ∈ M d,D τmin,L with reach τ M and X ⊂ M be a subset. Let x, y ∈ X with d M (x, y) < πτ M . Then, 0 ≤ 1 τ M - 1 τ (X) ≤ 1 τ M - 1 τ ({x, y}) ≤ 1 τ M -γ x→y (0) + 1 3 Ld M (x, y).
Let us now state how directional curvatures are stable with respect to perturbations of the base point and the direction. We let κ p denote the maximal directional curvature of M at p ∈ M , that is,

κ p = sup v∈B Tp M (0,1) γ p,v (0) . Lemma 4.5. Let M ∈ M d,D
τmin,L with reach τ M and q 0 , x, y ∈ M be such that x, y ∈ B M q 0 , πτ M

2

. Let γ 0 be a geodesic such that γ 0 (0) = q 0 and γ 0 (0) = κ q0 . Write

θ x := ∠(γ 0 (0), γ q0→x (0)), θ y := ∠(γ 0 (0), γ q0→y (0)),
and suppose that |θ x -θ y | ≥ π 2 . Then,

γ x→y (0) ≥ κ q0 -(κ x -κ q0 ) -2Ld M (q 0 , x) -(2κ x + 6κ q0 ) sin 2 (|θ x -θ y |).
In particular, geodesics in a neighborhood of q 0 with directions close to v 0 have curvature close to 1 τ M . Combining Lemma 4.4 and Lemma 4.5 yields the following deterministic bound in the local case.

Proposition 4.6. Let M ∈ M d,D
τmin,L be such that there exist q 0 ∈ M and a geodesic γ 0 such that γ 0 (0) = q 0 and γ 0 (0

) = 1 τ M . Let X ⊂ M and x, y ∈ X be such that x, y ∈ B M q 0 , πτ M 2 . Write θ x := ∠(γ 0 (0), γ q0→x (0)), θ y := ∠(γ 0 (0), γ q0→y (0)),
and suppose that |θ x -θ y | ≥ π 2 . Then, 0 ≤ 1 τ M - 1 τ (X) ≤ 1 τ M - 1 τ ({x, y}) ≤ 8 sin 2 (|θ x -θ y |) τ M + L 1 3 d M (x, y) + 2d M (q 0 , x) .
In other words, since the reach boils down to directional curvature in the local case, τ performs well if it is given as input a pair of points x, y which are close to the point q 0 realizing the reach, and almost aligned with the direction of interest v 0 . Note that the error bound in the local case (Proposition 4.6) is very similar to that of the global case (Proposition 4.2) with an extra alignment term sin 2 (|θ x -θ y |) . This alignment term appears since, in the local case, the reach arises from directional curvature τ M = γ q0,v0 (0) (Theorem 3.4). Hence, it is natural that the accuracy of τ (X) depends on how precisely X samples the neighborhood of q 0 in the particular direction v 0 .

Similarly to the analysis of the global case, the deterministic bound in Proposition 4.6 yields a bound on the risk of τ (X n ) when

X n = {X 1 , . . . , X n } is random. Proposition 4.7. Let P ∈ P d,D
τmin,L,fmin and M = supp(P ). Suppose there exists q 0 ∈ M and a geodesic γ 0 with γ 0 (0) = q 0 and γ 0 (0) = 1 τ M . Then,

E P n 1 τ M - 1 τ (X n ) p ≤ C τmin,d,L,fmin,p n -2p 3d-1 ,
where C τmin,d,L,fmin,p depends only on τ min , d, L, f min and p.

This statement follows from Proposition 4.6 together with the estimate of the probability of two points being drawn in a neighborhood of q 0 and subject to an alignment constraint. Proposition 4.3 and 4.7 yield a convergence rate of τ (X n ) which is slower in the local case than in the global case. Recall that from Theorem 3.4, the reach pertains to the size of a bottleneck structure in the global case, and to maximum directional curvature in the local case. To estimate the size of a bottleneck, observing two points close to each point in the bottleneck gives a good approximation. However, for approximating maximal directional curvature, observing two points close to the curvature attaining point is not enough, but they should also be aligned with the highly curved direction. Hence, estimating the reach may be more difficult in the local case, and the difference in the convergence rates of Proposition 4.3 and 4.7 accords with this intuition.

Finally, let us point out that in both cases, neither the convergence rates nor the constants depend on the ambient dimension D.

Minimax Estimates

In this section we derive bounds on the minimax risk R n of the estimation of the reach over the class P d,D τmin,L,fmin , that is

R n = inf τn sup P ∈P d,D τ min ,L,f min E P n 1 τ P - 1 τn p , (5.1) 
where the infimum ranges over all estimators τn (X 1 , T X1 ), . . . , (X n , T Xn ) based on an i.i.d. sample of size n with the knowledge of the tangent spaces at sample points. The minimax risk R n corresponds to the best expected risk that an estimator, based on n samples, can achieve uniformly over the model P d,D τmin,L,fmin without the knowledge of the underlying distribution P . The rate of convergence of the plugin estimator τn = τ (X n ) studied in the previous section leads to an upper bound on R n , which we state here for completeness.

Theorem 5.1. For all n ≥ 1,

R n ≤ C τmin,d,L,fmin,p n -2p 3d-1 ,
for some constant C τmin,d,L,fmin,p depending only on τ min , d, L, f min and p.

We now focus on deriving a lower bound on the minimax risk R n . The method relies on an application of Le Cam's Lemma [START_REF] Yu | Assouad, Fano, and Le Cam[END_REF]. In what follows, let

T V (P, P ) = 1 2 |dP -dP |
denote the total variation distance between P and P , where dP, dP denote the respective densities of P, P with respect to any dominating measure. Since |x -z| p + |z -y| p ≥ 2 1-p |x -y| p , the following version of Le Cam's lemma results from [38, Lemma 1] and (1 -T V (P n , P n )) ≥ (1 -T V (P, P )) n .

Lemma 5.2 (Le Cam's Lemma). Let P, P ∈ P d,D τmin,L,fmin with respective supports M and M . Then for all n ≥ 1,

R n ≥ 1 2 p 1 τ M - 1 τ M p (1 -T V (P, P )) n .
Lemma 5.2 states that in order to derive a lower bound on R n one needs to consider distributions (hypotheses) in the model that are stochastically close to each other -i.e. with small total variation distance -but for which the associated reaches are as different as possible. A lower bound on the minimax risk over P d,D τmin,L,fmin requires the hypotheses to belong to the class. Luckily, in our problem it will be enough to construct hypotheses from the simpler class

Q d,D
τmin,L,fmin . Indeed, we have the following isometry result between Q d,D τmin,L,fmin and P d,D τmin,L,fmin for the total variation distance, as proved in Section D.2. We use here the notation of Definition 2.6

Lemma 5.3. Let Q, Q ∈ Q d,D
τmin,L,fmin be distributions on R D with associated distributions P, P ∈ P d,D τmin,L,fmin, on R D × G d,D . Then,

T V (P, P ) = T V (Q, Q ) .
In order to construct hypotheses in Q d,D τmin,L,fmin we take advantage of the fact that the class M d,D τmin,L has good stability properties, which we now describe. Here, since submanifolds do not have natural parametrizations, the notion of perturbation can be well formalized using diffeomorphisms of the ambient space R D ⊃ M . Given a smooth map Φ : R D → R D , we denote by d i

x Φ its differential of order i at x. Given a tensor field A between Euclidean spaces, let A op = sup x A x op , where A x op is the operator norm induced by the Euclidean norm. The next result states, informally, that the reach and geodesics third derivatives of a submanifold that is perturbed by a diffeomorphism that is C 3 -close to the identity map do not change much. The proof of Proposition 5.4 can be found in Section D.3. Now we construct the two hypotheses Q, Q as follows (see Figure 4). Take M to be a d-dimensional sphere and Q to be the uniform distribution on it. Let M = Φ(M ), where Φ is a bump-like diffeomorphism having the curvature of M to be different of that of M in some small neighborhood. Finally, let Q be the uniform distribution on M . The proof of Proposition 5.5 is to be found in Section D.3. Proposition 5.5. Assume that L ≥ (2τ 2 min ) -1 and f min ≤ (2 d+1 τ d min σ d ) -1 . Then for > 0 small enough, there exist

Q, Q ∈ Q d,D
τmin,L,fmin with respective supports M and M such that

1 τ M - 1 τ M ≥ c d τ 2 min and T V (Q, Q ) ≤ 12 2τ min d .
Hence, applying Lemma 5.2 with the hypotheses P, P associated to Q, Q of Proposition 5.5, and taking 12 ( /2τ min ) d = 1/n, together with Lemma 5.3, yields the following lower bound. Here, the assumptions on the parameters L and f min are necessary for the model to be rich enough. Roughly speaking, they ensure at least that a sphere of radius 2τ min belongs to the model.

From Proposition 5.6, the plugin estimation τ (X n ) provably achieves the optimal rate in the global case (Theorem 4.3) up to numerical constants. In the local case (Theorem 4.7) the rate obtained presents a gap, yielding a gap in the overall rate. As explained above (Section 4.2), the slower rate in the local case is a consequence of the alignment required in order to estimate directional curvature. Though, let us note that in the one-dimensional case d = 1, the rate of Proposition 5.6 matches the convergence rate of τ (X n ) (Theorem 5.1). Indeed, for curves, the alignment requirement is always fulfilled. Hence, the rate is exactly n -p for d = 1, and τ (X n ) is minimax optimal.

Here, again, neither the convergence rate nor the constant depend on the ambient dimension D.

Towards Unknown Tangent Spaces

So far, in our analysis we have used the key assumption that both the point cloud and the tangent spaces were jointly observed. We now focus on the more realistic framework where only points are observed. We once again rely on the formulation of the reach given in Theorem 2.3 and consider a new plug-in estimator in which the true tangent spaces are replaced by estimated ones. Namely, given a point cloud X ⊂ R D and a family T = {T x } x∈X of linear subspaces of R D indexed by X, the estimator is defined as τ (X, T ) = inf

x =y∈X y -x 2 2d(y -x, T x ) . ( 6.1) 
In particular, τ (X) = τ (X, T X M ), where T X M = {T x M } x∈X . Adding uncertainty on tangent spaces in (6.1) does not change drastically the estimator as the formula is stable with respect to T . We state this result quantitatively in the following Proposition 6.1, the proof of which can be found in Section E. In what follows, the distance between two linear subspaces U, V ∈ G d,D is measured with their principal angle π U -π V op . Then,

1 τ (X, T ) - 1 τ (X, T ) ≤ 2 sin θ δ .
In other words, the map T → τ (X, T ) -1 is smooth, provided that the basis point cloud X contains no zone of accumulation at a too small scale δ > 0. As a consequence, under the assumptions of Proposition 6.1, the bounds on τ (X) -1 -τ M -1 of Proposition 4.2 and Proposition 4.6 still hold with an extra error term 2 sin θ/δ if we replace τ (X) by τ (X, T ).

For an i.i.d. point cloud X n , asymptotic and nonasymptotic rates of tangent space estimation derived in C 3 -like models can be found in [START_REF] Aamari | Nonasymptotic rates for manifold, tangent space and curvature estimation[END_REF][START_REF] Cheng | Tangent estimation from point samples[END_REF][START_REF] Singer | Vector diffusion maps and the connection Laplacian[END_REF], yielding bounds on sin θ of order (log n/n) 1/d . In that case, the typical scale of minimum interpoint distance is δ n -2/d , as stated in the asymptotic result Theorem 2.1 in [START_REF] Kanagawa | Limit theorems for the minimum interpoint distance between any pair of i.i.d. random points in R d[END_REF] for the flat case of R d . However, the typical covering scale of M used in the global case (Theorem 4.3) is ε (1/n) 1/d . It appears that we can sparsify the point cloud X n -that is, removing accumulation points -while preserving the covering property at scale ε = 2δ (log n/n) 1/d . This can be performed using the farthest point sampling algorithm [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF]Section 3.3]. Such a sparsification pre-processing allows to lessen the possible instability of τ (X n , •) -1 . Though, whether the alignment property used in the local case (Theorem 4.7) is preserved under sparsification remains to be investigated.

Conclusion and Open Questions

In the present work, we gave new insights on the geometry of the reach. Inference results were derived in both deterministic and random frameworks. For i.i.d. samples, non-asymptotic minimax upper and lower bounds were derived under assumptions on the third order derivative of geodesic trajectories. Let us conclude with some open questions.

• Interestingly, the derivation of the minimax lower bound (Theorem 5. or data with additive noise would also be of interest. • In practice, since large reach ensures regularity, one may be interested with having a lower bound on the reach τ M . Studying the limiting distribution of the statistic τ (X n ) would allow to derive asymptotic confidence intervals for τ M . • Other regularity parameters such as local feature size [START_REF] Boissonnat | Manifold reconstruction using tangential Delaunay complexes[END_REF] and λ-reach [START_REF] Chazal | The λ-medial axis[END_REF] could be relevant to estimate, as they are used as tuning parameters in computational geometry techniques. 

1 - v 2 6τ 2 M w ≤ d v exp p •w ≤ 1 + v 2 τ 2 M w . (v) For all p ∈ M and r ≤ πτ M 2 √ 2 , given any Borel set A ⊂ B TpM (0, r) ⊂ T p M , 1 - r 2 6τ 2 M d H d (A) ≤ H d (exp p (A)) ≤ 1 + r 2 τ 2 M d H d (A).

A.2. Comparing Reach and Diameter

Let us prove Proposition 2.7. For this aim, we first state the following analogous bound on the (Euclidean) diameter diam(M ) = sup x,y∈M x -y .

Lemma A.2 (Lemma 2 in [START_REF] Aamari | Stability and minimax optimality of tangential Delaunay complexes for manifold reconstruction[END_REF]). Let M ⊂ R D be a connected closed d-dimensional manifold, and let Q be a probability distribution having support M with a density f ≥ f min with respect to the Hausdorff measure on M . Then,

diam(M ) ≤ C d τ d-1 M f min , for some constant C d > 0 depending only on d. Proposition A.3. If K ⊂ R D is not homotopy equivalent to a point, τ K ≤ D 2(D + 1) diam(K).
Proof of Proposition A.3. Combine Lemma A.4 and Lemma A.5.

Let us recall that for two compact subsets A, B ⊂ R D , the Hausdorff distance [12, p. 252] between them is defined by

d H (A, B) = max sup a∈A d(a, B), sup b∈B d(b, A) .
We denote by conv(•) the closed convex hull of a set.

Lemma A.4. For all K ⊂ R D , d H (K, conv(K)) ≤ D 2(D+1) diam(K).
Proof of Lemma A.4. It is a straightforward corollary of Jung's Theorem 2.10.41 in [START_REF] Federer | Geometric measure theory[END_REF], which states that K is contained in a (unique) closed ball with (minimal)

radius at most D 2(D+1) diam(K). Lemma A.5. If K ⊂ R D is not homotopy equivalent to a point, then τ K ≤ d H (K, conv(K)).
Proof of Lemma A.5. Let us prove the contrapositive. For this, assume that τ K > d H (K, conv(K)). Then,

conv(K) ⊂ x∈K B (x, d H (K, conv(K))) ⊂ x∈K • B (x, τ K ) ⊂ M ed(K) c .
Therefore, the map π K : conv(K) → K is well defined and continuous, so that K is a retract of conv(K) (see [27, Chapter 0]). Therefore, K is homotopy equivalent to a point, since the convex set conv(K) is.

Hence, applying [34, Lemma 3.4 (ii)], we get that K is contractible. In particular, K is connected.

Since K is a closed connected subset of the circle ∂B R 2 (z, r z ), K is an arc of a circle. Let c 1 , c 2 denote its endpoints.

Let us now show that {c 1 , c 2 } ⊂ ∂B R 2 (z, r z )∩∂B R 2 (p, r p ), or equivalently that c 1 -p = c 2 -p = r p . Indeed, if x ∈ K is such that x -p < r p then there exists

r x > 0 such that B R 2 (x, r x ) ⊂ B R 2 (p, r p ). Then ∂B R 2 (z, r z ) ∩ B R 2 (x, r x ) = ∅, so ∂B R 2 (z, r z ) ∩ B R 2 (x, r x )
is also an arc of a circle, and since x ∈ ∂B R 2 (z, r z ), x cannot be an end point of the arc ∂B R 2 (z, r z ) ∩ B R 2 (x, r x ).

The two circles ∂B R 2 (z, r z ) and ∂B R 2 (p, r p ) are different (r z > r p ), so their intersection contains at most two points. Since

q 1 = q 2 ∈ K = ∂B R 2 (z, r z ) ∩ B R 2 (p, r p ), in fact {q 1 , q 2 } = ∂B R 2 (z, r z ) ∩ ∂B R 2 (p, r p ). Consequently, {c 1 , c 2 } = {q 1 , q 2 }
. That is, q 1 and q 2 are the endpoints of the arc K.

Note that there are two arcs of the circle ∂B R 2 (z, r z ) with endpoints q 1 and q 2 . Since K = ∂B R 2 (z, r z ) ∩ B R 2 (p, r p ) ⊂ B R 2 (p, r p ) and r p < r z , K cannot contain two points at distance equal to 2r z . Hence, K is the shorter arc of the circle ∂B R 2 (z, r z ) with endpoints q 1 and q 2 , which is exactly c z (q 1 , q 2 ). Lemma B.2. Let V ⊂ R D be a 2-dimensional affine space and q 1 , q 2 , z, x ∈ V . Denote by L be the line passing q 1 and q 2 . Assume that x, z / ∈ L, and that the segment joining z and x intersects L. Let p ∈ R D be such that p -q 1 = z -q 1 and p -q 2 = z -q 2 . Then p -x ≤ z -x , and the equality holds if and only if p = z.

Proof of Lemma B.2. Let y denote the intersection point of L and the line segment between z and x. Since p -q 1 = z -q 1 and p -q 2 = z -q 2 , cos(∠(p -q 1 , q 2 -q 1 )) = cos(∠(z -q 1 , q 2 -q 1 ))

= z -q 1 2 + q 2 -q 1 2 -z -q 2 2 2 z -q 1 q 2 -q 1 ,
from which we derive p -y 2 = p -q 1 2 + y -q 1 2 -2 p -q 1 y -q 1 cos(∠(p -q 1 , q 2 -q 1 ))

= z -q 1 2 + y -q 1 2 -2 z -q 1 y -q 1 cos(∠(z -q 1 , q 2 -q 1 )) = z -y 2 .
Using the fact that y belongs to the segment joining x and z, we get

z -x = z -y + y -x = p -y + y -x ≥ p -x .
Finally, note that since x, z / ∈ L and y ∈ L, the equality holds if and only if ∠(x -y, p -y) = π. But p -y = z -y and x, y, and z are colinear, so this is possible if and only if p = z.

The following lemma can be seen as an extension of [START_REF] Rataj | On the structure of sets with positive reach[END_REF]Lemma 3.4 (i)].

Lemma B.3. Let A ⊂ R D be a set with positive reach τ A > 0, and let {B i } i∈I be a collection of balls indexed by I. Suppose i∈I B i ∩ A is nonempty. Let r i be the radius of B i , and suppose r i < τ A for all i ∈ I.

(i) If I is finite, then τ i∈I Bi∩A > min i∈I r i . (ii) If I is countably infinite, then τ i∈I Bi∩A ≥ inf i∈I r i . Proof of Lemma B.3. (i) Since I is finite, we can assume that I = {1, . . . , k} and that the sequence (r i ) 1≤i≤k is nonincreasing. We use an induction on k:

• If k = 1, since for all x ∈ A ∩ B 1 , d(x, M ed(A)) ≥ τ A > r 1 , [34, Lemma 3.4 (i)]
gives that τ B1∩A > r 1 .

• Suppose now that τ j i-1 Bi∩A > r j for some j < k. Then for all x ∈

j+1 i=1 B i ∩ A = j i=1 B i ∩ A ∩ B j+1 , d x, M ed j i=1 B i ∩ A > r j ≥ r j+1 .
Applying again [34, Lemma 3.4 (i)] gives

τ j+1 i=1 Bi∩A = τ ( j i=1 Bi∩A)∩Bj+1 > r j+1 = min 1≤i≤j+1 r i .
By induction on k, we get the result. (ii) Note that if inf i∈I r i = 0, there is nothing to prove. Hence we only consider the case where inf i∈I r i > 0.

Since I is countable, we can assume that

I = N. For k ∈ N, let C k := k i=1 B i ∩ A. In particular, C ∞ := ∩ ∞ k=1 C k = ∩ ∞ i=1 B i ∩ A. From the finite case (i), τ C k > min 1≤i≤k r i ≥ inf i∈N r i . Now, since {C k } ∞
k=1 is a decreasing sequence of sets, the distance functions d(•, C k ) converges to d(•, C ∞ ). As the distance functions d(•, C k ) are continuous, there convergence is uniform on any compact subset of R D . Hence, [22, Theorem 5.9] yields τ C∞ ≥ inf i∈N r i , which concludes the proof.

Proof of Lemma 3.2. Let p 0 := z0+q1+q2 3 and τ 0 = p 0 -q 1 < τ M . Consider the subset C 0 of the median hyperplane of q 1 and q 2 defined by

C 0 := p ∈ R D | p -q 1 = p -q 2 ∈ (τ 0 , τ M ) ,
and let {p i } i∈N ⊂ C 0 be its countable dense subset. Write τ i := p i -q 1 and B

i := B R D (p i , τ i ). Let A ∞ := ∞ k=0 B k . Note that {q 1 , q 2 } ⊂ M ∩ A ∞ which implies that M ∩ A ∞ is nonempty. Note also that by definition, τ i ∈ (τ 0 , τ M ) for all i ∈ N ∪ {0}. Hence from Lemma B.3 (ii), τ M ∩A∞ ≥ τ 0 . In addition, M ⊂ R D \ • B R D (z 0 , τ M ), so that {q 1 , q 2 } ⊂ M ∩ A ∞ ⊂ A ∞ \ • B R D (z 0 , τ M ). Note that it is sufficient to show that A ∞ \ • B R D (z 0 , τ M ) = c z0 (q 1 , q 2 ) to conclude the proof. Indeed, since τ M ∩A∞ ≥ τ 0 > q2-q1 2 and ∅ = M ∩ A ∞ ⊂ c z0 (q 1 , q 2 ) ⊂ B R D q1+q2 2 , q2-q1 2 
, [START_REF] Rataj | On the structure of sets with positive reach[END_REF]Lemma 3.4 (ii)] implies that M ∩ A ∞ is contractible. In other words, M ∩ A ∞ is a contractible subset of the shorter arc of a circle c z0 (q 1 , q 2 ) containing its endpoints q 1 and q 2 , and hence M ∩ A ∞ = c z0 (q 1 , q 2 ). Therefore, c z0 (q 1 , q 2 ) ⊂ M, which concludes the proof.

It is left to show that

A ∞ \ • B R D (z 0 , τ M ) = c z0 (q 1 , q 2 ).
To this aim, let us write V := z 0 + span {q 1 -z 0 , q 2 -z 0 } for the 2-dimensional plane passing through q 1 , q 2 , and z 0 . Then τ 0 = p 0 -q 1 = p 0 -q 2 < z 0 -q 1 = z 0 -q 2 = τ M , and hence from Lemma B.1, c z0 (q 1 , q 2 ) can be represented as

c z0 (q 1 , q 2 ) = V ∩ ∂B R D (z 0 , τ M ) ∩ B R D (p 0 , τ 0 ). (B.1)
The proof will hence be complete as soon as we have showed the equality

A ∞ \ • B R D (z 0 , τ M ) = V ∩ ∂B R D (z 0 , τ M ) ∩ B R D (p 0 , τ 0 ),
which we tackle by showing the two inclusions.

• (Direct inclusion) Let x ∈ R D \ B R D (z 0 , τ M ). Since z 0 -q 1 = z 0 -q 2 = τ M , their exists p i satisfying p i -z 0 < z0-x -τ M 2
. Then,

p i -x ≥ z 0 -x -p i -z 0 ≥ z 0 -x + τ M 2 > τ M > p i -q 1 , so that x / ∈ B i = B R D (p i , p i -q 1 ), and x / ∈ A ∞ = ∞ i=1 B i as well. Hence this implies that (R D \ B R D (z 0 , τ M )) ∩ A ∞ = ∅. (B.2)
Let now x ∈ (∂B R D (z 0 , τ M )) \ V . Since x, q 1 , and q 2 are not colinear, we can find p ∈ V x = x + span {q 1 -x, q 2 -x} such that p -q 1 = p -q 2 = τ M and the line segment between p and x intersects the line L passing by q 1 and q 2 . Then q 1 , q 2 , x, and p are lying on a 2-dimensional plane V x , and x / ∈ L. Also, x / ∈ V , q 1 , q 2 ∈ V , and p -q 1 = p -q 2 = τ M > q1-q2 2 implies that p / ∈ V , and hence p = z 0 . Hence from Lemma B.2,

p -x > z 0 -x = τ M . Now, since p -q 1 = p -q 2 = τ M , there exists p i be satisfying p i -p < p -x -τ M 2
. Then

p i -x ≥ p -x -p i -p ≥ p -x + τ M 2 > τ M > p i -q 1 ,
and hence x /

∈ B i = B R D (p i , p i -q 1 ), x / ∈ A ∞ = ∞ i=1 B i as well. Hence this implies that ((∂B R D (z 0 , τ M )) \ V ) ∩ A ∞ = ∅. (B.3) Finally, by construction, A ∞ ⊂ B R D (p 0 , τ 0 ).

Combining this last inclusion with (B.2) and (B.3) yields the desired inclusion

A ∞ \ • B R D (z 0 , τ M ) ⊂ V ∩ ∂B R D (z 0 , τ M ) ∩ B R D (p 0 , τ 0 ). (B.4) • (Reverse inclusion) Let x ∈ V ∩ ∂B R D (z 0 , τ M ) ∩ B R D (p 0 , τ 0 ), and fix B i = B R D (p i , p i -q 1 )
. Let z 0 ∈ V be such that z 0 -q 1 = z 0 -q 2 = p i -q 1 and the line segment between z 0 and x intersects the line passing q 1 and q 2 . Then q 1 , q 2 , x, z 0 ∈ V , and x is not lying on the line passing q 1 and q 2 . Hence from Lemma B.2,

p i -x ≤ z 0 -x . (B.5)
Since x ∈ c z0 (q 1 , q 2 ) and z 0 -

q 1 = z 0 -q 2 < τ M = z 0 -q 1 = z 0 -q 2 , Lemma B.1 yields z 0 -x ≤ z 0 -q 1 . (B.6)
Hence (B.5) and (B.6) gives the upper bound on p i -x as

p i -x ≤ z 0 -x ≤ z 0 -q 1 = p i -q 1 .
Hence x ∈ B i , and since choice of x and B i were arbitrary,

V ∩∂B R D (z 0 , τ M )∩ B R D (p 0 , τ 0 ) ⊂ A ∞ . But ∂B R D (z 0 , τ M ) ∩ • B R D (z 0 , τ M ) = ∅, so that we get the desired inclusion V ∩ ∂B R D (z 0 , τ M ) ∩ B R D (p 0 , τ 0 ) ⊂ A ∞ \ • B R D (z 0 , τ M ). (B.7)
Putting together (B.1), (B.4), and (B.7) we get

A ∞ \ • B R D (z 0 , τ M ) = c z0 (q 1 , q 2 ).
Lemma B.4. Let M ⊂ R D be a compact submanifold with reach τ M > 0. If there exist p = q ∈ M such that τ M = q-p 2 2d(q-p,TpM ) , then there exists

z 0 ∈ M ed(M ) with d(z 0 , M ) = τ M . Proof of Lemma B.4. Write z 0 := p + τ M π Tp M ⊥ (q-p) π Tp M ⊥ (q-p)
. Clearly, z 0 -p = τ M , and z 0 -p ∈ T p M ⊥ , so [START_REF] Federer | Curvature measures[END_REF]Theorem 4.8 (12)] implies that for all λ ∈ (0, 1), π M (p + λ(z 0 -p)) = p, and hence

d(p + λ(z 0 -p), M ) = λ(z 0 -p) = λτ M . Sending λ → 1 yields that d(z 0 , M ) = τ M .
Let us show that z 0 -q = τ M , which will imply that z 0 -p = z 0 -q = d(z 0 , M ) = τ M , and hence that z 0 ∈ M ed(M ), which will conclude the proof.

Let z 1 := p + π TpM ⊥ (q -p) (see Figure 6). Note that z 0 -z 1 and q -z 1 are simplified as

z 0 -z 1 = τ M π TpM ⊥ (q -p) -1 π TpM ⊥ (q -p), q -z 1 = (q -p) -π TpM ⊥ (q -p) = π TpM (q -p). q z 1 z 0 p T p M q-p 2 2τ M τ M Figure 6: Layout of the proof of Lemma B.4.
In particular, z 0 -z 1 ⊥ q -z 1 , which yields

z 0 -q 2 = z 0 -z 1 2 + q -z 1 2 = τ M -π TpM ⊥ (q -p) 2 + π TpM (q -p) 2 .
Noticing that

π TpM ⊥ (q -p) = d(q -p, T p M ) = q -p 2 2τ M , and 
π TpM (q -p) 2 = q -p 2 -π TpM ⊥ (q -p) 2 = q -p 2 1 - q -p 2 4τ 2 M ,
we finally get

z 0 -q 2 = τ M - q -p 2 2τ M 2 + q -p 2 1 - q -p 2 4τ 2 M = τ 2 M . Lemma B.5. Let M ⊂ R D be a closed submanifold with reach τ M > 0. Then for all p, q ∈ M with t 0 := d M (p, q) ≤ τ M /2, γ p→q (0) ≤ 2d(q -p, T p M ) q -p 2 + 2 t 2 0 t0 0 t 0 (γ p→q (s) -γ p→q (0))dsdt , and 
γ p→q (0) ≥ 2d(q -p, T p M ) q -p 2 - 3 q -p τ 2 M - 2 t 2 0 t0 0 t 0 (γ p→q (s) -γ p→q (0))dsdt .
In particular, when

M is C 2 , sup p∈M v∈TpM , v =1 γ p,v (0) = lim sup q→p q∈M 2d(q -p, T p M ) q -p 2 .
To prove Lemma B.5 we need the following straightforward result.

Lemma B.6. Let U be a linear space and

u ∈ U , n ∈ U ⊥ . If v = u + n + e, then |d(v, U ) -n | ≤ e .
Proof of Lemma B.5. First note that from Proposition A.1 (ii), d M (x, y) < πτ M ensures the existence and uniqueness of the geodesic γ. For short, let us write γ = γ p→q . The Taylor expansion of γ at order two yields

q -p = γ(t 0 ) -γ(0) = t 0 γ (0) + t0 0 t 0 γ (s)dsdt = t 0 γ (0) + t 2 0 2 γ (0) + t0 0 t 0 (γ (s) -γ (0))dsdt. (B.8) Since γ (0) ∈ T p M and γ (0) ∈ T p M ⊥ , Lemma B.6 shows that 2d(q -p, T p M ) t 2 0 -γ (0) ≤ 2 t 2 0 t0 0 t 0 (γ (s) -γ (0))dsdt .
Now, from t 0 = d M (p, q) ≥ q -p , we derive the upper bound

γ (0) ≤ 2d(q -p, T p M ) d M (p, q) 2 + 2 t 2 0 t0 0 t 0 (γ (s) -γ (0))dsdt ≤ 2d(q -p, T p M ) q -p 2 + 2 t 2 0 t0 0 t 0 (γ (s) -γ (0))dsdt .
For the lower bound, we apply [START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF]Proposition 6.3] to get

d M (p, q) 2 ≤ τ 2 M   1 -1 - 2 q -p τ M   2 ≤ τ 2 M q-p τ M 2 1 -2 q-p τ M 3/2 ≤ q -p 2 1 -3 q-p τ M , or equivalently, 1 q -p 2 - 1 d M (p, q) 2 ≤ 3 τ M q -p .
linear space is 1-Lipschitz, we get

1 τ ({x, y}) ≥ 2d(y -x, T x M ) y -x 2 = 2d ((y -q 2 ) + (z 1 -x) + (q 1 -x), T x M ) (y -q 2 ) + (z 1 -x) + (q 1 -x) 2 ≥ d(z 1 -x, T x M ) -2t 2(τ M + t) 2 .
Since q 1 , q 2 ∈ B(z 0 , τ M ) and

q 1 -q 2 = 2τ M , z 1 -x = q 2 -q 1 ∈ T q1 M ⊥ .
Furthermore, from [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF]Lemma 11], sin ∠(T x M, T q1 M ) ≤ t/τ M and hence

d(z 1 -x, T x M ) ≥ d(z 1 -x, T q1 M ) -z 1 -x sin ∠(T x M, T q1 M ) ≥ d(q 2 -q 1 , T q1 M ) -q 2 -q 1 t τ M = 2τ M 1 - t τ M .
Combining the two previous bounds finally yields the announced result

1 τ M - 1 τ ({x, y}) ≤ 1 τ M - d(z 1 -x, T x M ) -2t 2(τ M + t) 2 ≤ 1 τ M 1 - 1 -2t/τ M (1 + t/τ M ) 2 ≤ 4 τ 2 M t,
where the last inequality follows from the concavity of [0

, 1] u → 1 -1-2u (1+u) 2 .
Proof of Proposition 4.3. Let Q be the distribution on R D associated to P . Let

s < 1 τ M and t = τ 2 M 4 s ≤ τ M /4. Write ω d := H d (B R d (0, 1)
) for the volume of the d-dimensional unit ball. From Proposition A.1 (v), for all q ∈ M ,

Q (B M (q, t)) ≥ f min H d (B M (q, t)) ≥ ω d f min 1 - t 6τ M 2 d t d ≥ ω d f min 575 576 d t d .
Moreover, Proposition 4.2 asserts that 1 τ M -1 τ (Xn) > s implies that either

B M (q 1 , t) ∩ X n = ∅ or B M (q 2 , t) ∩ X n = ∅. Hence, P 1 τ M - 1 τ (X n ) > s ≤ P (B M (q 1 , t) ∩ X n = ∅) + P (B M (q 2 , t) ∩ X n = ∅) ≤ 2 1 -ω d f min 575 576 d t d n ≤ 2 exp -nω d f min 575 2304 d τ 2d M s d .
Integrating the above bound gives

E P n 1 τ M - 1 τ (X n ) p = 1 τ p M 0 P 1 τ M - 1 τ (X n ) p > s ds ≤ 2 ∞ 0 exp -nω d f min 575 2304 d τ 2d M s d p ds = 2 2304 575 p d (nω d f min ) p d τ 2p M ∞ 0 x p d -1 e -x dx := C τ M ,fmin,d,p n -p d .
where C τ M ,fmin,d,p depends only on τ M , f min , d, p, and is a decreasing function of τ M when the other parameters are fixed.

C.2. Local Case

Proof of Lemma 4.4. First note that from Proposition A.1 (ii), d M (x, y) < πτ M ensures the existence and uniqueness of the geodesic γ x→y . The two left hand inequalities are direct consequences of Corollary 4.1. Let us then focus on the third one. We write t 0 = d M (x, y) and γ = γ x→y for short. By the definition (4.1) of τ ,

1 τ ({x, y}) ≥ 2d(y -x, T x M ) y -x 2 . (C.1) Furthermore, from Lemma B.5, 2d(y -x, T x M ) y -x 2 ≥ γ (0) - 2 t 2 0 t0 0 t 0 (γ (s) -γ (0))dsdt . (C.2) But by definition of M d,D τmin,L M (Definition 2.4), the geodesic γ satisfies γ (s) -γ (0) ≤ L|s|, so that 2 t 2 0 t0 0 t 0 γ (s) -γ (0) dsdt ≤ 2 t 2 0 t0 0 t 0 L|s|dsdt = 1 3 Lt 0 . (C.3)
Combining (C.1), (C.2) and (C.3) gives the announced inequality.

To prove Lemma 4.5, we will use the following lemma on bilinear maps.

Lemma C.1. Let (V, •, • ) and (W, •, • ) be Hilbert spaces. Let B : V × V → W be a continuous bilinear map, and write

λ max := sup v∈V v =1 B(v, v) .
Then for all unit vectors v, w ∈ V ,

(i) B(w, w) -2 v, w 2 B(v, v) ≤ (3 -2 v, w 2 )λ max . (ii) If v ∈ V satisfies that for all ṽ ⊥ v, B(v, v), B(v, ṽ) + B(ṽ, v) = 0, then B(w, w) ≥ v, w 2 B(v, v) -(1 -v, w 2 )λ max .
In particular, this holds whenever

v = 1 with B(v, v) = λ max . Proof of Lemma C.1. Let θ = arccos( v, w ) ∈ [0, π],
and write w = cos θv + sin θv ⊥ for some unit vector v ⊥ ∈ V with v ⊥ ⊥ v. Then B(w, w) can be expanded as

B(w, w) = cos 2 θB(v, v) + cos θ sin θ(B(v, v ⊥ ) + B(v ⊥ , v)) + sin 2 θB(v ⊥ , v ⊥ ). (C.4) (i) Consider w := -cos θv + sin θv ⊥ ∈ V .
Then w is a unit vector, and B( w, w) can be similarly expanded as As B(v ⊥ , v ⊥ ) and B( w, w) are upper bounded by λ max , this yields

B( w, w) = cos 2 θB(v, v) -cos θ sin θ(B(v, v ⊥ ) + B(v ⊥ , v)) + sin 2 θB(v ⊥ , v ⊥ ), (C.
B(w, w) -2 cos 2 θB(v, v) = 2 sin 2 θB(v ⊥ , v ⊥ ) -B( w, w) ≤ (1 + 2 sin 2 θ)λ max = (3 -2 cos 2 θ)λ max ,
which is the announced bound. (ii) From (C.4), B(w, w) can be lower bounded as

B(w, w) ≥ cos 2 θB(v, v) + cos θ sin θ(B(v, v ⊥ ) + B(v ⊥ , v)) -sin 2 θ B(v ⊥ , v ⊥ ) . (C.6) But since B(v, v), B(v, v ⊥ ) + B(v ⊥ , v) = 0, Pythagoras's theorem yields cos 2 θB(v, v) + cos θ sin θ(B(v, v ⊥ ) + B(v ⊥ , v)) = cos 4 θ (B(v, v) 2 + cos 2 θ sin 2 θ (B(v, v ⊥ ) + B(v ⊥ , v) 2 ≥ cos 2 θ (B(v, v) .
Applying this and B(v ⊥ , v ⊥ ) ≤ λ max to (C.6) gives the final bound

B(w, w) ≥ cos 2 θ B(v, v) -sin 2 θλ max .
We now show the last claim, namely that v = 1 and B(v, v) = λ max are sufficient conditions for B(v, v), B(v, ṽ) + B(ṽ, v) = 0 for all ṽ ⊥ v.

(C.7)

For this aim, we take such a v ∈ V and we consider h :

V → R defined by h(u) = B(u, u) 2 and g : V → R defined by g(u) = u 2 -1. Then v is a solution of the optimization problem: maximize h(u) subject to g(u) = 0.
Since h and g are continuously differentiable, the Lagrange multiplier theorem asserts that their Fréchet derivatives at v satisfy ker

d v g ⊂ ker d v h. As d v h(u) = 2 B(v, v), B(v, u) + B(u, v) and d v g(u) = 2 v
, u , this rewrites exactly as the claim (C.7).

Corollary C.2. Let M ⊂ R D be a C 2 -submanifold and p ∈ M . Let v 0 , v 1 ∈ T p M be unit tangent vectors, and let θ = ∠(v 0 , v 1 ). Let γ p,v be the arc length parametrized geodesic starting from p with velocity v, and write γ i = γ p,vi for i = 0, 1. Let κ p = max v∈B Tp M (0,1) γ p,v (0) . Then, (i) γ 1 (0) ≥ 2 γ 0 (0) cos 2 θ -κ p (1 + 2 sin 2 θ). (ii) If v 0 is a direction of maximum directional curvature, i.e. γ 0 (0) = κ p , then γ 1 (0) ≥ γ 0 (0) -2κ p sin 2 θ.

Proof of Corollary C.2. Consider the symmetric bilinear map B : T p M ×T p M → T p M ⊥ given by the hessian of the exponential map B(v, w) := d 2 0 exp p (v, w). In particular, for all v ∈ T p M , γ p,v (0) = B(v, v) and sup v∈V, v =1 B(v, v) = κ p . This allows us to tackle the two points of the result.

(i) Applying Lemma C.1 (i) to B with v = v 0 and w = v 1 yields

γ 1 (0) ≥ 2 cos 2 θγ 0 (0) -2 cos 2 θγ 0 (0) -γ 1 (0) ≥ 2 γ 0 (0) cos 2 θ -κ p (1 + 2 sin 2 θ) (ii) Since v 0 gives the maximal directional curvature, applying Lemma C.1 (ii) to B, v = v 0 and w = v 1 precisely yields γ 1 (0) ≥ γ 0 (0) -2κ p sin 2 θ.
For a triangle in a Euclidean space, the sum of any two angles is upper bounded by π. The same property holds for a geodesic triangle on a manifold if its side lengths are not too large compared to its reach, which is formalized in the following Lemma C.3.

Lemma C.3. Let M ⊂ R D be a closed submanifold with reach τ M > 0, and x, y, z ∈ M be three distinct points. Consider the geodesic triangle with vertices x, y, z, that is, the triangle formed by γ x→y , γ y→z , γ z→x .

If at least two of the side lengths of the triangle are strictly less than πτ M 2 , then the sum of any two of its angles is less than or equal to π. 

τ M -cos d M (z,x) τ M cos d M (x,y) τ M sin d M (z,x) τ M sin d M (x,y) τ M ≥ 0, so that ∠zxy ≤ ∠z xȳ ≤ π 2 .
Symmetrically, we also have ∠xyz ≤ π 2 . If ∠yzx ≤ π 2 also holds, then the final result is trivial, so from now on we will assume that ∠yzx ≥ π 2 . Thus, sin(∠ȳz x) ≤ sin(∠yzx), so applying the spherical law of sines and cosines [9, Proposition 18. 

τ M sin(∠ȳz x) 1 -cos d M (z,x) τ M cos d M (y,z) τ M + sin d M (z,x) τ M sin d M (y,z) τ M cos(∠ȳz x) 2 ≤ sin d M (y,z) τ M sin(∠ȳz x) 1 -cos 2 d M (z,x) τ M cos 2 d M (y,z) τ M ≤ sin(∠ȳz x) ≤ sin(∠yzx).
This last bound together with ∠zxy ≤ π 2 ≤ ∠yzx yield ∠zxy + ∠yzx ≤ π. Symmetrically, we also have ∠xxz + ∠xzy ≤ π. Hence, the sum of any two angles is less than or equal to π.

We are now in position to prove Lemma 4.5.

Proof of Lemma 4.5. For short, in what follows, we let t x := d M (q 0 , x), t y := d M (q 0 , y), and θ := ∠(γ x→y (0), γ x→q0 (0)) = π -∠(γ x→y (0), γ q0→x (t x )) (see Figure 7). From Corollary C.2 (i),

γ x→y (0) ≥ (2 -2 sin 2 θ) γ q0→x (t x ) -(1 + 2 sin 2 θ)κ x .
(C.8)

We now focus on the term γ q0→x (t x ) . Since the direction γ 0 (0) maximizes the directional curvature at q 0 and θ x = ∠(γ 0 (0), γ q0→x (0)), Corollary C.2 (ii) yields γ q0→x (0) ≥ (1 -2 sin 2 θ x )κ q0 , and since γ q0→x is L-Lipschitz,

γ q0→x (t x ) ≥ γ q0→x (0) -γ q0→x (t x ) -γ q0→x (0) ≥ (1 -2 sin 2 θ x )κ q0 -Lt x . (C.9)
Now, consider the geodesic triangle with vertices x, y, q 0 , that is, the triangle 

γ x→y (0) ≥ 2(1 -sin 2 (|θ x -θ y |)) (1 -2 sin 2 θ x )κ q0 -Lt x -(1 + 2 sin 2 (|θ x -θ y |))κ x = 2κ q0 -κ x (1 + 2 sin 2 (|θ x -θ y |)) -2Lt x cos 2 (|θ x -θ y |) -2κ q0 sin 2 (|θ x -θ y |)) + 2 sin 2 θ x -sin 2 θ x sin 2 (|θ x -θ y |) ≥ κ q0 -(κ x -κ q0 ) -2Lt x -(2κ x + 6κ q0 ) sin 2 (|θ x -θ y |).
Proof of Proposition 4. [START_REF] Balakrishnan | Minimax rates for homology inference[END_REF]. In what follows, we let t 0 ≤ τmin 10 ,

B 1 := exp q0 v ∈ T q0 M : v ≤ t 0 , ∠(γ 0 (0), v) ≤ t 0 τ min , B 2 := exp q0 v ∈ T q0 M : v ≤ t 0 , ∠(γ 0 (0), v) ≥ π - t 0 τ min , S 1 γ 0 (0) t0 τmin t 0 u 0 exp -1 q0 (B 1 ) exp -1 q0 (B 2 )
Figure 8: Layout of the proof of Proposition 4.7.

and B 0 := B 1 ∪ B 2 (see Figure 8). Let X ⊂ M , and x, y ∈ X be such that x ∈ B 1 , y ∈ B 2 . Writing θ x := ∠(γ 0 (0), γ q0→x (0)) and θ y := ∠(γ 0 (0), γ q0→y (0)), then θ x ≤ t0 τmin ≤ π 4 and θ y ≥ π -t0 τmin ≥ 3π 4 . Also, d M (q 0 , x) ≤ t 0 and d M (x, y) ≤ 2t 0 , so Proposition 4.6 rewrites as

0 ≤ 1 τ M - 1 τ (X) ≤ 8 sin 2 (|θ x -θ y |) τ M + L 1 3 d M (x, y) + 2d M (q 0 , x) ≤ 16 τ min τ M + 8L 3 t 0 .
A symmetric argument also applies when x ∈ B 2 and y ∈ B 1 . Now, for any s < 1 τ M , let t 0 (s) := 16

τ 2 min + 8L 3 -1
s < τmin 10 . The above argument implies that if 1 τ M -1 τ (X) > s, then for any x, y ∈ X ∩ B 0 , one has either x, y ∈ B 1 or x, y ∈ B 2 . Hence,

P 1 τ M - 1 τ (X n ) > s ≤ n m=0 n m P (X 1 , . . . , X m ∈ M \B 0 , X m+1 , . . . , X n ∈ B 1 ) + P (X 1 , . . . , X m ∈ M \B 0 , X m+1 , . . . , X n ∈ B 2 ) = n m=0 n m (1 -Q(B 0 )) m Q(B 1 ) n-m + (1 -Q(B 0 )) m Q(B 2 ) n-m ≤ (1 -Q(B 2 )) n + (1 -Q(B 1 )) n . (C.11)
We now derive lower bounds for Q(B 1 ) and Q(B 2 ). For this purpose, let S 1 := exp -1 q0 (B 1 ) ∩ ∂B Tq 0 M (0, t 0 ) (see Figure 8). Then exp -1 q0 (B 1 ) ⊂ B Tq 0 M (0, t 0 ) is a cone satisfying

H d exp -1 q0 (B 1 ) H d B Tq 0 M (0, t 0 ) = H d-1 (S 1 ) H d-1 ∂B Tq 0 M (0, t 0 ) . Let ω d := H d (B R d (0, 1 
)) and σ d := H d (∂B R d+1 (0, 1)) denote the volumes of the d-dimensional unit ball and sphere respectively, so that

H d B Tq 0 M (0, t 0 ) = ω d t d 0 and H d-1 ∂B Tq 0 M (0, t 0 ) = σ d-1 t d-1 0 
. In view of deriving a lower bound on H d-1 (S 1 ), consider u 0 := t 0 γ 0 (0) ∈ S 1 . Since τ S1 = t 0 and exp -1

u0 (S 1 ) ⊂ B Tu 0 S1 0, τ -1 2 min t 3 2 0 , applying Proposition A.1 (v) yields H d-1 (S 1 ) ≥ 1 - t 0 6τ min d-1 H d-1 B Tu 0 S1 0, τ -1 2 min t 3 2 0 ≥ 59 60 d-1 ω d-1 τ -d-1 2 min t 3d-3 2 0 ,
and hence

H d-1 exp -1 q0 (B 1 ) = H d B Tq 0 M (0, t 0 ) H d-1 (S 1 ) H d-1 ∂B Tq 0 M (0, t 0 ) ≥ 59 60 d-1 ω d-1 d τ -d-1 2 min t 3d-1 2 0 . Finally, since exp -1 q0 (B 1 ) ⊂ B Tq 0 M (q 0 , τ M 10 ), Proposition A.1 (v) yields H d (B 1 ) ≥ 599 600 d H d exp -1 q0 (B 1 ) ≥ 35341 36000 d 1 d τ -d-1 2 min t 3d-1 2 0 ,
and hence,

Q(B 1 ) ≥ 35341 36000 d f min d τ -d-1 2 min t 3d-1 2 0 ≥ C τmin,d,L,fmin s 3d-1 2 
.

By symmetry, the same bound holds for Q(B 2 ). Applying these bounds to (C.11) gives

P 1 τ M - 1 τ (X n ) > s ≤ 2 1 -C τmin,d,L,fmin s 3d-1 2 n ≤ 2 exp -C τmin,d,L,fmin ns 3d-1 2 
.

As for the proof of Proposition 4.3, the result then follows by integration.

Appendix D: Minimax Lower Bounds

D.1. Stability of the Model With Respect to Diffeomorphisms

To prove Proposition 5.4, we will use the following result stating that the reach is a stable quantity with respect to C 2 -perturbations.

Lemma D.1 (Theorem 4.19 in [START_REF] Federer | Curvature measures[END_REF]). Let A ⊂ R D with τ A ≥ τ min > 0 and Φ : R D -→ R D is a C 1 -diffeomorphism such that Φ,Φ -1 , and dΦ are Lipschitz with Lipschitz constants K,N and R respectively, then

τ Φ(A) ≥ τ min (K + Rτ min )N 2 .
Proof of Proposition 5.4. Let M = Φ (M ) be the image of M by the mapping Φ. Since Φ is a global diffeomorphism, M is a closed submanifold of dimension one. Moreover, Φ is

dΦ op ≤ (1 + dΦ -I D op )-Lipschitz, Φ -1 is dΦ -1 op ≤ (1 -dΦ -I D op ) -1 -Lipschitz, and dΦ is d 2 Φ op -Lipschitz. From Lemma D.1, τ M ≥ τ min (1 -dΦ -I D op ) 2 d 2 Φ op τ min + (1 + dΦ -I D op ) ≥ τ min /2,
where we used that d 2 Φ op τ min ≤ 1/2 and dΦ -I D op ≤ 1/10. All that remains to be proved now is the bound on the third order derivative of the geodesics of M . We denote by γ and γ the geodesics of M and M respectively.

Let p = Φ(p) ∈ M and v = d p Φ.v ∈ T p M be fixed. Since M ∈ M d,D τmin,L is a compact C 3 -submanifold with geodesics γ (0) ≤ L, M can be parametrized locally by a C 3 bijective map Ψ p : B R d (0, ε) → M with Ψ p (0) = p. For a smooth curve γ on M nearby p, we let c = (c 1 , . . . , c d ) t denote its lift in the coordinates x = Ψ -1 p , that is γ(t) = Ψ p • c(t). γ = γ p,v
is the geodesic of M with initial conditions p and v if and only if c satisfies the geodesic equations (see [20, p.62]). That is, the second order ordinary differential equation 

c (t) + Γ (c(t)) • c (t), c (t) = 0, ( 1 
-c (0) can be made arbitrarily small. In particular, γ (0) gets arbitrarily close to γ (0), so that γ (0) ≤ γ (0) + L ≤ 2L, which concludes the proof.

D.2. Lemmas on the Total Variation Distance

Prior to any actual construction, we show the following straightforward lemma bounding the total variation between uniform distribution on manifolds that are perturbations of each other. For M ⊂ R D , write λ M = 1 M H d /H d (M ) for the uniform probability distribution on M . Lemma D.2. Let M ⊂ R D be a compact d-dimensional submanifold and B ⊂ R D be a Borel set. Let Φ : R D → R D be a global diffeomorphism such that Φ |B c is the identity map and dΦ -

I D op ≤ 2 1/d -1. Then H d (Φ(M )) ≤ 2H d (M ) and T V λ M , λ Φ(M ) ≤ 12λ M (B). Proof of Lemma D.2. Since Φ is (1 + dΦ -I D op )-Lipschitz, [4, Lemma 7] as- serts that H d (Φ(M ∩ B)) ≤ (1 + dΦ -I D op ) d H d (M ∩ B) ≤ 2H d (M ∩ B).
Therefore,

H d (Φ(M )) -H d (M ) = H d (Φ(M ∩ B)) -H d (M ∩ B) ≤ H d (M ∩ B) ≤ H d (M ).

Now, writing

for the symmetric difference of sets, we have

M Φ(M ) = (B ∩ M ) (B ∩ Φ(M )) ⊂ (B ∩ M ) ∪ (B ∩ Φ(M )). Therefore, [4, Lemma 7] yields, T V λ M , λ Φ(M ) ≤ 4 H d (M Φ(M )) H d (M ∪ Φ(M )) ≤ 4 H d (M ∩ B) + H d (Φ(M ) ∩ B) H d (M ) = 4 H d (M ∩ B) + H d (Φ(M ∩ B)) H d (M ) ≤ 12 H d (M ∩ B) H d (M ) = 12λ M (B).
Let us now tackle the proof of Lemma 5.3. For this, we will need the following elementary differential geometry results Lemma D.3 and Corollary D.4. Lemma D.3. Let g : R d → R k be C 1 and x ∈ R d be such that g(x) = 0 and d x g = 0. Then there exists r > 0 such that H d g -1 (0) ∩ B(x, r) = 0.

Proof of Lemma D.3. Let us prove that for r > 0 small enough, the intersection g -1 (0) ∩ B(x, r) is contained in a submanifold of codimension one of R d . Writing g = (g 1 , . . . , g k ), assume without loss of generality that ∂ x1 g 1 = 0. Since g 1 : R d → R is non-singular at x, the implicit function theorem asserts that g -1 1 (0) is a submanifold of dimension d -1 of R d in a neighborhood of x ∈ R d . Therefore, for r > 0 small enough, g -1 1 (0) ∩ B(x, r) has d-dimensional Hausdorff measure zero. The result hence follows, noticing that g -1 (0) ⊂ g -1 1 (0). k and that M is the graph of a C ∞ function g : B R d (0, r ) → R k for r > 0 small enough. The assumption T x M = T x M translates to d 0 g = 0, and the previous transformation maps smoothly M ∩ M ∩ B(x, r ) to g -1 (0) ∩ B(0, r ) for r > 0 small enough. We conclude by applying Lemma D.3.

We are now in position to prove Lemma 5.3. As a consequence, the above integral expression becomes

T V (P, P ) = 1 2 R D |f -f |dH d = T V (Q, Q ),
which concludes the proof.

D.3. Construction of the Hypotheses

This section is devoted to the construction of hypotheses that will be used in Le Cam's lemma (Lemma 5.2), to derive Proposition 2.9 and Theorem 5.6.

Lemma D.5. Let R, , η > 0 be such that ≤ R 2 ∧ 2 1/d -1 and η ≤ where v = (0, 1, 0, . . . , 0) is the unit vertical vector. Φ is the identity map on B (0, ) c , and in B (0, ), Φ translates points on the vertical axis with a magnitude modulated by the weight function φ(x/ ). From chain rule, dΦ -I D op = η dφ ∞ / ≤ 3η/ < 1. Therefore, d x Φ is invertible for all x ∈ R D , so that Φ is a local C ∞ -diffeomorphism according to the local inverse function theorem. Moreover, Φ(x) → ∞ as x → ∞, so that Φ is a global C ∞ -diffeomorphism by Hadamard-Cacciopoli theorem [START_REF] De Marco | Global inversion of functions: an introduction[END_REF]. Similarly, from bounds on differentials of φ we get d 2 Φ op ≤ 23 η 2 and d 3 Φ op ≤ 573 η 3 . Let us now write M = Φ (M ) for the image of M by the map Φ (see Figure 9). Denote by (Oy) the vertical axis span(v), and notice that since φ is symmetric, M is symmetric with respect to the vertical axis (Oy). We now bound from above the reach τ M of M by showing that the point x 0 = 0, R+η/2

1+ 2 2Rη
, 0, . . . , 0 belongs to its medial axis M ed(M ) (see (2.1)). For this, write b = (0, η, 0, . . . , 0), b = (0, -2R, 0, . . . , 0), together with θ = arccos(1 -2 /(2R 2 )), and x = (R sin θ, R cos θ -R, 0, . . . , 0). By construction, b, b and x belong to M . One easily checks that x 0 -x < x 0 -b and x 0 -x < x 0 -b , so that neither b nor b is the nearest neighbor of x 0 on M . But x 0 ∈ (Oy) which is an axis of symmetry of M , and (Oy) ∩ M = {b, b }. As a consequence, x 0 has strictly more than one nearest neighbor on M . That is, x 0 belongs to the medial axis M ed(M ) of M . Therefore,

1 τ M ≥ 1 d (x 0 , M ) ≥ 1 x 0 -x ≥ 1 R 1 - 2 2R 2 - 1+ η 2R 1+ 2 2Rη ≥ 1 R 1 - 1+ η 2R 1+ 2 2Rη ≥ 1 R 1 + 1 + η 2R 1 + 2 2Rη ≥ 1 R + η 2 ,
which yields the bound

1 τ M -1 τ M = 1 R -1 τ M ≥ η 2 .
Finally, since M = Φ(M ) with dΦ -I D op ≤ 2 1/d -1 with Φ |B(0, ) c coinciding with the identity map, Lemma D. 

H d (M ) -1 ∧ H d (M ) -1 ≥ 2 d+1 σ d τ d min -1 ≥ f min , so that λ M , λ M ∈ Q d,D
τmin,L,fmin , which gives the result. Let us now prove the minimax inconsistency of the reach estimation for L = ∞, using the same technique as above.

Proof of Proposition 2.9. Let M and M be given by Lemma D.5 with ≤ R 2 ∧(2 1/d -1), η = 2 /(23R) and R = 2τ min . We have dΦ -I D op ≤ 3η/ ≤ 0.1

Definition 2 . 4 .

 24 Let M d,D τmin,L denote the set of compact connected d-dimensional submanifolds M ⊂ R D without boundary such that τ M ≥ τ min , and for which every arc-length parametrized geodesic γ p,v is C 3 and satisfies γ p,v (0) ≤ L.

Definition 2 . 5 .

 25 We let Q d,D τmin,L,fmin denote the set of distributions Q having support M ∈ M d,D τmin,L and with a Hausdorff density f = dQ dvol M satisfying inf x∈M f (x) ≥ f min > 0 on M .
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 3 Figure 3: The different ways for the reach to be attained, as described in Lemma 3.2 and Lemma 3.3.

Corollary 4 . 1 .

 41 Let M be a submanifold with reach τ M and Y ⊂ X ⊂ M be two nested subsets. Then τ (Y) ≥ τ (X) ≥ τ M .

Proposition 5 . 4 .Figure 4 :

 544 Figure 4: Hypotheses of Proposition 5.5.

Proposition 5 . 6 .

 56 Assume that L ≥ (2τ 2 min ) -1 and f min ≤ (2 d+1 τ d min σ d ) -1 . Then for n large enough, R n ≥ c d τ min p n -p/d ,where c d > 0 depends only on d.

Proposition 6 . 1 .

 61 Let X ⊂ R D and T = {T x } x∈X , T = { Tx } x∈X be two families of linear subspaces of R D indexed by X. Assume X to be δ-sparse, T and T to be θ-close, in the sense that inf x =y∈X y -x ≥ δ and sup x∈X T x -Tx op ≤ sin θ.

Proof of Proposition A. 1 .

 1 (i) is stated as in [33, Proposition 2.1], yielding (ii) from [3, Corollary 1.4]. (iii) follows using (i) again and the Gauss equation [20, p. 130]. (iv) is derived from (iii) by a direct application of [21, Lemma 8]. (v) follows from (iv) and [4, Lemma 6].

  5) and hence summing up (C.4) and (C.5) gives B(w, w) + B( w, w) = 2 cos 2 θB(v, v) + 2 sin 2 θB(v ⊥ , v ⊥ ).

Proof of Lemma C. 3 . 2 , 2 ,

 322 Without loss of generality, suppose d M (x, y) is the longest side length:d M (y, z), d M (z, x) ≤ d M (x, y). Then d M (y, z), d M (z, x) ∈ 0, πτ M so that d M (x, y) ∈ (0, πτ M ) by triangle inequality.Let S 2 τ M be a d-dimensional sphere of radius τ M . In what follows, for short, ∠abc stands for ∠(γ b→a (0),γ b→c (0)). Let x, ȳ, z ∈ S 2 τ M be such that d S 2 τ M (x, ȳ) = d M (x, y), d S 2 τ M (ȳ, z) = d M (y, z),and d S 2 τ M (z, x) = d M (z, x). From Proposition A.1 (ii) and the fact that d M (x, y) + d M (y, z) + d M (z, x) < 2πτ M , Toponogov's comparison theorem [30, Section 4] yields ∠xyz ≤ ∠xȳz, ∠yzx ≤ ∠ȳz x, and ∠xzy ≤ ∠xz ȳ. Furthermore, the spherical law of cosines [9, Proposition 18.6.8] together with d M (y, z), d M (z, x) ∈ 0, πτ M d M (x, y) ∈ (0, πτ M ), and the fact that cos(•) is decreasing on [0, π] imply cos (∠z xȳ) = cos d M (y,z)

2 ,

 2 6.8], d M (y, z), d M (z, x) ∈ 0, πτ M and ∠ȳz x ∈ π 2 , π yield sin(∠zxy) ≤ sin(∠z xȳ) = sin d M (y,z)

Figure 7 :

 7 Figure 7: Layout of Lemma 4.5.

  ≤ ≤ d) c(0) = 0 and c (0) = d p x.v, (D.1) where Γ = Γ i,j 1≤i,j≤d are the Christoffel symbols of the C 3 chart x, which depends only on x and its differentials of order 1 and 2. By construction, M is parametrized locally by Ψ p = Φ • Ψ p yielding local coordinates y = Ψ -1 p = Ψ -1 p • Φ -1 nearby p ∈ M . Writing Γ for the Christoffel's symbols of M , γ is a geodesic of M at p if its lift c = Ψ -1 p (γ) satisfies (D.1) with Γ replaced by Γ , and initial conditions c(0) = c and c (0) = d p y.v = d p x.v. From chain rule, the Γ 's depend on Γ, dΦ, and d 2 Φ. Write c (0) -c (0) by differentiating (D.1): since c(0) = c(0) = 0 and c (0) = c (0), we get that for I D -dΦ op , d 2 Φ op and d 3 Φ op small enough, c

Corollary D. 4 .

 4 Let M, M ⊂ R D be two compact d-dimensional submanifolds, andx ∈ M ∩ M . If T x M = T x M , there exists r > 0 such that A = M ∩ M ∩ B(x, r) satisfies λ M (A) = λ M (A) = 0.Proof of Corollary D.4. Writing k = D -d, we see that up to ambient diffeomorphism -which preserves the nullity of measure -we can assume that locally around x, M coincides with R d × {0}

Proof of Lemma 5 . 3 .1

 53 Notice that Q and Q are dominated by the measure µ = 1 M ∪M H d , with dQ(x) = f (x)dµ(x) and dQ (x) = f (x)dµ(x), where f, f : R D → R + have support M and M respectively. On the other hand, P and P are dominated by ν(dx dT ) = δ {TxM,TxM } (dT ) µ (dx) with respective densities f (x, T ) = 1 T =TxM f (x) and f (x, T ) = 1 T =TxM f (x), where we set arbitrarilyT x M = T 0 for x /∈ M , andT x M = T 0 for x / ∈ M . Recalling that f vanishes outside M and f outside M , T V (P, P ) TxM =TxM |f (x) -f (x)| + 1 TxM =TxM (f (x) + f (x))H d (dx).From Corollary D.4 and a straightforward compactness argument, we derive that H d (M ∩ M ∩ {x|T x M = T x M }) = 0.

2 2R. 1 R 2 2 , d 3 Φ op ≤ 573η 3 ,Figure 9 : 1 R 2 . 2 x 2 -1 1 x 2

 21223912222 Figure 9: The bumped sphere M of Lemma D.5.

  2 yields H d (M ) ≤ 2H d (M ) = 2σ d R d and T V (λ M , λ M ) ≤ 12λ M (B(0, )) = 12 H d B S d 0, 2 arcsin 2R H d (S d ) ≤ 12 Rd , which concludes the proof. Proof of Proposition 5.5. Apply Lemma D.5 with R = 2τ min . Then the sphere M of radius 2τ min belongs to M d,D 2τmin,1/(4τ 2 min ) . Furthermore, taking η = c d 3 /τ 2 min for c d > 0 and > 0 small enough, Proposition 5.4 (applied to the unit sphere, yielding c d , and reasoning by homogeneity for the sphere of radius 2τ min ) asserts that M = Φ(M ) belongs to M d,D τmin,1/(2τ 2 min ) ⊂ M d,D τmin,L , since L ≥ 1/(2τ 2 min ). Moreover,

  . Below, σ d stands for the volume of the d-dimensional unit sphere S d .

	Proposition 2.9. There exists a universal constant c > 1/100 such that given
	τ min > 0, provided that f min ≤ (2 d+1 τ d min σ d ) -1 , we have for all n ≥ 1,
	inf τn	sup P ∈P d,D τ min ,L=∞,f min

  [START_REF] Attali | Stability and computation of medial axes: a state-of-the-art report[END_REF] involves hypotheses that correspond to the local case, but yields the rate n -p/d . But, on the upper bound side, this rate matches with that of the global case (Theorem 4.3), the local case being slower (Theorem 4.7). The minimax upper and lower bounds given in Theorem 5.1 and Theorem 5.6 do not match. They are yet to be sharpened. This results into minimax upper and lower bounds that do not match. They are yet to be sharpened. • As mentioned earlier, Section 6 is only a first step towards a framework where tangent spaces are unknown. A minimax upper bound in this case is still an open question. Considering smoother C k models (k ≥ 3) such as those of [2],

√ 2 and w ∈ T p M ,

Acknowledgments

This collaboration was made possible by the associated team CATS (Computations And Topological Statistics) between DataShape and Carnegie Mellon University. We thank warmly the anonymous reviewers for their insight, which led to various significant improvements of the paper.

We are now in position to prove Proposition 2.7.

Proof of Proposition 2.7. From [27, Theorem 3.26], M has a non trivial homology group of dimension d over Z/2Z, so that it cannot be homotopy equivalent to a point. Therefore, Proposition A.3 yields τ M ≤ diam(M ), and we conclude by applying the bound diam(M ) ≤ C d /(τ d-1 M f min ) given by Lemma A.2.
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Appendix A: Some Technical Results on the Model

A.1. Geometric Properties

The following Proposition A.1 garners geometric properties of submanifolds of the Euclidean space that are related to the reach. We will use them numerous times in the proofs.

Proposition A.1. Let M ⊂ R D be a closed submanifold with reach τ M > 0.

(i) For all p ∈ M , we let II p denote the second fundamental form of M at x.

Then for all unit vector v ∈

(iv) For all p ∈ M , the map exp p :

where c z (q 1 , q 2 ) is the shorter arc of the circle with center z and endpoints as q 1 and q 2 .

Proof of Lemma B.1. Since everything is intersected with the 2-dimensional space V , we can assume that D = 2 without loss of generality. For short, we write

3), we finally derive

Proof of Lemma 3.3. For r > 0, let ∆ r := (p, q) ∈ M 2 | p -q < r , and ∆ = ∩ r>0 ∆ r denote the diagonal of M 2 . Consider the map ϕ :

By assumption, d(z, M ) > τ M for all z ∈ M ed(M ). From Lemma B.4, this implies that for all p = q ∈ M , ϕ(p, q) < τ -1 M . By compactness of M 2 \ ∆ r , this yields sup M 2 \∆r ϕ < τ -1 M . Hence, from the decomposition of (2.3) as

we get sup ∆r\ ∆ ϕ = τ -1 M . By letting r > 0 go to zero and applying Lemma B.5, this yields

Finally, the unit tangent bundle T (1) 

being compact, there exists (q 0 , v 0 ) ∈ T (1) M such that γ 0 = γ q0,v0 attains the supremum, i.e. γ 0 (0) = τ -1 M , which concludes the proof.

Appendix C: Analysis of the Estimator

C.1. Global Case

Proof of Proposition 4.2. The two left hand inequalities are direct consequences of Corollary 4.1, let us then focus on the third one. We set t to be equal to max {d M (q 1 , x), d M (q 2 , y)}, and z 1 := x + (q 2 -q 1 ). We have z 1 -x = q 2 -q 1 = 2τ M and y -q 2 , q 1 -x ≤ t. Therefore, from the definition of τ in (4.1) and the fact that the distance function to a and d 2 Φ op ≤ 23η/ 2 ≤ 1/(2τ min ). Since τ M ≥ 2τ min , Lemma D.1 yields

As a consequence, M and M belong to M d,D τmin,L=∞ . Furthermore, since we have 

.

Sending → 0 with n ≥ 1 fixed yields the announced result.