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Abstract

Various problems in manifold estimation make use of a quantity called the
reach, denoted by τM , which is a measure of the regularity of the manifold.
This paper is the first investigation into the problem of how to estimate the
reach. First, we study the geometry of the reach through an approximation
perspective. We derive new geometric results on the reach for submanifolds
without boundary. An estimator τ̂ of τM is proposed in a framework where
tangent spaces are known, and bounds assessing its efficiency are derived. In
the case of i.i.d. random point cloud Xn, τ̂(Xn) is showed to achieve uniform
expected loss bounds over a C3-like model. Finally, we obtain upper and
lower bounds on the minimax rate for estimating the reach.

1 Introduction

1.1 Background and Related Work

Manifold estimation has become an increasingly important problem in statistics
and machine learning. There is now a large literature on methods and theory for
estimating manifolds. See, for example, [29, 24, 23, 10, 31, 8, 25].

Estimating a manifold, or functionals of a manifold, requires regularity con-
ditions. In nonparametric function estimation, regularity conditions often take
the form of smoothness constraints. In manifold estimation problems, a common
assumption is that the reach τM of the manifold M is non-zero.

First introduced by Federer [21], the reach τM of a set M ⊂ RD is the largest
number such that any point at distance less than τM from M has a unique nearest
point on M . If a set has its reach greater than τmin > 0, then one can roll freely
a ball of radius τmin around it [14]. The reach is affected by two factors: the
curvature of the manifold and the width of the narrowest bottleneck-like structure
of M , which quantifies how close M is from being self-intersecting.
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Positive reach is the minimal regularity assumption on sets in geometric mea-
sure theory and integral geometry [22, 33]. Sets with positive reach exhibit a
structure that is close to being differential — the so-called tangent and normal
cones. The value of the reach itself quantifies the degree of regularity of a set,
with larger values associated to more regular sets. The positive reach assumption
is routinely imposed in the statistical analysis of geometric structures in order to
ensure good statistical properties [14] and to derive theoretical guarantees. For
example, in manifold reconstruction, the reach helps formalize minimax rates
[24, 29]. The optimal manifold estimators of [1] implicitly use reach as a scale
parameter in their construction. In homology inference [31, 7], the reach drives
the minimal sample size required to consistently estimate topological invariants.
It is used in [15] as a regularity parameter in the estimation of the Minkowski
boundary lengths and surface areas. The reach has also been explicitly used as
a regularity parameter in geometric inference, such as in volume estimation [4]
and manifold clustering [5]. Finally, the reach often plays the role of a scale
parameter in dimension reduction techniques such as vector diffusions maps [32].
Problems in computational geometry such as manifold reconstruction also rely
on assumptions on the reach [10].

In this paper we study the problem of estimating reach. To do so, we first
provide new geometric results on the reach. We also give the first bounds on the
minimax rate for estimating reach.

There are very few papers on this problem. When the embedding dimension
is 3, the estimation of the local feature size (a localized version of the reach) was
tackled in a deterministic way in [18]. To some extent, the estimation of the
medial axis (the set of points that have strictly more than one nearest point on
M) and its generalizations [16, 6] can be viewed as an indirect way to estimate
the reach. A test procedure designed to validate whether data actually comes
from a smooth manifold satisfying a condition on the reach was developed in [23].
The authors derived a consistent test procedure, but the results do not permit
any inference bound on the reach.

1.2 Outline

In Section 2 we provide some differential geometric background and define the
statistical problem at hand. New geometric properties of the reach are derived in
Section 3, and their consequences for its inference follow in Section 4 in a setting
where tangent spaces are known. We study minimax rates in Section 5. An
extension to a model where tangent spaces are unknown is discussed in Section
6, and we conclude with some open questions in Section 7. For sake of readability,
the proofs are given in the Appendix.

2 Framework

2.1 Notions of Differential Geometry

In what follows, D ≥ 2 and RD is endowed with the Euclidean inner product 〈·, ·〉
and the associated norm ‖·‖. The associated closed ball of radius r and center x is
denoted by B(x, r). We will consider compact connected submanifolds M of RD
of fixed dimension 1 ≤ d < D and without boundary [19]. For every point p in
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M , the tangent space of M at p is denoted by TpM : it is the d-dimensional linear
subspace of RD composed of the directions that M spans in the neighborhood of
p. Besides the Euclidean structure given by RD ⊃M , a submanifold is endowed
with an intrinsic distance induced by the ambient Euclidean one, and called the
geodesic distance. Given a smooth path c : [a, b]→M , the length of c is defined

as Length(c) =
∫ b
a ‖c

′(t)‖ dt. One can show [19] that there exists a path γp→q of
minimal length joining p and q. Such an arc is called geodesic, and the geodesic
distance between p and q is given by dM (p, q) = Length(γp→q). We let BM (p, s)
denote the closed geodesic ball of center p ∈ M and of radius s. A geodesic γ
such that ‖γ′(t)‖ = 1 for all t is called arc-length parametrized. Unless stated
otherwise, we always assume that geodesics are parametrized by arc-length. For
all p ∈ M and all unit vectors v ∈ TpM , we denote by γp,v the unique arc-
length parametrized geodesic of M such that γp,v(0) = p and γ′p,v(0) = v. The
exponential map is defined as expp(vt) = γp,v(t). Note that from the compactness
of M , expp : TpM →M is defined globally on TpM . For any two nonzero vectors

u, v ∈ RD, we let ∠(u, v) = dSD−1( u
‖u‖ ,

v
‖v‖) be the angle between u and v.

2.2 Reach

First introduced by Federer [21], the reach regularity parameter is defined as
follows. Given a closed subset A ⊂ RD, the medial axis Med(A) of A is the
subset of RD consisting of the points that have at least two nearest neighbors on
A. Namely, denoting by d(z,A) = infp∈A ‖p− z‖ the distance function to A,

Med(A) =
{
z ∈ RD|∃p 6= q ∈ A, ‖p− z‖ = ‖q − z‖ = d(z,A)

}
. (2.1)

The reach of A is then defined as the minimal distance from A to Med(A).

Definition 2.1. The reach of a closed subset A ⊂ RD is defined as

τA = inf
p∈A

d (p,Med(A)) = inf
z∈Med(A)

d (z,A) . (2.2)

Some authors refer to τ−1
A as the condition number [31, 32]. From the defini-

tion of the medial axis in (2.1), the projection πA(x) = arg minp∈A ‖p− x‖ onto
A is well defined outside Med(A). The reach is the largest distance ρ ≥ 0 such
that πA is well defined on the ρ-offset

{
x ∈ RD|d(x,A) < ρ

}
. Hence, the reach

condition can be seen as a generalization of convexity, since a set A ⊂ RD is
convex if and only if τA =∞.

In the case of submanifolds, one can reformulate the definition of the reach
in the following manner.

Theorem 2.2 (Theorem 4.18 in [21]). For all submanifolds M ⊂ RD,

τM = inf
q 6=p∈M

‖q − p‖2

2d(q − p, TpM)
. (2.3)

This formulation has the advantage of involving only points on M and its
tangent spaces, while (2.2) uses the distance to the medial axis Med(M), which
is a global quantity. The formula (2.3) will be the starting point of the estimator
proposed in this paper (see Section 4).
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Figure 1: Geometric interpretation of quantities involved in (2.3).

The ratio appearing in 2.3 can be interpreted geometrically, as suggested in
Figure 1. This ratio is the radius of an ambient ball, tangent to M at p and
passing through q. Hence, at a differential level, the reach gives a lower bound on
the radii of curvature of M . Equivalently, τ−1

M is an upper bound on the curvature
of M .

Proposition 2.3 (Proposition 6.1 in [31]). Let M ⊂ RD be a submanifold, and
γp,v an arc-length parametrized geodesic of M . Then for all t,∥∥γ′′p,v(t)∥∥ ≤ 1/τM .

In analogy with function spaces, the class
{
M ⊂ RD|τM ≥ τmin > 0

}
can be

interpreted as the H older space C2(1/τmin). In addition, as illustrated in Figure
2, the condition τM ≥ τmin > 0 also prevents bottleneck structures where M is
nearly self-intersecting. This idea will be made rigorous in Section 3.

τM

M

Med(M)

Figure 2: A narrow bottleneck structure yields a small reach τM .

2.3 Statistical Model and Loss

Let us now describe the regularity assumptions we will use throughout. To avoid
arbitrarily irregular shapes, we consider submanifolds M with their reach lower
bounded by τmin > 0. Since the parameter of interest τM is a C2-like quantity,
it is natural — and actually necessary, as we shall see in Proposition 2.9 — to
require an extra degree of smoothness. For example, by imposing an upper bound
on the third order derivatives of geodesics.

Definition 2.4. We letMd,D
τmin,L

denote the set of compact connected d-dimensional

submanifolds M ⊂ RD without boundary such that τM ≥ τmin, and for which
every arc-length parametrized geodesic γp,v is C3 and satisfies∥∥γ′′′p,v(0)

∥∥ ≤ L.
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It is important to note that any compact d-dimensional C3-submanifold M ⊂
RD belongs to such a classMd,D

τmin,L
, provided that τmin ≤ τM and that L is large

enough. Note also that since the third order condition
∥∥γ′′′p,v(0)

∥∥ ≤ L needs to
hold for all (p, v), we have in particular that

∥∥γ′′′p,v(t)∥∥ ≤ L for all t ∈ R. To our
knowledge, such a quantitative C3 assumption on the geodesic trajectories has
not been considered in the computational geometry literature.

Any submanifold M ⊂ RD of dimension d inherits a natural measure volM
from the d-dimensional Hausdorff measure Hd on RD [22, p. 171]. We will con-
sider distributions Q that have densities with respect to volM that are bounded
away from zero.

Definition 2.5. We let Qd,Dτmin,L,fmin
denote the set of distributions Q having sup-

portM ∈Md,D
τmin,L

and with a Hausdorff density f = dQ
dvolM

satisfying infx∈M f(x) ≥
fmin > 0 on M .

In order to focus on the geometric aspects of the reach, we will first consider
the case where tangent spaces are observed at all the sample points. We let Gd,D

denote the Grassmanian of dimension d of RD, that is the set of all d-dimensional
linear subspaces of RD.

Definition 2.6. For any distribution Q ∈ Qd,Dτmin,L,fmin
with support M we asso-

ciate the distribution P of the random variable (X,TXM) on RD ×Gd,D, where

X has distribution Q. We let Pd,Dτmin,L,fmin
denote the set of all such distributions.

Formally, one can write P (dx dT ) = δTxM (dT )Q(dx), where δ· denotes the
Dirac measure. An i.i.d. n-sample of P is of the form (X1, T1), . . . , (Xn, Tn) ∈
RD × Gd,D, where X1, . . . , Xn is an i.i.d. n-sample of Q and Ti = TXiM with
M = supp(Q). For a distribution Q with support M and associated distribution
P on RD ×Gd,D, we will write τP = τQ = τM , with a slight abuse of notation.

Note that the model does not explicitly impose an upper bound on τM . Such
an upper bound would be redundant, since the lower bound on fmin does impose
such an upper bound, as we now state in the following result. The proof relies
on a volume argument (Lemma A.2 in the Appendix, leading to a bound on the
diameter of M , and on a topological argument (Lemma A.5 in the Appendix to
link the reach and the diameter.

Proposition 2.7. Let M ⊂ RD be a connected closed d-dimensional manifold,
and let Q be a probability distribution with support M . Assume that Q has a
density f with respect to the Hausdorff measure on M such that infx∈M f(x) ≥
fmin > 0. Then,

τdM ≤
Cd
fmin

,

for some constant Cd > 0 depending only on d.

To simplify the statements and the proofs, we focus on a loss involving the
condition number. Namely, we measure the error with the loss

`(τ, τ ′) =

∣∣∣∣1τ − 1

τ ′

∣∣∣∣p , p ≥ 1. (2.4)

In other words, we will consider the estimation of the condition number τ−1
M

instead of the reach τM .
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Remark 2.8. For a distribution P ∈ Pd,Dτmin,L,fmin
, Proposition 2.7 asserts that

τmin ≤ τP ≤ τmax := (Cd/fmin)1/d. Therefore, in an inference set-up, we can
always restrict to estimators τ̂ within the bounds τmin ≤ τ̂ ≤ τmax. Consequently,

1

τ2p
max

|τP − τ̂ |p ≤
∣∣∣∣ 1

τP
− 1

τ̂

∣∣∣∣p ≤ 1

τ2p
min

|τP − τ̂ |p ,

so that the estimation of the reach τP is equivalent to the estimation of the
condition number τ−1

P , up to constants.

With the statistical framework developed above, we can now see explicitly
why the third order condition ‖γ′′′‖ ≤ L <∞ is necessary. Indeed, the following
Proposition 2.9 demonstrates that relaxing this constraint — i.e. setting L =∞
— renders the problem of reach estimation intractable. Its proof is to be found
in Section D.3 of the Appendix. Below, σd stands for the volume of the d-
dimensional unit sphere Sd.

Proposition 2.9. Given τmin > 0, provided that fmin ≤ (2d+1τdminσd)
−1, we

have for all n ≥ 1,

inf
τ̂n

sup
P∈Pd,Dτmin,L=∞,fmin

EPn
∣∣∣∣ 1

τP
− 1

τ̂n

∣∣∣∣p ≥ cp
τpmin

> 0,

where the infimum is taken over the estimators τ̂n = τ̂n (X1, T1, . . . , Xn, Tn).

Thus, one cannot expect to derive consistent uniform approximation bounds
for the reach solely under the condition τM ≥ τmin. This result is natural, since
the problem at stake is to estimate a differential quantity of order two. Therefore,
some notion of uniform C3 regularity is needed.

3 Geometry of the Reach

In this section, we give a precise geometric description of how the reach arises. In
particular, below we will show that the reach is determined either by a bottleneck
structure or an area of high curvature (Theorem 3.4). These two cases are referred
to as global reach and local reach, respectively. All the proofs for this section are
to be found in Section B of the Appendix.

Consider the formulation (2.2) of the reach as the infimum of the distance
between M and its medial axis Med(M). By definition of the medial axis (2.1),
if the infimum is attained it corresponds to a point z0 in Med(M) at distance τM
from M , which we call an axis point. Since z0 belongs to the medial axis of M ,
it has at least two nearest neighbors q1, q2 on M , which we call a reach attaining
pair (see Figure 3b). By definition, q1 and q2 belong to B(z0, τM ) and cannot be
farther than 2τM from each other. We say that (q1, q2) is a bottleneck of M in
the extremal case ‖q2 − q1‖ = 2τM of antipodal points of B(z0, τM ) (see Figure
3a). Note that the ball B(z0, τM ) meets M only on its boundary ∂B(z0, τM ).

Definition 3.1. Let M ⊂ RD be a submanifold with reach τM > 0.

• A pair of points (q1, q2) in M is called reach attaining if there exists z0 ∈
Med(M) such that q1, q2 ∈ B(z0, τM ). We call z0 the axis point of (q1, q2),
and ‖q1 − q2‖ ∈ (0, 2τM ] its size.
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• A reach attaining pair (q1, q2) ∈ M2 is said to be a bottleneck of M if its
size is 2τM , that is ‖q1 − q2‖ = 2τM .

As stated in the following Lemma 3.2, if a reach attaining pair is not a bot-
tleneck — that is ‖q1 − q2‖ < 2τM , as in Figure 3b —, then M contains an arc
of a circle of radius τM . In this sense, this “semi-local” case — when ‖q1 − q2‖
can be arbitrarily small — is not generic. Though, we do not exclude this case
in the analysis.

Lemma 3.2. Let M ⊂ RD be a compact submanifold with reach τM > 0. Assume
that M has a reach attaining pair (q1, q2) ∈ M2 with size ‖q1 − q2‖ < 2τM . Let
z0 ∈ Med(M) be their associated axis point, and write cz0(q1, q2) for the arc of
the circle with center z0 and endpoints as q1 and q2.

Then cz0(q1, q2) ⊂ M , and this arc (which has constant curvature 1/τM ) is
the geodesic joining q1 and q2.

In particular, in this “semi-local” situation, since τ−1
M is the norm of the second

derivative of a geodesic of M (the exhibited arc of the circle of radius τM ), the
reach can be viewed as arising from directional curvature.

Now consider the case where the infimum (2.2) is not attained. In this case,
the following Lemma 3.3 asserts that τM is created by curvature.

Lemma 3.3. Let M ⊂ RD be a compact submanifold with reach τM > 0. Assume
that for all z ∈Med(M), d(z,M) > τM . Then there exists q0 ∈M and a geodesic
γ0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
.

To summarize, there are three distinct geometric instances in which the reach
may be realized:

• (See Figure 3a) M has a bottleneck: by definition, τM originates from a
structure having scale 2τM .

• (See Figure 3b) M has a reach attaining pair but no bottleneck: then M
contains an arc of a circle of radius τM (Lemma 3.2), so that M actually
contains a zone with radius of curvature τM .

• (See Figure 3c) M does not have a reach attaining pair: then τM comes
from a curvature-attaining point (Lemma 3.3), that is a point with radius
of curvature τM .

From now on, we will treat the first case separately from the other two. We are
now in a position to state the main result of this section. It is a straightforward
consequence of Lemma 3.2 and Lemma 3.3.

Theorem 3.4. Let M ⊂ RD be a compact submanifold with reach τM > 0. At
least one of the following two assertions holds.

• (Global Case) M has a bottleneck (q1, q2) ∈ M2, that is, there exists z0 ∈
Med(M) such that q1, q2 ∈ ∂B(z0, τM ) and ‖q1 − q2‖ = 2τM .

• (Local Case) There exists q0 ∈ M and an arc-length parametrized geodesic
γ0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
.
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q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

(a) A bottleneck.

q1 q2

z0

τM

B(z0, τM )

‖q1 − q2‖ < 2τM

Med(M)M

(b) A non-bottleneck reach attaining pair.

q0

z0

τM

B(z0, τM )

Med(M)M

(c) Curvature-attaining point.

Figure 3: The different ways for the reach to be attained (Lemma 3.2 and Lemma
3.3).
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Let us emphasize the fact that the global case and the local case of Theorem
3.4 are not mutually exclusive. Theorem 3.4 provides a description of the reach
as arising from global and local geometric structures that, to the best of our
knowledge, is new. Such a distinction is especially important in our problem.
Indeed, the global and local cases may yield different approximation properties
and require different statistical analyses. However, since one does not know a
priori whether the reach arises from a global or a local structure, an estimator of
τM should be able to handle both cases simultaneously.

4 Reach Estimator and its Analysis

In this section, we propose an estimator τ̂(·) for the reach and demonstrate its
properties and rate of consistency under the loss (2.4). For the sake of clarity in
the analysis, we assume the tangent spaces to be known at every sample point.
This assumption will be relaxed in Section 6.

We rely on the formulation of the reach given in (2.3) (see also Figure 1), and
define τ̂ as a plugin estimator as follows: given a point cloud X ⊂M ,

τ̂(X) = inf
x 6=y∈X

‖y − x‖2

2d(y − x, TxM)
. (4.1)

In particular, we have τ̂(M) = τM . Since the infimum (4.1) is taken over a set
X smaller than M , τ̂(X) always overestimates τM . In fact, τ̂(X) is decreasing in
the number of distinct points in X, a useful property that we formalize in the
following result, whose proof is immediate.

Corollary 4.1. Let M be a submanifold with reach τM and Y ⊂ X ⊂ M be two
nested subsets. Then τ̂(Y) ≥ τ̂(X) ≥ τM .

We now derive the rate of convergence of τ̂ . We analyze the global case
(Section 4.1) and the local case (Section 4.2) separately. In both cases, we first
determine the performance of the estimator in a deterministic framework, and
then derive an expected loss bounds when τ̂ is applied to a random sample.

Respectively, the proofs for Section 4.1 and Section 4.2 are to be found in
Section C.1 and Section C.2 of the Appendix.

4.1 Global Case

Consider the global case, that is, M has a bottleneck structure (Theorem 3.4).
Then the infimum (2.3) is achieved at a bottleneck pair (q1, q2) ∈ M2. When X
contains points that are close to q1 and q2, one may expect that the infimum over
the sample points should also be close to (2.3): that is, that τ̂(X) should be close
to τM .

Proposition 4.2. Let M ⊂ RD be a submanifold with reach τM > 0 that has a
bottleneck (q1, q2) ∈M2 (see Definition 3.1), and X ⊂M . If there exist x, y ∈ X
with ‖q1 − x‖ < τM and ‖q2 − y‖ < τM , then

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})
≤ 9

2τ2
M

max {dM (q1, x), dM (q2, y)} .
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The error made by τ̂(X) decreases linearly in the maximum of the distances
to the critical points q1 and q2. In other words, the radius of the tangent sphere
in Figure 1 grows at most linearly in t when we perturb by t < τM its basis point
p = q1 and the point q = q2 it passes through.

Based on the deterministic bound in Proposition 4.2, we can now give an
upper bound on the expected loss under the model Pd,Dτmin,L,fmin

. We recall that,
throughout the paper, Xn = {X1, . . . , Xn} is an i.i.d. sample with common
distribution Q associated to P (see Definition 2.6).

Proposition 4.3. Let P ∈ Pd,Dτmin,L,fmin
and M = supp(P ). Assume that M has

a bottleneck (q1, q2) ∈M2 (see Definition 3.1). Then,

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] ≤ Cp,d,τM ,fmin
n−

p
d ,

where Cp,d,τM ,fmin
depends only on p,d,τM and fmin, and is a decreasing function

of τM .

Proposition 4.3 follows straightforwardly from Proposition 4.2 combined with
the fact that with high probability, the balls centered at the bottleneck points q1

and q2 with radii O(n−1/d) both contain a sample point of Xn.

4.2 Local Case

Consider now the local case, that is, there exists q0 ∈ M and v0 ∈ Tq0M such
that the geodesic γ0 = γq0,v0 has second derivative ‖γ′′0 (0)‖ = 1/τM (Theorem
3.4). Estimating τM boils down to estimating the curvature of M at q0 in the
direction v0.

We first relate directional curvature to the increment ‖y−x‖2
2d(y−x,TxM) involved in

the estimator τ̂ (4.1). Indeed, since the latter quantity is the radius of a sphere
tangent at x and passing through y (Figure 1), it approximates the radius of
curvature in the direction y − x when x and y are close. For x, y ∈ M , we
let γx→y denote the arc-length parametrized geodesic joining x and y, with the
convention γx→y(0) = x.

Lemma 4.4. Let M ∈ Md,D
τmin,L

with reach τM and X ⊂ M be a subset. Let
x, y ∈ X with dM (x, y) < πτM . Then,

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})
≤ 1

τM
−
∥∥γ′′x→y(0)

∥∥+
2

3
LdM (x, y).

Let us now state how directional curvatures are stable with respect to per-
turbations of the base point and the direction. We let κp denote the maximal
directional curvature of M at p ∈M , that is,

κp = sup
v∈BTpM (0,1)

∥∥γ′′p,v(0)
∥∥ .

Lemma 4.5. Let M ∈ Md,D
τmin,L

with reach τM and q0, x, y ∈ M be such that

x, y ∈ BM
(
q0,

πτM
2

)
. Let γ0 be a geodesic such that γ0(0) = q0 and ‖γ′′0 (0)‖ = κq0.

Write

θx := ∠(γ′0(0), γ′q0→x(0)), θy := ∠(γ′0(0), γ′q0→y(0)),
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and suppose that |θx − θy| ≥ π
2 . Then,∥∥γ′′x→y(0)

∥∥
≥ κq0 −

1√
2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2LdM (q0, x)

)
.

In particular, geodesics in a neighborhood of q0 with directions close to v0

have curvature close to 1
τM

. A point cloud X sampled densely enough in M
would contain points in this neighborhood. Hence combining Lemma 4.4 and
Lemma 4.5 yields the following deterministic bound in the local case.

Proposition 4.6. Under the same conditions as Lemma 4.5,

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2

3
dM (x, y) +

√
2√

2− 1
dM (q0, x)

)
.

In other words, since the reach boils down to directional curvature in the
local case, τ̂ performs well if it is given as input a pair of points x, y which are
close to the point q0 realizing the reach, and almost aligned with the direction
of interest v0. Note that the error bound in the local case (Proposition 4.6) is
very similar to that of the global case (Proposition 4.2) with an extra alignment
term sin2(|θx − θy|) . This alignment term appears since, in the local case, the
reach arises from directional curvature τM =

∥∥γ′′q0,v0(0)
∥∥ (Theorem 3.4). Hence,

it is natural that the accuracy of τ̂(X) depends on how precisely X samples the
neighborhood of q0 in the particular direction v0.

Similarly to the analysis of the global case, the deterministic bound in Propo-
sition 4.6 yields a bound on the risk of τ̂(Xn) when Xn = {X1, . . . , Xn} is random.

Proposition 4.7. Let P ∈ Pd,Dτmin,L,fmin
and M = supp(P ). Suppose there exists

q0 ∈M and a geodesic γ0 with γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

. Then,

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

where Cτmin,d,L,fmin,p depends only on τmin, d, L, fmin and p.

This statement follows from Proposition 4.6 together with the estimate of the
probability of two points being drawn in a neighborhood of q0 and subject to an
alignment constraint.

Proposition 4.3 and 4.7 yield a convergence rate of τ̂(Xn) which is slower in
the local case than in the global case. Recall that from Theorem 3.4, the reach
pertains to the size of a bottleneck structure in the global case, and to maxi-
mum directional curvature in the local case. To estimate the size of a bottleneck,
observing two points close to each point in the bottleneck gives a good approx-
imation. However, for approximating maximal directional curvature, observing
two points close to the curvature attaining point is not enough, but they should
also be aligned with the highly curved direction. Hence, estimating the reach may
be more difficult in the local case, and the difference in the convergence rates of
Proposition 4.3 and 4.7 accords with this intuition.

Finally, let us point out that in both cases, neither the convergence rates nor
the constants depend on the ambient dimension D.

11



5 Minimax Estimates

In this section we derive bounds on the minimax risk Rn of the estimation of the
reach over the class Pd,Dτmin,L,fmin

, that is

Rn = inf
τ̂n

sup
P∈Pd,Dτmin,L,fmin

EPn
∣∣∣∣ 1

τP
− 1

τ̂n

∣∣∣∣p , (5.1)

where the infimum ranges over all estimators τ̂n
(
(X1, TX1), . . . , (Xn, TXn)

)
based

on an i.i.d. sample of size n with the knowledge of the tangent spaces at sample
points.

The rate of convergence of the plugin estimator τ̂(Xn) studied in the previous
section leads to an upper bound on Rn, which we state here for completeness.

Theorem 5.1. For all n ≥ 1,

Rn ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

for some constant Cτmin,d,L,fmin,p depending only on τmin, d, L, fmin and p.

We now focus on deriving a lower bound on the minimax risk Rn. The method
relies on an application of Le Cam’s Lemma [34]. In what follows, let

TV
(
P, P ′

)
=

1

2

∫
|dP − dP ′|

denote the total variation distance between P and P ′, where dP, dP ′ denote
the respective densities of P, P ′ with respect to any dominating measure. Since
|x−z|p+ |z−y|p ≥ 21−p|x−y|p , the following version of Le Cam’s lemma results
from Lemma 1 in [34] and (1− TV (Pn, P ′n)) ≥ (1− TV (P, P ′))n.

Lemma 5.2 (Le Cam’s Lemma). Let P, P ′ ∈ Pd,Dτmin,L,fmin
with respective supports

M and M ′. Then for all n ≥ 1,

Rn ≥
1

2p

∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣p (1− TV (P, P ′)
)n
.

Lemma 5.2 implies that in order to derive a lower bound on Rn one needs
to consider distributions (hypotheses) in the model that are stochastically close
to each other — i.e. with small total variation distance — but for which the
associated reaches are as different as possible. A lower bound on the minimax
risk over Pd,Dτmin,L,fmin requires the hypotheses to belong to the class. Luckily, in
our problem it will be enough to construct hypotheses from the simpler class
Qd,Dτmin,L,fmin

. Indeed, we have the following isometry result between Qd,Dτmin,L,fmin

and Pd,Dτmin,L,fmin for the total variation distance, as proved in Section D.2 in the
Appendix.

Lemma 5.3. In accordance with the notation of Definition 2.6, let Q,Q′ ∈
Qd,Dτmin,L,fmin

be distributions on RD with associated distributions P, P ′ ∈ Pd,Dτmin,L,fmin,

on RD ×Gd,D. Then,
TV

(
P, P ′

)
= TV

(
Q,Q′

)
.
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In order to construct hypotheses in Qd,Dτmin,L,fmin
we take advantage of the fact

that the class Md,D
τmin,L

has good stability properties, which we now describe.
Here, since submanifolds do not have natural parametrizations, the notion of
perturbation can be well formalized using diffeomorphisms of the ambient space
RD ⊃ M . Given a smooth map Φ : RD → RD, we denote by dixΦ its differential
of order i at x. Given a tensor field A between Euclidean spaces, let ‖A‖op =
supx ‖Ax‖op, where ‖Ax‖op is the operator norm induced by the Euclidean norm.
The next result states, informally, that the reach and geodesics third derivatives
of a submanifold that is perturbed by a diffeomorphism that is C3-close to the
identity map do not change much. The proof of Proposition 5.4 can be found in
Section D.3 of the Appendix.

Proposition 5.4. Let M ∈ Md,D
τminL

be fixed, and let Φ : RD → RD be a global

C3-diffeomorphism. If ‖ID − dΦ‖op,
∥∥d2Φ

∥∥
op

and
∥∥d3Φ

∥∥
op

are small enough, then

M ′ = Φ(M) ∈Md,D
τmin

2
,2L

.

M ′

M

Figure 4: Hypotheses of Proposition 5.5.

Now we construct the two hypotheses Q,Q′ as follows (see Figure 4). Take
M to be a d-dimensional sphere and Q to be the uniform distribution on it. Let
M ′ = Φ(M), where Φ is a bump-like diffeomorphism having the curvature of
M ′ to be different of that of M in some small neighborhood. Finally, let Q′ be
the uniform distribution on M ′. The proof of Proposition 5.5 is to be found in
Section D.3 of the Appendix.

Proposition 5.5. Assume that L ≥ (2τ2
min)−1 and fmin ≤ (2d+1τdminσd)

−1.

Then for ` > 0 small enough, there exist Q,Q′ ∈ Qd,Dτmin,L,fmin
with respective

supports M and M ′ such that∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣ ≥ cd `

τ2
min

and TV
(
Q,Q′

)
≤ 12

(
`

2τmin

)d
.

Hence, applying Lemma 5.2 with the hypotheses P, P ′ associated to Q,Q′ of
Proposition 5.5, and taking 12 (`/2τmin)d = 1/n, together with Lemma 5.3, yields
the following lower bound.

Proposition 5.6. Assume that L ≥ (2τ2
min)−1 and fmin ≤ (2d+1τdminσd)

−1.
Then for n large enough,

Rn ≥
cd,p
τpmin

n−p/d,

where cd,p depends only on d and p.
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Here, the assumptions on the parameters L and fmin are necessary for the
model to be rich enough. Roughly speaking, they ensure at least that a sphere
of radius 2τmin belongs to the model.

From Proposition 5.6, the plugin estimation τ̂(Xn) provably achieves the op-
timal rate in the global case (Theorem 4.3) up to numerical constants. In the
local case (Theorem 4.7) the rate obtained presents a gap, yielding a gap in the
overall rate. As explained above (Section 4.2), the slower rate in the local case
is a consequence of the alignment required in order to estimate directional cur-
vature. Though, let us note that in the one-dimensional case d = 1, the rate of
Proposition 5.6 matches the convergence rate of τ̂(Xn) (Theorem 5.1). Indeed, for
curves, the alignment requirement is always fulfilled. Hence, the rate is exactly
n−p for d = 1, and τ̂(Xn) is minimax optimal.

Here, again, neither the convergence rate nor the constant depend on the
ambient dimension D.

6 Towards Unknown Tangent Spaces

So far, in our analysis we have used the key assumption that both the point cloud
and the tangent spaces were jointly observed. We now focus on the more realistic
framework where only points are observed. We once again rely on the formulation
of the reach given in Theorem 2.3 and consider a new plug-in estimator in which
the true tangent spaces are replaced by estimated ones. Namely, given a point
cloud X ⊂ RD and a family T = {Tx}x∈X of linear subspaces of RD indexed by
X, the estimator is defined as

τ̂(X, T ) = inf
x 6=y∈X

‖y − x‖2

2d(y − x, Tx)
. (6.1)

In particular, τ̂(X) = τ̂(X, TXM), where TXM = {TxM}x∈X. Adding uncertainty
on tangent spaces in (6.1) does not change drastically the estimator as the formula
is stable with respect to T . We state this result quantitatively in the following
Proposition 6.1, the proof of which can be found in Section E of the Appendix. In
what follows, the distance between two linear subspaces U, V ∈ Gd,D is measured
with their principal angle ‖πU − πV ‖op.

Proposition 6.1. Let X ⊂ RD and T = {Tx}x∈X, T̃ = {T̃x}x∈X be two families
of linear subspaces of RD indexed by X. Assume X to be δ-sparse, T and T̃ to be
θ-close, in the sense that

inf
x 6=y∈X

‖y − x‖ ≥ δ and sup
x∈X
‖Tx − T̃x‖op ≤ sin θ.

Then, ∣∣∣∣ 1

τ̂(X, T )
− 1

τ̂(X, T̃ )

∣∣∣∣ ≤ 2 sin θ

δ
.

In other words, the map T 7→ τ̂(X, T )−1 is smooth, provided that the basis
point cloud X contains no zone of accumulation at a too small scale δ > 0. As a
consequence, under the assumptions of Proposition 6.1, the bounds on

∣∣τ̂(X)−1−
τM
−1
∣∣ of Proposition 4.2 and Proposition 4.6 still hold with an extra error term

2 sin θ/δ if we replace τ̂(X) by τ̂(X, T ).
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For an i.i.d. point cloud Xn asymptotic rates of tangent space estimation
derived in C3-like models can be found in [13, 32, 2], yielding bounds on sin θ.
In that case, the typical scale of minimum interpoint distance is δ � n−2/d,
as stated in the asymptotic result Theorem 2.1 in [27] for the flat case of Rd.
However, the typical covering scale of M used in the global case (Theorem 4.3)
is ε � (1/n)1/d. It appears that we can sparsify the point cloud Xn — that is,
removing accumulation points — while preserving the covering property at scale
ε = 2δ � (log n/n)1/d. This can be performed using the farthest point sampling
algorithm [1, Section 3.3]. Such a sparsification pre-processing allows to lessen
the possible instability of τ̂(Xn, ·)−1. Though, whether the alignment property
used in the local case (Theorem 4.7) is preserved under sparsification remains to
be investigated.

7 Conclusion and Open Questions

In the present work, we gave new insights on the geometry of the reach. Inference
results were derived in both deterministic and random frameworks. For i.i.d.
samples, non-asymptotic minimax upper and lower bounds were derived under
assumptions on the third order derivative of geodesic trajectories. Let us conclude
with some open questions.

• The minimax upper and lower bounds given in Theorem 5.1 and Theorem
5.6 do not match. They are yet to be sharpened.

• In practice, since large reach ensures regularity, one may be interested with
having a lower bound on the reach τM . Giving the limiting distribution of
the statistic τ̂(Xn) would allow to derive asymptotic confidence intervals
for τM .

• Other regularity parameters such as local feature size [10] and λ-reach [12]
could be relevant to estimate, as they are used as tuning parameters in
computational geometry techniques.
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Table of Notation

Cα,β, cα,β, C
′
α,β, c

′
α,β Constant depending on the parameters α, β

D Ambient dimension
d Manifold dimension
TxM Tangent space of M at x
τM , τQ, τP Reach of M = Supp(Q) = Supp(P )
τmin Prescribed lower bound on τM
L Prescribed third order derivative bound on geodesics
Hd d-dimensional Hausdorff measure on RD
volM Volume measure of M ⊂ RD
f Density with respect to the volume measure
fmin Prescribed lower bound on f
λM Uniform probability distribution on M , i.e. f = Hd(M)−1

Md,D
τmin,L

Geometric model

Qd,Dτmin,L,fmin Statistical Model with unknown tangent spaces

Q,Q′ Element of Qd,Dτmin,L,fmin
Pd,Dτmin,L,fmin Statistical Model with known tangent spaces

P, P ′ Element of Pd,Dτmin,L,fmin
Supp(·) Support of a distribution
‖·‖ Euclidean norm
〈·, ·〉 Euclidean inner product
B(x, r) Closed Euclidean ball
γp,v Geodesic passing through p with direction v
γx→y Geodesic joining x to y with γx→y(0) = x
dM (·, ·) Geodesic distance
BM (p, s) Closed Geodesic ball
d(·, A) Distance to a subset A ⊂ RD
πM Projection map onto M
Med(·) Medial axis
dxΦ · h Differential at x in the direction h
d2
xΦ, d3

xΦ Higher order differentials
‖·‖op Operator norm

A Some Technical Results on the Model

A.1 Metric Properties

This section garners geometric lemmas on embedded manifolds in the Euclidean
space that are related to the reach, and that will be used several times in the
proofs.

Proposition A.1. Let M ⊂ RD be a submanifold with reach τM > 0.

(i) For all p ∈ M , we let IIp denote the second fundamental form of M at x.
Then for all unit vector v ∈ TpM , ‖IIp(v, v)‖ ≤ 1

τM
.

(ii) The injectivity radius of M is at least πτM .

(iii) The sectional curvatures κ of M satisfy − 2
τ2M
≤ κ ≤ 1

τ2M
.
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(iv) For all p ∈ M , the map expp :
◦
BTpM (0, πτM ) →

◦
BM (0, πτM ) is a diffeo-

morphism. Moreover, for all ‖v‖ < πτM
2
√

2
and w ∈ TpM ,(

1− ‖v‖
2

6τ2
M

)
‖w‖ ≤

∥∥dv expp ·w
∥∥ ≤ (1 +

‖v‖2

τ2
M

)
‖w‖

(v) For all p ∈ M and r ≤ πτM
2
√

2
, given any Borel set A ⊂ BTpM (0, r) ⊂ TpM

we have(
1− r2

6τ2
M

)d
Hd(A) ≤ Hd(expp(A)) ≤

(
1 +

r2

τ2
M

)d
Hd(A).

(vi) Let γ be a geodesic at p ∈ M , and Pt the parallel transport operator along
γ. Then for all t < πτM and v ∈ TpM ,

∠(Pt(v), v) ≤ t

τM
.

Proof of Proposition A.1. (i) is stated in Proposition 2.1 in [31], yielding (ii) from
Corollary 1.4 in [3]. (iii) follows using (i) again and the Gauss equation [19, p.
130]. (iv) is derived from (iii) by a direct application of Lemma 8 in [20]. (v)
follows from (iv) and Lemma 6 in [5]. All that remain to be showed is (vi).

For this, assume without loss of generality that ‖v‖ = 1. Let g : [0, t]→ Sd−1

be defined by g(s) = Ps(v). Let u ∈ RD be a unit vector and denoting by ∇̄ the
ambient derivative. We may write〈

g′(s), u
〉

=
〈
∇̄γ′(s)Ps(w), u

〉
=
〈
II(γ′(s), Ps(w)), u

〉
.

Hence ‖g′(s)‖ ≤ 1
τM

for all s ∈ [0, t]. Since g is a curve on Sd−1, this implies

∠(Pt(v), v) = dSd−1(γ(t), γ(0)) ≤
∫ t

0

∥∥g′(s)∥∥ ds ≤ t

τM
.

A.2 Comparing Reach and Diameter

Let us prove Proposition 2.7. For this aim, we first state the following analogous
bound on the (Euclidean) diameter.

Lemma A.2 (Lemma 2 in [1]). Let M ⊂ RD be a connected closed d-dimensional
manifold, and let Q be a probability distribution having support M with a density
f ≥ fmin with respect to the Hausdorff measure on M . Then,

diam(M) ≤ Cd

τd−1
M fmin

,

for some constant Cd > 0 depending only on d.

Proposition A.3. If K ⊂ RD is not homotopy equivalent to a point,

τK ≤

√
D

2(D + 1)
diam(K).
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Proof of Proposition A.3. Follows from a straightforward combination of Lemma
A.4 and Lemma A.5.

We recall that for two compact subsets A,B ⊂ RD, the Hausdorff distance
[11, p. 252] between them is defined by

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
.

We denote by conv(·) the closed convex hull of a set.

Lemma A.4. For all K ⊂ RD, dH (K, conv(K)) ≤
√

D
2(D+1)diam(K).

Proof of Lemma A.4. It is a straightforward corollary of Jung’s Theorem 2.10.41
in [22], which states that K is contained in a (unique) closed ball with (minimal)

radius at most
√

D
2(D+1)diam(K).

Lemma A.5. If K ⊂ RD is not homotopy equivalent to a point, τK ≤ dH (K, conv(K)).

Proof of Lemma A.5. Let us prove the contrapositive. For this, assume that
τK > dH (K, conv(K)). Then,

conv(K) ⊂
⋃
x∈K
B (x, dH (K, conv(K))) ⊂

⋃
x∈K

◦
B (x, τK) ⊂Med(K)c.

Therefore, the map πK : conv(K) → K is well defined and continuous, so that
K is a retract of conv(K) (see Chapter 0 in [26]). Therefore, K is homotopy
equivalent to a point, since the convex set conv(K) is.

We are now in position to prove Proposition 2.7.

Proof of Proposition 2.7. From Theorem 3.26 in [26], M has a non trivial homol-
ogy group of dimension d over Z/2Z, so that it cannot be homotopy equivalent
to a point. Therefore, Proposition A.3 yields τM ≤ diam(M), and we conclude
by applying the bound diam(M) ≤ Cd/(τd−1

M fmin) given by Lemma A.2.

B Geometry of the Reach

For M ⊂ RD, a ∈M , and v ∈ RD a non-zero vector, we define the local directional
reach by

τM (a, v) = inf
{
d(x,M)|x ∈Med(M) with x = a+ tv for some t ≥ 0

}
,

with the convention τM (a, v) =∞ if Med(M) ∩ {a+ tv|t ≥ 0} = ∅.

Lemma B.1. (i) For x /∈Med(M)∪M , writing a = πM (x), we have τM (a, x−
a) > 0, and for all b ∈M ,

〈x− a, a− b〉 ≥ −‖a− b‖
2 ‖x− a‖

2τM (a, x− a)
.
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(ii) Let 0 < r < q < ∞ be fixed. Let x, y /∈ Med(M) ∪ M be such that
d(x,M) ∨ d(y,M) ≤ r and

τM (πM (x), x− πM (x)) ∧ τM (πM (y), y − πM (y)) ≥ q.

Then,

‖πM (x)− πM (y)‖ ≤ q

q − r
‖x− y‖ .

Proof of Lemma B.1. The proof of (i) follows that of Theorem 4.8 (7) in [21]. Let
v = x−a

‖x−a‖ and S = {t|πM (a+ tv) = a}. As ‖x− a‖ > 0 belongs to S, supS > 0

and from [21, Theorem 4.8 (6)] we get supS ≥ τM (a, v). Moreover, for 0 < t ∈ S,

‖a+ tv − b‖ ≥ d(a+ tv,M) = t.

Developing and rearranging the square of previous inequality yields

‖a− b‖2 + 2t 〈v, a− b〉+ t2 ≥ t2,
2t 〈v, a− b〉 ≥ −‖a− b‖2 ,

〈x− a, a− b〉 ≥ −‖a− b‖
2 ‖x− a‖
2t

.

On the other hand, the proof of (ii) follows that of Theorem 4.8 (8) in [21].
Writing a = πM (x) and b = πM (y), the previous point yields

〈x− a, a− b〉 ≥ −‖a− b‖
2 r

2q
and 〈y − b, b− a〉 ≥ ‖a− b‖

2 r

2q
.

As a consequence,

‖x− y‖ ‖a− b‖ ≥ 〈x− y, a− b〉
= 〈(x− a) + (a− b) + (b− y), a− b〉

≥ ‖a− b‖2
(

1− r

q

)
,

hence the result.

Lemma B.2. Let M ⊂ RD be a submanifold with reach τM > 0 having a reach
attaining pair (q1, q2) ∈M2 such that ‖q1 − q2‖ < 2τM . Write z0 ∈Med(M) for
the associated axis point. Then there exists a sequence of curves {γn}n∈N of M
joining q1 and q2 with

lim
n→∞

Length(γn) = τM∠(q1 − z0, q2 − z0).

Proof of Lemma B.2. Without loss of generality, assume that z0 coincides with
the origin. Let cz0(q1, q2) be the circle arc of center z0 with endpoints q1 and q2,
and let γ : [−t0, t0]→ cz0(q1, q2) be its arc length parametrization with γ(−t0) =
q1 and γ(t0) = q2. Let θ := ∠(q1−z0, q2−z0). Since ‖q1 − z0‖ = ‖q2 − z0‖ = τM ,

we have t0 = 1
2τMθ. For all t ∈ [−t0, t0], let rt :=

√
τ2
M −

‖q1−q2‖2
4 / cos

(
t
τM

)
,
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q1 q2

z0

τM

< 2τM

cz0(q1, q2)

hn(t)

γn(t)

r0
n

γ̃(t)

Figure 5: Layout of the proof of Lemma B.2.

and let γ̃ : [−t0, t0] → RD be γ̃(t) = rt
τM
γ(t). Let us show that for all r ∈ (0, r0]

and t ∈ [−t0, t0], the following holds:

◦
B
(
r

τM
γ(t), r

)
⊂

◦
B (γ̃(t), rt) ⊂

◦
B (q1, τM ) ∪

◦
B (q2, τM ) . (B.1)

The left-hand side inclusion of (B.1) being straightforward, we turn to the second
inclusion. First, note that by definition,

γ̃(t) =

1

2
−

tan
(

t
τM

)
2 tan

(
t0
τM

)
 q1 +

1

2
+

tan
(

t
τM

)
2 tan

(
t0
τM

)
 q2

for all t ∈ [−t0, t0]. Hence,

γ̃(t)− γ̃(0) =
tan

(
t
τM

)
2 tan

(
t0
τM

)(q2 − q1), (B.2)

and from tan
(
t0
τM

)
= ‖q1−q2‖

2r0
, we get ‖γ̃(t)− γ̃(0)‖ = r0 tan

(
t
τM

)
. Now suppose

that x ∈
◦
B (γ̃(t), rt), then

‖x− γ̃(t)‖2 < r2
t . (B.3)

Then,

‖x− γ̃(t)‖2 = ‖x− γ̃(0)‖2 − 2 〈x− γ̃(0), γ̃(t)− γ̃(0)〉+ ‖γ̃(t)− γ̃(0)‖2 ,

and r2
t = r2

0 +r2
0 tan2

(
t
τM

)
= r2

0 +‖γ̃(t)− γ̃(0)‖2, hence applying these and (B.2)

to (B.3) implies

‖x− γ̃(0)‖2 −
tan

(
t
τM

)
tan

(
t0
τM

) 〈x− γ̃(0), q2 − q1〉 < r2
0. (B.4)
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Now applying γ̃(−t0) = q1 to (B.2) gives q1 − γ̃(0) = −1
2(q2 − q1), so

‖x− q1‖2 = ‖x− γ̃(0)‖2 + 2 〈x− γ̃(0), q1 − γ̃(0)〉+ ‖q1 − γ̃(0)‖2

= ‖x− γ̃(0)‖2 − 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2 .

Similarly,

‖x− q2‖2 = ‖x− γ̃(0)‖2 + 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2 ,

and hence

min
{
‖x− q1‖2 , ‖x− q2‖2

}
= ‖x− γ̃(0)‖2 − |〈x− γ̃(0), q2 − q1〉|+

1

4
‖q1 − q2‖2 . (B.5)

Since
∣∣∣tan

(
t0
τM

)∣∣∣ ≥ ∣∣∣tan
(

t
τM

)∣∣∣, applying (B.4) to (B.5) gives

min
{
‖x− q1‖2 , ‖x− q2‖2

}
≤ ‖x− γ̃(0)‖2 −

tan
(

t
τM

)
tan

(
t0
τM

) 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2

< r2
0 +

1

4
‖q1 − q2‖2 = τ2

M ,

which asserts the second inclusion in (B.1).

Now, by definition of the reach in (2.2),
( ◦
B(q1, τM ) ∪

◦
B(q2, τM )

)
∩Med(M) =

∅, hence (B.1) implies

◦
B
(
r

τM
γ(t), r

)
∩Med(M) = ∅.

For all n ∈ N, let us now define hn, γn : [−t0, t0]→M by (See Figure 5),

hn(t) =
r0

nτM
γ (t) and γn(t) = πM (hn(t)) .

Then for any fixed n ∈ N and t1, t2 ∈ [−t0, t0] such that |t1 − t2| < τM , from
◦
B
(
hn(ti),

r0
n

)
∩Med(M) = ∅, we get

τM (γn(ti), hn(ti)− γn(ti)) ≥ d (hn(ti),M) +
r0

n

≥ d(hn(t1),M) ∧ d(hn(t2),M) +
r0

n
,

and since d(hn(ti),M) ≤ d(hn(t1),M) ∨ d(hn(t2),M), Lemma B.1 (ii) yields

‖γn(t1)− γn(t2)‖ = ‖πM (hn(t1))− πM (hn(t2))‖

≤
(
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n

)
‖hn(t1)− hn(t2)‖

d (hn(t1),M) ∧ d (hn(t2),M) + r0
n − d (hn(t1),M) ∨ d (hn(t2),M)

=
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n
r0
n − |d(hn(t1),M)− d(hn(t2),M)|

‖hn(t1)− hn(t2)‖ .
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Noticing furthermore that

|d(hn(t1),M)− d(hn(t2),M)| ≤ ‖hn(t1)− hn(t2)‖ ≤ r0

nτM
|t1 − t2| ,

and
d(hn(ti),M) ≤ d(z0,M) + ‖hn(ti)− z0‖ ≤ τM +

r0

n
,

we get

‖γn(t1)− γn(t2)‖ ≤
τM + 2 r0n

r0
n −

r0
nτM
|t1 − t2|

r0

nτM
|t1 − t2|

=
τM + 2 r0n

τM − |t1 − t2|
|t1 − t2|.

For any fixed k and 0 ≤ j ≤ k, set tk,j = 2j−k
k t0. The inequality above yields,

k∑
j=1

‖γn(tk,j)− γn(tk,j−1)‖ ≤
τM + 2 r0n
τM − 2t0

k

2t0,

so

Length(γn) = lim sup
k

k∑
j=1

‖γn(tk,j)− γn(tk,j−1)‖ ≤
(

1 +
2r0

τMn

)
2t0.

Moreover, the γn’s are curves joining q1 to q2 with images γn([−t0, t0]) ⊂ RD \
◦
B(z0, τM ), so that their lengths are at most that of the arc of great circle cz0(q1, q2),
that is

Length (γn) ≥ Length (cz0(q1, q2)) = 2t0.

Hence,
lim
n→∞

Length(γn) = 2t0 = τMθ.

Lemma B.3. Let M be a compact manifold, and q1, q2 ∈ M with q1 6= q2. Let
(γn)n∈N be a sequence of curves on M joining q1 and q2 such that supn Length(γn) <
∞ Then there exists a curve γ on M joining q1 and q2 such that

lim inf
n→∞

Length(γn) ≤ Length(γ) ≤ lim sup
n→∞

Length(γn).

Proof of Lemma B.3. Without loss of generality, we take the γn’s to be arc length
parametrized. For all n ∈ N, we let gn : [0, 1] → M be the reparametrization
gn(t) = γn (Length(γn)t) . Notice that for all t ∈ [0, 1], the set (gn(t))n∈N is
contained in the compact set M , so that it is bounded uniformly in t. Moreover,
writing K = supn Length(γn) <∞, we have that for all t1, t2 ∈ [0, 1],

‖gn(t1)− gn(t2)‖ = ‖γn (Length(γn)t1)− γn (Length(γn)t2)‖
≤ Length(γn)|t1 − t2|
≤ K|t1 − t2|.
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Hence, the sequence (gn)n∈N is pointwise bounded and equicontinuous. From
Arzelà-Ascoli theorem [30, Theorem 45.4], there exists a curve γ : [0, 1]→M and
subsequence (gni)i∈N converging uniformly to γ.

For any fixed k and 1 ≤ j ≤ k, set tk,j = j/k. The (pointwise) convergence
of (gni)i towards γ ensures that

k−1∑
j=0

‖γ(tk,j+1)− γ(tk,j)‖ = lim
i→∞

k−1∑
j=0

‖gni(tk,j+1)− gni(tk,j)‖ .

Furthermore, from the uniform convergence of (gni)i towards γ on the compact
set [0, 1],

Length(γ) = lim
k→∞

k−1∑
j=0

‖γ(tk,j+1)− γ(tk,j)‖

= lim
k→∞

lim
i→∞

k−1∑
j=0

‖gni(tk,j+1)− gni(tk,j)‖

= lim
i→∞

Length(gni) = lim
i→∞

Length(γni),

hence the result.

Proof of Lemma 3.2. Combining Lemma B.2 and Lemma B.3 provides the exis-
tence of a curve γ ⊂M joining q1 and q2 such that Length(γ) = Length(cz0(q1, q2)).

But M ⊂ RD \
◦
B(z0, τM ), and since ‖q1 − q2‖ < 2τM , cz0(q1, q2) is the unique

minimizing geodesic of ∂B(z0, τM ) ⊂ RD \
◦
B(z0, τM ) joining q1 and q2. Therefore,

γ = cz0(q1, q2) ⊂M , hence the result.

Lemma B.4. Let M ∈Md,D
τmin,L

be a submanifold with reach τM . For all p ∈M ,
let us denote

Lp := sup
q∈BM (p,τM/2)
v∈BTqM (0,1)

∥∥γ′′′q,v(0)
∥∥ .

Then for all r ≤ τM/2,∣∣∣∣∣ sup
v∈TpM,‖v‖=1

∥∥γ′′p,v(0)
∥∥− sup

q∈B(p,r)∩M

2d(q − p, TpM)

‖q − p‖2

∣∣∣∣∣ ≤ 3

(
1

τ2
M

+ Lp

)
r.

To prove Lemma B.4 we need the following straightforward result.

Lemma B.5. Let U be a linear space and u ∈ U , n ∈ U⊥. If v = u+n+ e, then

|d(v, U)− ‖v − u‖ | ≤ ‖e‖ .

Proof of Lemma B.4. First note that for all unit vector v ∈ TpM , γp,v(r) belongs
to B(p, r) ∩ M and, whenever 0 < r ≤ τM

2 , Proposition A.1 (ii) ensures that
γp,v(r) 6= p. Therefore, it suffices to show that for all q ∈ B(p, r)∩M , there exists
a unit tangent vector v ∈ TpM such that∣∣∣∣∥∥γ′′p,v(0)

∥∥− 2d(q − p, TpM)

‖q − p‖2

∣∣∣∣ ≤ 3

(
1

τ2
M

+ Lp

)
r.
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Let q ∈ B(p, r) ∩ M be different from p. Denoting t = dM (p, q) > 0, we let
γ = γp→q be the arc-length parametrized geodesic of minimal length such that
γ(0) = p and γ(t) = q. γ exists from Proposition A.1 (ii) since r ≤ τM

2 < πτM .
We will show that v = γ′(0) provides the desired bound.

First, a Taylor expansion at zero of γ yields,∥∥∥∥q − pt − γ′(0)− t

2
γ′′(0)

∥∥∥∥ ≤ Lp t26 .
Since γ′′(0) ∈ TpM⊥, Lemma B.5 shows that∣∣∣∣d(q − pt , TpM

)
−
∥∥∥∥q − pt − γ′(0)

∥∥∥∥∣∣∣∣ ≤ Lp t26 .
Therefore,∣∣∣∣2t d

(
q − p
t

, TpM

)
−
∥∥γ′′(0)

∥∥∣∣∣∣
≤ 2

t

(∣∣∣∣d(q − pt , TpM

)
−
∥∥∥∥q − pt − γ′(0)

∥∥∥∥∣∣∣∣+

∥∥∥∥q − pt − γ′(0)− t

2
γ′′(0)

∥∥∥∥)
≤ 2

3
Lpt.

This yields,∣∣∣∣2d(q − p, TpM)

‖q − p‖2
−
∥∥γ′′(0)

∥∥∣∣∣∣ ≤ 2d(q − p, TpM)

∣∣∣∣ 1

dM (p, q)2
− 1

‖q − p‖2

∣∣∣∣+
2

3
Lpt.

Moreover, from ‖q − p‖ ≤ dM (p, q) and Proposition 6.3 in [31], we derive

‖q − p‖2 ≤ dM (p, q)2 ≤ τ2
M

1−

√
1− 2 ‖q − p‖

τM

2

≤ τ2
M

(
‖q−p‖
τM

)2

(
1− 2‖q−p‖

τM

)3/2

≤ ‖q − p‖2

1− 3‖q−p‖τM

,

where the last two inequalities follow from elementary real analysis arguments.
Therefore, we get t ≤ 2 ‖q − p‖ and∣∣∣∣ 1

dM (p, q)2
− 1

‖q − p‖2

∣∣∣∣ ≤ 3

τM ‖q − p‖
.

Finally, using (2.3) we derive,∣∣∣∣∥∥γ′′(0)
∥∥− 2d(q − p, TpM)

‖q − p‖2

∣∣∣∣ ≤ 2d(q − p, TpM)
3

τM ‖q − p‖
+

4

3
Lp ‖q − p‖

≤ 3

τ2
M

‖q − p‖+
4

3
Lp ‖q − p‖

≤ 3

(
1

τ2
M

+ Lp

)
r.
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Proof of Lemma 3.3. For r > 0, let ∆r :=
{

(p, q) ∈M2| ‖p− q‖ < r
}

, and ∆̄ =
∩r>0∆r denote the diagonal of M2. Consider the map ϕ : M2 \ ∆̄ → R defined
by ϕ(p, q) = 2d(q − p, TpM)/‖q − p‖2. From (2.3), if there exists p 6= q ∈M such
that ϕ(p, q) = τM

−1, then there exists z ∈ Med(M) with d(z,M) = τM . Hence,
for all p 6= q ∈ TpM , ϕ(p, q) < τ−1

M , and by compactness of M2\∆r, we have
supM2\∆r

ϕ < τ−1
M . Since we have the decomposition

1

τM
= sup

(p,q)∈M2\∆̄
ϕ(p, q) = max

{
sup

(p,q)∈M2\∆r

ϕ(p, q), sup
(p,q)∈∆r\∆̄

ϕ(p, q)

}
,

we get sup∆r\∆̄ ϕ = τ−1
M . Moreover, Lemma B.4 implies that∣∣∣∣∣∣∣ sup

p∈M
v∈TpM,‖v‖=1

∥∥γ′′p,v(0)
∥∥− sup

(p,q)∈∆r\∆̄
ϕ(p, q)

∣∣∣∣∣∣∣ ≤ 3

(
1

τ2
M

+ L

)
r

for r > 0 small enough. Letting r go to zero yields

sup
p∈M

v∈TpM,‖v‖=1

∥∥γ′′p,v(0)
∥∥ =

1

τM
.

Finally, the unit tangent bundle T (1)M = {(p, v), p ∈M,v ∈ TpM, ‖v‖ = 1} be-
ing compact, there exists (q0, v0) ∈ T (1)M such that γ0 = γp0,v0 satisfies ‖γ′′0 (0)‖ =
τ−1
M , which concludes the proof.

C Analysis of the Estimator

C.1 Global Case

To show Proposition 4.2, we show a stronger result (Proposition C.1) that applies
to a reach attaining pair with any size 2λ (see Definition 3.1), meaning that it is
not necessarily a bottleneck.

Proof of Proposition 4.2. Follows by applying Proposition C.1 with λ = τM .

Proposition C.1. Let M ⊂ RD be a submanifold, and 0 < λ ≤ τM . Assume that
M has a reach attaining pair (q1, q2) ∈M2 (see Definition 3.1) with ‖q1 − q2‖ ≥
2λ. Let X ⊂ M . If there exists x, y ∈ X with ‖q1 − x‖ < λ and ‖q2 − y‖ < λ,
then

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y})
≤ CτM ,λ max {dM (q1, x), dM (q2, y)} ,

where CτM ,λ =
2τ2M+6τMλ+λ2

2τ2Mλ
2 depends only on the parameters τM , λ, and is a

decreasing function of τM and λ when the other parameter is fixed.

Proof of Proposition C.1. The two left hand inequalities are a direct consequence
of Corollary 4.1, let us then focus on the third one.

Without loss of generality, assume that ‖q1 − q2‖ = 2λ. We set t to be equal
to max {dM (q1, x), dM (q2, y)}, and z1 := x + (q2 − q1). We have ‖z1 − x‖ =
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‖q2 − q1‖ = 2λ and ‖y − q2‖ , ‖q1 − x‖ ≤ t. Therefore, from the definition of τ̂ in
(4.1) and the fact that the distance function to a linear space is 1-Lipschitz, we
get

1

τ̂({x, y})
≥ 2d(y − x, TxM)

‖y − x‖2

=
2d ((y − q2) + (z1 − x) + (q1 − x), TxM)

‖(y − q2) + (z1 − x) + (q1 − x)‖2

≥ d(z1 − x, TxM)− 2t

2(λ+ t)2
.

Let now θ := ∠(q2 − q1, Tq1M) = minv∈Tq1M ∠(q2 − q1, v). Since z0 ∈ Med(M),
with q1, q2 ∈ B(z0, τM ) and ‖q1 − q2‖ = 2λ, for any v′ such that v′ ⊥ z0 − q1, we

have ∠(q2−q1, v
′) ≥ π

2−∠(q2−q1, z0−q1). Hence, sin θ ≥ λ
τM

and cos θ ≤
√
τ2M−λ2
τM

.
Let v1 ∈ Tq1M be any point in Tq1M realizing this angle, in the sense that
∠(q2 − q1, v1) = ∠(q2 − q1, Tq1M). Then we have

∠(z1 − x, v1) = ∠(q2 − q1, v1) = θ.

Let v̄1 ∈ TxM be the parallel transport of v1 along the geodesic between q1 and
x. Since M has reach τM , Proposition A.1 (vi) gives

∠(v1, v̄1) ≤ dM (x, q1)

τM
≤ t

τM
.

Hence the angle ∠(z1 − x, TxM) can be lower bounded as

∠(z1 − x, TxM) ≥ ∠(z1 − x, v̄1)

≥ ∠(z1 − x, v)− ∠(v, v̄1)

≥ θ − t

τM
.

And 0 ≤ λ
τM
− t

τM
≤ θ− t

τM
≤ ∠(z1−x, TxM) ≤ π

2 , so the inequality is preserved
by the sine function, i.e.

d(z1 − x, TxM) = ‖z1 − x‖ sin(∠(z1 − x, TxM))

≥ 2λ sin

(
θ − t

τM

)
= 2λ

(
sin θ cos

t

τM
− cos θ sin

t

τM

)

=
2λ2

τM
cos

t

τM
−

2λ
√
τ2
M − λ2

τM
sin

t

τM
.

Combining the previous bounds yields,

1

τM
− 1

τ̂({x, y})
≤ 1

τM
− d(z1 − x, TxM)− 2t

2(λ+ t)2

≤ 1

τM
−

1
τM

cos t
τM
−
√
τ2M−λ2
τMλ

sin t
τM
− t

λ2(
1 + t

λ

)2 .
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Using again that t < λ ≤ τM , the latter right-hand side term is itself upper
bounded by,

1

τM
−

 1

τM

(
1− t2

2τ2
M

)
−

√
τ2
M − λ2

τMλ

t

τM
− t

λ2

(1− 2t

λ

)

≤

 λ

2τ3
M

+

√
τ2
M − λ2

τ2
Mλ

+
1

λ2
+

2

λτM

 t

=
2τ3
M + 2λτM

√
τ2
M − λ2 + 4τ2

Mλ+ λ3

2τ3
Mλ

2
t

≤
2τ2
M + 6τMλ+ λ2

2τ2
Mλ

2
t := CτM ,λt,

which is the announced result.

As for Proposition 4.2, we tackle the proof of Proposition 4.3 by showing
the following stronger one, Proposition C.2 that contains an extra parameter
0 < λ ≤ τM .

Proof of Proposition 4.3. Follows by applying Proposition C.2 with λ = τM .

Proposition C.2. Let P ∈ Pd,Dτmin,L,fmin
, M = supp(P ) and 0 < λ ≤ τM . As-

sume that M has a reach attaining pair (q1, q2) ∈ M2 (see Definition 3.1) with
‖q1 − q2‖ ≥ 2λ. Then

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] ≤ CτM ,λ,fmin,d,pn− pd ,
where CτM ,λ,fmin,d,p depends only on τM , λ, fmin d, p, and is a decreasing function
of τM and λ when other parameters are fixed.

Proof of Proposition C.2. Let Q be the distribution on RD associated to P . Let

s < 1
τM

, CτM ,λ =
2τ2M+6τMλ+λ2

2τ2Mλ
2 , and t = 1

CτM ,λ
s ≤ 2τM/9. Let ωd := Hd(BRd(0, 1))

be the volume of the d-dimensional unit ball. Then note that from Proposition
A.1 (v), for all q ∈M ,

Q (BM (p, t)) ≥ fminHd (BM (p, t))

≥ ωdfmin

(
1−

(
t

6τM

)2
)d

td

≥ ωdfmin
(

728

729

)d
td.

Moreover, Proposition 4.2 asserts that
∣∣∣ 1
τM
− 1

τ̂(Xn)

∣∣∣ > s implies that either

27



BM (q1, t) ∩ Xn = ∅ or BM (q2, t) ∩ Xn = ∅. Hence,

P
(∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣ > s

)
≤ P (BM (q1, t) ∩ Xn = ∅) + P (BM (q2, t) ∩ Xn = ∅)

≤ 2

(
1− ωdfmin

(
728

729

)d
td

)n

≤ 2 exp

(
−nωdfmin

(
728

729

)d
C−dτM ,λs

d

)
.

The integration of the above bound gives

EPn
[∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p] =

∫ 1

τ
p
M

0
P
(∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣p > s

)
ds

≤ 2

∫ ∞
0

exp

(
−nωdfmin

(
728

729

)d
C−dτM ,λs

d
p

)
ds

=
2
(

729
728

) p
d CpτM ,λ

(nωdfmin)
p
d

∫ ∞
0

x
p
d
−1e−xdx

:= CτM ,λ,fmin,d,pn
− p
d .

where CτM ,λ,fmin,d,p depends only on τM , λ, fmin, d, p, and is a decreasing function
of τM and λ when other parameters are fixed.

C.2 Local Case

Lemma C.3. Let M be a submanifold and p ∈ M . Let v0, v1 ∈ TpM be a unit
tangent vector, and let θ = ∠(v0, v1). Let γp,v be the arc length parametrized
geodesic starting from p with velocity v, and write γi = γp,vifor i = 0, 1. Let
κp = maxv∈BTpM (0,1)

∥∥γ′′p,v(0)
∥∥. Then,

∥∥γ′′1 (0)
∥∥ ≥ ∥∥γ′′0 (0)

∥∥− √
2√

2− 1
sin2 θ

(
κp +

∥∥γ′′0 (0)
∥∥)− 1√

2− 1

(
κp −

∥∥γ′′0 (0)
∥∥) ,
(C.1)

and ∥∥γ′′1 (0)
∥∥ ≥ ∥∥γ′′0 (0)

∥∥− sin2 θ
(
κp +

∥∥γ′′0 (0)
∥∥)

−
|cos θ sin θ|κp

√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

(
2κp
‖γ′′0 (0)‖

+ 1

)
. (C.2)

Proof of Lemma C.3. Let w ∈ TpM be a unit vector satisfying w ⊥ v0 and
v1 = cos θv0 + sin θw. For t ∈ R, let v(t) := (cos t)v0 + (sin t)w ∈ TpM , so that
v1 = v(θ). Then∥∥d2

0 expp(v(t), v(t))
∥∥ =

∥∥cos2 td2
0 expp(v0, v0) + 2 cos t sin td2

0 expp(v0, w)

+ sin2 td2
0 expp(w,w)

∥∥
≥ |cos t|

∥∥cos td2
0 expp(v0, v0) + 2 sin td2

0 expp(v0, w)
∥∥

− sin2 t
∥∥d2

0 expp(w,w)
∥∥ . (C.3)
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Now, note that when x ∈ [−1, 1],
√

1 + x ≥ 1 +f(x), where f(x) = min{x, (
√

2−
1)x}. Hence for any v′, v′′ ∈ TpM ,

∥∥v′ + v′′
∥∥ =

√
‖v′‖2 + ‖v′′‖2

√
1 +

2 〈v′, v′′〉
‖v′‖2 + ‖v′′‖2

≥
√
‖v′‖2 + ‖v′′‖2

(
1 + f

(
2 〈v′, v′′〉

‖v′‖2 + ‖v′′‖2

))

≥
∥∥v′∥∥+ f

 2 〈v′, v′′〉√
‖v′‖2 + ‖v′′‖2

 .

Applying the latter inequality to (C.3) and using d2
0 expp(v0, v0) = γ′′0 (0) together

with
∥∥d2

0 expp(w,w)
∥∥ ≤ κp gives∥∥d2

0 expp(v(t), v(t))
∥∥

≥ cos2 t
∥∥d2

0 expp(v0, v0)
∥∥− sin2 t

∥∥d2
0 expp(w,w)

∥∥
+ | cos t|f

 4 cos t sin t
〈
d0 expp(v0, v0), d0 expp(v0, w)

〉√
cos2 t

∥∥d2
0 expp(v0, v0)

∥∥2
+ 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2


≥ cos2 t

∥∥γ′′0 (0)
∥∥− κp sin2 t

+ | cos t|f

 4 cos t sin t
〈
γ′′0 (0), d0 expp(v0, w)

〉√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2

 .

Now, note that f(x) ≥ −|x| for x ∈ [−1, 1], so applying this with t = θ gives∥∥γ′′1 (0)
∥∥ =

∥∥d2
0 expp(v1, v1)

∥∥
≥ cos2 θ

∥∥γ′′0 (0)
∥∥− sin2 θκp

−
4
∣∣cos2 θ sin θ

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣√
cos2 θ ‖γ′′0 (0)‖2 + 4 sin2 θ

∥∥d2
0 expp(v0, w)

∥∥2
. (C.4)

We now focus on the third term of the right-hand side. For this, note that either

t sin t〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,

or

cos(−t) sin(−t)〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,

so that

κp ≥ max
{∥∥d2

0 expp(v(−t), v(−t))
∥∥ ,∥∥d2

0 expp(v(t), v(t))
∥∥}

≥ cos2 t
∥∥γ′′0 (0)

∥∥+
4(
√

2− 1)
∣∣cos2 t sin t

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2

− sin2 tκp.
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As a consequence, ∣∣cos2 t sin t
〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣√
cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t

∥∥d2
0 expp(v0, w)

∥∥2

≤ 1

4(
√

2− 1)

(
(1 + sin2 t)κp − cos2 t

∥∥γ′′0 (0)
∥∥)

=
1

4(
√

2− 1)

(
cos2 t

(
κp −

∥∥γ′′0 (0)
∥∥)+ 2 sin2 tκp

)
.

First, setting t = θ, we derive∥∥γ′′1 (0)
∥∥

≥ cos2 θ
∥∥γ′′0 (0)

∥∥− (1 +
2√

2− 1

)
sin2 θκp −

1√
2− 1

cos2 θ
(
κp −

∥∥γ′′0 (0)
∥∥)

=
∥∥γ′′0 (0)

∥∥− √
2√

2− 1
sin2 θ

(
κp +

∥∥γ′′0 (0)
∥∥)− 1√

2− 1

(
κp −

∥∥γ′′0 (0)
∥∥) .

Furthermore, let t0 be defined by sin2 t0 = 1− ‖γ
′′
0 (0)‖
κp

+ ε for ε > 0 small enough.

Then
√

cos2 t0 ‖γ′′0 (0)‖2 + 4 sin2 t0
∥∥d2

0 expp(v0, w)
∥∥2 ≤ κp, yielding∣∣〈γ′′0 (0), d0 expp(v0, w)

〉∣∣
≤

√
κp

4(
√

2− 1) cos2 t0| sin t0|
(
cos2 t0

(
κp −

∥∥γ′′0 (0)
∥∥)+ 2 sin2 t0κp

)

=
κ

3
2
p

4(
√

2− 1)

 1− ‖γ
′′
0 (0)‖
κp√

1− ‖γ
′′
0 (0)‖
κp

+ ε

+
2

√
1− ‖γ

′′
0 (0)‖
κp

+ ε

‖γ′′0 (0)‖
κp

− ε

 .

Sending ε→ 0, we obtain

∣∣〈γ′′0 (0), d0 expp(v0, w)
〉∣∣ ≤ κp

√
κp − ‖γ′′0 (0)‖

4(
√

2− 1)

(
2κp
‖γ′′0 (0)‖

+ 1

)
.

Using the previous bound together with

cos2 θ
∥∥γ′′0 (0)

∥∥2
+ 4 sin2 θ

∥∥d2
0 expp(v0, w)

∥∥2 ≥ |cos θ|
∥∥γ′′0 (0)

∥∥ ,
we finally obtain∥∥γ′′1 (0)

∥∥ ≥ ∥∥γ′′0 (0)
∥∥− sin2 θ

(
κp +

∥∥γ′′0 (0)
∥∥)

−
|cos θ sin θ|κp

√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

(
2κp
‖γ′′0 (0)‖

+ 1

)
.

Proof of Lemma 4.4. First note that from Proposition A.1 (ii), dM (x, y) < πτM
ensures the existence and uniqueness of the geodesic γx→y. The two left hand
inequalities are a direct consequence of Corollary 4.1. Let us then focus on the
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third one. Let t0 := dM (x, y), and write γ = γx→y for short. By definition of τ̂
in (4.1),

1

τ̂({x, y})
≥ 2d(y − x, TxM)

‖y − x‖2
≥ 2d(y − x, TxM)

t20
. (C.5)

Let Hγ′′(0) := {x+ u ∈ RD|
〈
u, γ′′x→y(0)

〉
= 0} denote the affine hyperplane with

normal vector γ′′(0) that contain x. Since γ′′(0) ∈ TxM⊥, TxM ⊂ Hγ′′(0). As a
consequence,

d (y − x, TxM) ≥ d
(
y − x,Hγ′′(0)

)
=
|〈γ′′(0), y − x〉|
‖γ′′(0)‖

. (C.6)

Using the Taylor expansion of γ at order two, we get

y − x = γ(t0)− γ(0) = t0γ
′(0) +

∫ t0

0

∫ t

0
γ′′(s)dsdt. (C.7)

Since γ is parametrized by arc length, 〈γ′(t), γ′(t)〉 = 1. Differentiating this

identity at 0 yields 〈γ′′(0), γ′(0)〉 = 0. In addition, by definition of Md,D
τmin,L

3M
(Definition 2.4), the geodesic γ satisfies ‖γ′′(s)− γ′′(0)‖ ≤ L|s|. Therefore,∣∣〈γ′′(0), γ′′(s)

〉∣∣ =
∣∣〈γ′′(0), γ′′(0)

〉
−
〈
γ′′(0), γ′′(s)− γ′′(0)

〉∣∣
≥ ||γ′′(0)||2 − L||γ′′(0)|||s|.

Combining the above bound together with (C.5), (C.6) and (C.7), we derive

1

τ̂({x, y})
≥
∥∥γ′′(0)

∥∥− 2

3
Lt0,

which is the announced inequality.

Proof of Lemma 4.5. For short, in what follows, we let tx := dM (q0, x), ty :=
dM (q0, y), and θ := ∠(γ′x→y(0), γ′x→q0(0)) = π−∠(γ′x→y(0), γ′q0→x(tx)) (see Figure
6). From (C.1) in Lemma C.3,

∥∥γ′′x→y(0)
∥∥ ≥ ∥∥γ′′q0→x(tx)

∥∥− √
2√

2− 1
sin2 θ

(
κx +

∥∥γ′′q0→x(tx)
∥∥)

− 1√
2− 1

(
κx −

∥∥γ′′q0→x(tx)
∥∥)

=

√
2√

2− 1
cos2 θ

∥∥γ′′q0→x(tx)
∥∥−( 1√

2− 1
+

√
2√

2− 1
sin2 θ

)
κx. (C.8)

We now focus on the term
∥∥γ′′q0→x(tx)

∥∥. Since θx = ∠(γ′0(0), γ′q0→x(0)), applying
(C.2) in Lemma C.3 yields∥∥γ′′q0→x(0)

∥∥ ≥ (1− 2 sin2 θx)κq0 ,

and since γ′′q0→x is L-Lipschitz,∥∥γ′′q0→x(tx)
∥∥ ≥ ∥∥γ′′q0→x(0)

∥∥− ∥∥γ′′q0→x(tx)− γ′′q0→x(0)
∥∥

≥ (1− 2 sin2 θx)κq0 − Ltx. (C.9)
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θx

θ

q0

x

θy
γ′0(0)

γq0→yγq0→x

γx→y

y

Figure 6: Layout of Lemma 4.5.

Now we focus on bounding the terms sin2 θ and cos2 θ. Let S2
τM

be a d-
dimensional sphere of radius τM . In what follows, for short, ∠abc stands for
∠(γ′b→a(0), γ′b→c(0)). First, let q̃0, x̃, ỹ ∈ S2

τM
be such that dS2τM

(q̃0, x̃) = dM (q0, x),

dS2τM
(q̃0, ỹ) = dM (q0, y), and ∠x̃q̃0ỹ = ∠xq0y. Then from Toponogov’s compari-

son theorem (see [28]), we have dS2τM
(x̃, ỹ) ≤ dM (x, y). Moreover, the spherical

law of cosines [9, Proposition 18.6.8] yields

cos

(
dS2τM

(x̃, ỹ)

τM

)
= cos

(
tx
τM

)
cos

(
ty
τM

)
+ sin

(
tx
τM

)
sin

(
ty
τM

)
cos (∠x̃q̃0ỹ) ,

and since tx, ty ≤ π
2 and cos(·) is decreasing on [0, π], we get

ty ≤ dS2τM (x̃, ỹ) ≤ dM (x, y).

Now, let q̄0, x̄, ȳ ∈ S2
τM

be such that dS2τM
(q̄0, x̄) = dM (q0, x), dS2τM

(q̄0, ȳ) =

dM (q0, y), and dS2τM
(x̄, ȳ) = dM (x, y). Applying Toponogov’s comparison the-

orem (see [28]), we have ∠q0xy ≤ ∠q̄0x̄ȳ and ∠xq0y ≤ ∠x̄q̄0ȳ, and from the
spherical law of cosines [9, Proposition 18.6.8],

cos (∠q̄0x̄ȳ) =
cos
(
ty
τM

)
− cos

(
tx
τM

)
cos
(
dM (x,y)
τM

)
sin
(
tx
τM

)
sin
(
dM (x,y)
τM

) ≥ 0,

so that ∠q0xy ≤ ∠q̄0x̄ȳ ≤ π
2 . Also, ∠xq0y ≥ |θx − θy| ≥ π

2 yields π
2 ≤ ∠xq0y ≤

∠x̄q̄0ȳ, and θ = ∠(γ′x→y(0), γ′q0→x(tx)) = π−∠q0xy. Hence applying the spherical
law of sines and cosines [9, Proposition 18.6.8] yields

sin θ = sin(∠q0xy) ≤ sin(∠q̄0x̄ȳ)

=
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

1−
(

cos
(
tx
τM

)
cos
(
ty
τM

)
+ sin

(
tx
τM

)
sin
(
ty
τM

)
cos(∠x̄q̄0ȳ)

)2

≤
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

1− cos2
(
tx
τM

)
cos2

(
ty
τM

)
=

sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)√

sin2
(
ty
τM

)
+ sin2

(
tx
τM

)
cos2

(
ty
τM

)
≤ sin(∠x̄q̄0ȳ) ≤ sin(∠xq0y) ≤ sin(|θx − θy|). (C.10)
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S1

γ′0(0)√
t0
τmin

t0

u0

exp−1q0 (B1)exp−1q0 (B2)

Figure 7: Layout of the proof of Proposition 4.7.

And accordingly,

| cos θ| =
√

1− sin2 θ ≥
√

1− sin2(|θx − θy|) = | cos(|θx − θy|)|. (C.11)

Hence applying (C.9), (C.10), and (C.11) to (C.8) gives∥∥γ′′x→y(0)
∥∥

≥
√

2√
2− 1

cos2(|θx − θy|)
(
(1− 2 sin2 θx)κq0 − Ltx

)
−

(
1√

2− 1
+

√
2√

2− 1
sin2(|θx − θy|)

)
κx

=
(
√

2κq0 − κx)√
2− 1

−
√

2√
2− 1

(
(κq0 + κx) sin2(|θx − θy|) + 2κq0 sin2 θx cos2(|θx − θy|)

)
−
√

2√
2− 1

Ltx cos2(θx + θy)

≥ κq0 −
1√

2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2Ltx

)
.

Proof of Proposition 4.7. In what follows, we let t0 ≤ τmin
10 ,

B1 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≤

√
t0
τmin

})
,

B2 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≥ π −

√
t0
τmin

})
,

and B0 := B1 ∪ B2 (see Figure 7). Let X ⊂ M , and x, y ∈ X be such that
x ∈ B1, y ∈ B2. Writing θx := ∠(γ′0(0), γ′q0→x(0)) and θy := ∠(γ′0(0), γ′q0→y(0)),

then θx ≤
√

t0
τmin

≤ π
4 and θy ≥ π −

√
t0
τmin

≥ 3π
4 . Also, dM (q0, x) ≤ t0 and
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dM (x, y) ≤ 2t0, so that

0 ≤ 1

τM
− 1

τ̂(X)

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2

3
dM (x, y) +

√
2√

2− 1
dM (q0, x)

)

≤

(
16
√

2

(
√

2− 1)τminτM
+

(7
√

2− 4)L

3(
√

2− 1)

)
t0.

A symmetric argument also applies when x ∈ B2 and y ∈ B1. Now, for any

s < 1
τM

, let t0(s) :=
(

16
√

2
(
√

2−1)τ2min

+ (7
√

2−4)L

3(
√

2−1)

)−1
s < τmin

10 . The above argument

implies that if
∣∣∣ 1
τM
− 1

τ̂(X)

∣∣∣ > s, then for any x, y ∈ X∩B0, one has either x, y ∈ B1

or x, y ∈ B2. Hence,

P
(∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣ > s

)
≤

n∑
m=0

(
n

m

){
P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B1)

+ P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B2)
}

=
n∑

m=0

(
n

m

){
(1−Q(B0))mQ(B1)n−m + (1−Q(B0))mQ(B2)n−m

}
≤ (1−Q(B2))n + (1−Q(B1))n. (C.12)

Let us derive lower bounds for Q(B1) and Q(B2). For this purpose, let S1 :=
exp−1

q0 (B1) ∩ ∂BTq0M (0, t0) (see Figure 7). Then exp−1
q0 (B1) ⊂ BTq0M (0, t0) is a

cone satisfying

Hd
(
exp−1

q0 (B1)
)

Hd
(
BTq0M (0, t0)

) =
Hd−1 (S1)

Hd−1
(
∂BTq0M (0, t0)

) .
Let ωd := Hd(BRd(0, 1)) and σd := Hd(∂BRd+1(0, 1)) be the volumes of the d-
dimensional unit ball and the unit sphere respectively. Then by homogeneity,
Hd
(
BTq0M (0, t0)

)
= ωdt

d
0 and Hd−1

(
∂BTq0M (0, t0)

)
= σd−1t

d−1
0 . To derive a

lower bound on Hd−1 (S1), consider u0 := t0γ
′
0(0) ∈ S1. Since τS1 = t0 and

exp−1
u0 (S1) ⊂ BTu0S1

(
0, τ
− 1

2
mint

3
2
0

)
, applying Proposition A.1 (v) yields

Hd−1 (S1) ≥
(

1− t0
6τmin

)d−1

Hd−1

(
BTu0S1

(
0, τ
− 1

2
mint

3
2
0

))
≥
(

59

60

)d−1

ωd−1τ
− d−1

2
min t

3d−3
2

0 ,

and hence

Hd−1
(
exp−1

q0 (B1)
)

=
Hd
(
BTq0M (0, t0)

)
Hd−1 (S1)

Hd−1
(
∂BTq0M (0, t0)

)
≥
(

59

60

)d−1 ωd−1

d
τ
− d−1

2
min t

3d−1
2

0 .

34



Finally, since exp−1
q0 (B1) ⊂ BTq0M (q0,

τM
10 ), Proposition A.1 (v) yields

Hd (B1) ≥
(

599

600

)d
Hd
(
exp−1

q0 (B1)
)
≥
(

35341

36000

)d 1

d
τ
− d−1

2
min t

3d−1
2

0 ,

and hence,

Q(B1) ≥
(

35341

36000

)d fmin

d
τ
− d−1

2
min t

3d−1
2

0 ≥ Cτmin,d,L,fmin
s

3d−1
2 .

By symmetry, the same bound holds for Q(B2). Applying these bounds to (C.12)
gives

P
(∣∣∣∣ 1

τM
− 1

τ̂(Xn)

∣∣∣∣ > s

)
≤ 2

(
1− Cτmin,d,L,fmin

s
3d−1

2

)n
≤ 2 exp

(
−Cτmin,d,L,fmin

ns
3d−1

2

)
.

As a consequence, by integration,

EPn
[∣∣∣∣ 1

τ̂(Xn)
− 1

τM

∣∣∣∣p] =

∫ 1

τ
p
M

0
P
(∣∣∣∣ 1

τ̂(Xn)
− 1

τM

∣∣∣∣p > s

)
ds

≤ 2

∫ ∞
0

exp
(
−Cτmin,d,L,fmin

ns
3d−1
2p

)
ds

= 2 (Cτmin,d,L,fmin
n)−

2p
3d−1

∫ ∞
0

x
2p

3d−1 e−xdx

:= Cτmin,d,L,fmin,pn
− 2p

3d−1 .

D Minimax Lower Bounds

D.1 Stability of the model with respect to diffeomorphism

To prove Proposition 5.4, we will use the following result stating that the reach
is a stable quantity with respect to C2-perturbations.

Lemma D.1 (Theorem 4.19 in [21]). Let A ⊂ RD with τA ≥ τmin > 0 and
Φ : RD −→ RD is a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz
with Lipschitz constants K,N and R respectively, then

τΦ(A) ≥
τmin

(K +Rτmin)N2
.

Proof of Proposition 5.4. Let M ′ = Φ (M) be the image of M by the mapping
Φ. Since Φ is a global diffeomorphism, M ′ is a closed submanifold of dimension
one. Moreover, Φ is ‖dΦ‖op ≤ (1 + ‖dΦ− ID‖op)-Lipschitz, Φ−1 is

∥∥dΦ−1
∥∥
op
≤

(1− ‖dΦ− ID‖op)−1-Lipschitz, and dΦ is
∥∥d2Φ

∥∥
op

-Lipschitz. From Lemma D.1,

τM ′ ≥
τmin(1− ‖dΦ− ID‖op)2

‖d2Φ‖op τmin + (1 + ‖dΦ− ID‖op)
≥ τmin/2,
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where we used that
∥∥d2Φ

∥∥
op
τmin ≤ 1/2 and ‖dΦ− ID‖op ≤ 0.1. All that remains

to be proved now is the bound on the third order derivative of the geodesics of
M ′. We denote by γ and γ̃ the geodesics of M and M ′ respectively.

Let p′ = Φ(p) ∈ M ′ and v′ = dpΦ.v ∈ Tp′M ′ be fixed. Since M ∈ Md,D
τmin,L

is

a compact C3-submanifold with geodesics ‖γ′′′(0)‖ ≤ L, M can be parametrized
locally by a C3 bijective map Ψp : BRd(0, ε)→M with Ψp(0) = p. For a smooth
curve γ on M nearby p, we let c = (c1, . . . , cd)

t denote its lift in the coordinates
x = Ψ−1

p , that is γ(t) = Ψp ◦ c(t). γ = γp,v is the geodesic of M with initial
conditions p and v if and only if c satisfies the geodesic equations (see [19] p.62).
That is, the second order ordinary differential equation{

c′′` (t) +
〈
Γ` (c(t)) · c′(t), c′(t)

〉
= 0, (1 ≤ ` ≤ d)

c(0) = 0 and c′(0) = dpx.v,
(D.1)

where Γ` =
(
Γ`i,j
)

1≤i,j≤d are the Christoffel symbols of the C3 chart x, which

depends only on x and its differentials of order 1 and 2. By construction, M ′

is parametrized locally by Ψ′p′ = Φ ◦ Ψp yielding local coordinates y = Ψ′−1
p′ =

Ψ−1
p ◦Φ−1 nearby p′ ∈M ′. Writing Γ̃` for the Christoffel’s symbols of M ′, γ̃ is a

geodesic of M ′ at p′ if its lift c̃ = Ψ′−1
p′ (γ̃) satisfies (D.1) with Γ` replaced by Γ̃`,

and initial conditions c̃(0) = c and c̃′(0) = dp′y.v
′ = dpx.v. From chain rule, the

Γ̃`’s depend on Γ, dΦ, and d2Φ.
Write c′′′(0) − c̃′′′(0) by differentiating (D.1): since c(0) = c̃(0) = 0 and

c′′(0) = c̃′′(0), we get that for ‖ID − dΦ‖op,
∥∥d2Φ

∥∥
op

and
∥∥d3Φ

∥∥
op

small enough,

‖c′′′(0)− c̃′′′(0)‖ can be made arbitrarily small. In particular, γ̃′′′(0) gets arbi-
trarily close to γ′′′(0), so that ‖γ̃′′′(0)‖ ≤ ‖γ′′′(0)‖+L ≤ 2L, which concludes the
proof.

D.2 Some Lemmas on the Total Variation Distance

Prior to any actual construction, we show this straighforward lemma bounding
the total variation between uniform distribution on manifolds that are perturba-
tions of each other. For M ⊂ RD, write λM = 1MHd/Hd(M) for the uniform
probability distribution on M .

Lemma D.2. Let M ⊂ RD be a d-dimensional submanifold and B ⊂ RD be
a Borel set. Let Φ : RD → RD be a global diffeomorphism such that Φ|Bc is

the identity map and ‖dΦ− ID‖op ≤ 21/d − 1. Then Hd(Φ(M)) ≤ 2Hd(M) and

TV
(
λM , λΦ(M)

)
≤ 12λM (B).

Proof of Lemma D.2. Since Φ is (1 + ‖dΦ− ID‖op)-Lipschitz, Lemma 7 of [5]
asserts that

Hd (Φ(M ∩B)) ≤ (1 + ‖dΦ− ID‖op)
dHd(M ∩B) ≤ 2Hd(M ∩B).

Therefore,

Hd (Φ(M))−Hd(M) = Hd (Φ(M ∩B))−Hd (M ∩B)

≤ Hd(M ∩B) ≤ Hd(M).
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Now, writing 4 for the symmetric difference of sets, we have M4Φ(M) = (B ∩
M)4(B ∩ Φ(M)) ⊂ (B ∩M) ∪ (B ∩ Φ(M)). Therefore, Lemma 7 in [5] yields,

TV
(
λM , λΦ(M)

)
≤ 4
Hd (M4Φ(M))

Hd(M ∪ Φ(M))

≤ 4
Hd (M ∩B) +Hd (Φ(M) ∩B)

Hd(M)

= 4
Hd (M ∩B) +Hd (Φ(M ∩B))

Hd(M)

≤ 12
Hd(M ∩B)

Hd(M)
= 12λM (B).

Let us now tackle the proof of Lemma 5.3. For this, we will need the following
elementary differential geometry results Lemma D.3 and Corollary D.4.

Lemma D.3. Let g : Rd → Rk be C1 and x ∈ Rd be such that g(x) = 0 and
dxg 6= 0. Then there exists r > 0 such that Hd

(
g−1(0) ∩ B(x, r)

)
= 0.

Proof of Lemma D.3. Let us prove that for r > 0 small enough, the intersection
g−1(0)∩B(x, r) is contained in a submanifold of codimension one of Rd. Writing
g = (g1, . . . , gk), assume without loss of generality that ∂x1g1 6= 0. Since g1 :
Rd → R is nonsingular at x, the implicit function theorem asserts that g−1

1 (0) is
a submanifold of dimension d− 1 of Rd in a neighborhood of x ∈ Rd. Therefore,
for r > 0 small enough, g−1

1 (0) ∩ B(x, r) has d-dimensional Hausdorff measure
zero. The result hence follows, noticing that g−1(0) ⊂ g−1

1 (0).

Corollary D.4. Let M,M ′ ⊂ RD be two compact d-dimensional submanifolds,
and x ∈ M ∩M ′. If TxM 6= TxM

′, there exists r > 0 such that A = M ∩M ′ ∩
B(x, r) satisfies λM (A) = λM ′(A) = 0.

Proof of Corollary D.4. Writing k = D − d, we see that up to ambient diffeo-
morphism — which preserves the nullity of measure — we can assume that
locally around x, M ′ coincides with Rd × {0}k and that M is the graph of a
C∞ function g : BRd(0, r′) → Rk for r′ > 0 small enough. The assumption
TxM 6= TxM

′ translates to d0g 6= 0, and the previous transformation maps
smoothly M ∩M ′ ∩ B(x, r′′) to g−1(0) ∩ B(0, r′) for r′′ > 0 small enough. We
conclude by applying Lemma D.3.

We are now in position to prove Lemma 5.3.

Proof of Lemma 5.3. Notice that Q and Q′ are dominated by the measure µ =
1M∪M ′Hd, with dQ(x) = f(x)dµ(x) and dQ′(x) = f ′(x)dµ(x), where f, f ′ :
RD → R+ have support M and M ′ respectively. On the other hand, P and P ′

are dominated by ν(dx dT ) = δ{TxM,TxM ′} (dT )µ (dx) with respective densities
f̄(x, T ) = 1T=TxMf(x) and f̄ ′(x, T ) = 1T=TxM ′f

′(x), where we set arbitrarily
TxM = T0 for x /∈ M , and TxM

′ = T0 for x /∈ M ′. Recalling that f vanishes
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outside M and f ′ outside M ′,

TV (P, P ′) =
1

2

∫
RD×Gd,D

|f̄ − f̄ ′|dν

=
1

2

∫
RD

1TxM=TxM ′ |f(x)− f ′(x)|+ 1TxM 6=TxM ′(f(x) + f ′(x))Hd(dx).

From Corollary D.4 and a straightforward compactness argument, we derive that

Hd
(
M ∩M ′ ∩

{
x|TxM 6= TxM

′}) = 0.

As a consequence, the above integral expression becomes

TV (P, P ′) =
1

2

∫
RD
|f − f ′|dHd = TV (Q,Q′),

which concludes the proof.

D.3 Construction of the hypotheses

This section is devoted to the construction of hypotheses that will be used in Le
Cam’s lemma (Lemma 5.2), to derive Proposition 2.9 and Theorem 5.6.

Lemma D.5. Let R, `, η > 0 be such that ` ≤ R
2 ∧

(
21/d − 1

)
and η ≤ `2

2R .
Then there exists a d-dimensional sphere of radius R that we call M , such that
M ∈Md,D

R, 1
R2

and a global C∞-diffeomorphism Φ : RD → RD such that,

‖dΦ− ID‖op ≤
3η

`
,
∥∥d2Φ

∥∥
op
≤ 23η

`2
,
∥∥d3Φ

∥∥
op
≤ 573η

`3
,

and so that writing M ′ = Φ(M), we have Hd(M ′) ≤ 2Hd(M) = 2σdR
d,∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣ ≥ η

`2
, and TV (λM , λM ′) ≤ 12

(
`

R

)d
.

Proof of Lemma D.5. Let M ⊂ Rd+1 × {0}D−d−1 ⊂ RD be the sphere of radius
R with center (0,−R, 0, . . . , 0). The reach of M is τM = R, and its arc-length
parametrized geodesics are arcs of great circles, which have third derivatives of
constant norm ‖γ′′′(t)‖ = 1

R2 . Hence we see that M ∈Md,D

R, 1
R2

. Let φ : RD → R+

be the map defined by φ(x) = exp
( ‖x‖2
‖x‖2−1

)
1‖x‖2<1. φ is a symmetric C∞ map with

support equal to B(0, 1) and elementary real analysis yields φ(0) = 1, ‖dφ‖op ≤ 3,∥∥d2φ
∥∥
op
≤ 23 and

∥∥d3φ
∥∥
op
≤ 573. Let Φ : RD → RD be defined by

Φ(x) = x+ ηφ (x/`) · v,

where v = (0, 1, 0, . . . , 0) is the unit vertical vector. Φ is the identity map on
B (0, `)c, and in B (0, `), Φ translates points on the vertical axis with a magni-
tude modulated by the weight function φ(x/`). From chain rule, ‖dΦ− ID‖op =

η ‖dφ‖∞ /` ≤ 3η/` < 1. Therefore, dxΦ is invertible for all x ∈ RD, so that
Φ is a local C∞-diffeomorphism according to the local inverse function theorem.
Moreover, ‖Φ(x)‖ → ∞ as ‖x‖ → ∞, so that Φ is a global C∞-diffeomorphism

38



η

R

` x

M ′

x0

O

b

b′

(Oy)

θ

Figure 8: The bumped sphere M ′ of Lemma D.5.

by Hadamard-Cacciopoli theorem [17]. Similarly, from bounds on differentials of
φ we get ∥∥d2Φ

∥∥
op
≤ 23

η

`2
and

∥∥d3Φ
∥∥
op
≤ 573

η

`3
.

Let us now write M ′ = Φ (M) for the image of M by the map Φ (see Figure 8).
Denote by (Oy) the vertical axis span(v), and notice that since φ is symmetric,
M ′ is symmetric with respect to the vertical axis (Oy). We now bound from

above the reach τM ′ of M ′ by showing that the point x0 =

(
0, R+η/2

1+ `2

2Rη

, 0, . . . , 0

)
belongs to its medial axis Med(M ′) (see (2.1)). For this, write

b = (0, η, 0, . . . , 0), b′ = (0,−2R, 0, . . . , 0),

together with θ = arccos(1− `2/(2R2)), and

x = (R sin θ,R cos θ −R, 0, . . . , 0).

By construction, b, b′ and x belong to M ′. One easily checks that ‖x0 − x‖ <
‖x0 − b‖ and ‖x0 − x‖ < ‖x0 − b′‖, so that neither b nor b′ is the nearest neighbor
of x0 on M ′. But x0 ∈ (Oy) which is an axis of symmetry of M ′, and (Oy)∩M ′ =
{b, b′}. As a consequence, x0 has strictly more than one nearest neighbor on M ′.
That is, x0 belongs to the medial axis Med(M ′) of M ′. Therefore,

1

τM ′
≥ 1

d (x0,M ′)
≥ 1

‖x0 − x‖

≥ 1

R

∣∣∣∣1− `2

2R2 −
1+ η

2R

1+ `2

2Rη

∣∣∣∣
≥ 1

R

(
1− 1+ η

2R

1+ `2

2Rη

) ≥ 1

R

(
1 +

1 + η
2R

1 + `2

2Rη

)
≥ 1

R
+
η

`2
,
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which yields the bound
∣∣∣ 1
τM
− 1

τM′

∣∣∣ =
∣∣∣ 1
R −

1
τM′

∣∣∣ ≥ η
`2

.

Finally, since M ′ = Φ(M) with ‖dΦ− ID‖op ≤ 21/d − 1 with Φ|B(0,`)c coin-

ciding with the identity map, Lemma D.2 yields Hd(M ′) ≤ 2Hd(M) = 2σdR
d

and

TV (λM , λM ′) ≤ 12λM (B(0, `))

= 12
Hd
(
BSd

(
0, 2 arcsin

(
`

2R

)))
Hd (Sd)

≤ 12

(
`

R

)d
,

which concludes the proof.

Proof of Proposition 5.5. Apply Lemma D.5 with R = 2τmin. Then the sphere M
of radius 2τmin belongs to Md,D

2τmin,1/(4τ2min)
. Furthermore, taking η = cd`

3/τ2
min

for cd > 0 and ` > 0 small enough, Proposition 5.4 (applied to the unit sphere,
yielding cd, and reasoning by homogeneity for the sphere of radius 2τmin) asserts

that M ′ = Φ(M) belongs to Md,D
τmin,1/(2τ2min)

⊂ Md,D
τmin,L

, since L ≥ 1/(2τ2
min).

Moreover,

Hd(M ′)−1 ∧Hd(M)−1 ≥
(
2d+1σdτ

d
min

)−1 ≥ fmin,

so that λM , λM ′ ∈ Qd,Dτmin,L,fmin , which gives the result.

Let us now prove the minimax inconsistency of the reach estimation for L =
∞, using the same technique as above.

Proof of Proposition 2.9. Let M and M ′ be given by Lemma D.5 with ` ≤ R
2 ∧

(21/d− 1), η = `2/(23R) and R = 2τmin. We have ‖dΦ− ID‖op ≤ 3η/` ≤ 0.1 and∥∥d2Φ
∥∥
op
≤ 23η/`2 ≤ 1/(2τmin). Since τM ≥ 2τmin, Lemma D.1 yields

τM ′ ≥
τM (1− ‖dΦ− ID‖op)2

‖d2Φ‖op τM + (1 + ‖dΦ− ID‖op)
≥ τmin.

As a consequence, M and M ′ belong to Md,D
τmin,L=∞. Furthermore, since we

have fmin ≤
(
2d+1τdminσd

)−1 ≤ Hd(M)−1 ∧ Hd(M ′)−1, we see that the uniform

distributions λM , λM ′ belong to Qd,Dτmin,L=∞,fmin . Let now P, P ′ denote the dis-

tributions of Pd,Dτmin,L=∞,fmin associated to λM , λM ′ (Definition 2.6). Lemma 5.3
asserts that TV (P, P ′) = TV (λM , λM ′). Applying Lemma 5.2 to P, P ′, we get
that for all n ≥ 1, for ` small enough,

inf
τ̂n

sup
P∈Pd,Dτmin,L=∞,fmin

EPn
∣∣∣∣ 1

τP
− 1

τ̂n

∣∣∣∣p ≥ 1

2p

∣∣∣∣ 1

τM
− 1

τM ′

∣∣∣∣p (1− TV (P, P ′)
)n

≥ 1

2p

( η
`2

)p(
1− 12

(
`

2τmin

)d)n

=
1

2p

(
1

46τmin

)p(
1− 12

(
`

2τmin

)d)n
.

Sending `→ 0 with n ≥ 1 fixed yields the announced result.
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E Stability with Respect to Tangent Spaces

Proof of Proposition 6.1. To get the bound on the difference of suprema, we show
the (stronger) pointwise bound. For all x, y ∈ X with x 6= y,∣∣∣∣∣2d(y − x, Tx)

‖y − x‖2
− 2d(y − x, T̃x)

‖y − x‖2

∣∣∣∣∣ ≤ 2‖πTx(y − x)− πT̃x(y − x)‖
‖y − x‖2

≤
2‖πTx − πT̃x‖op

‖y − x‖
≤ 2 sin θ

δ
.
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