
HAL Id: hal-01521954
https://hal.science/hal-01521954v3

Preprint submitted on 3 Oct 2017 (v3), last revised 11 Mar 2019 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regression imputation in the functional linear model
with missing values in the response

Christophe Crambes, Yousri Henchiri

To cite this version:
Christophe Crambes, Yousri Henchiri. Regression imputation in the functional linear model with
missing values in the response. 2017. �hal-01521954v3�

https://hal.science/hal-01521954v3
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Regression imputation in the functional linear model
with missing values in the response

Christophe Crambes · Yousri Henchiri

Received: date / Accepted: date

Abstract We are interested in functional linear regression when some ob-
servations of the real response are missing, while the functional covariate is
completely observed. A complete case regression imputation method of missing
data is presented, using functional principal component regression to estimate
the functional coefficient of the model. We study the asymptotic behaviour
of the error when the missing data are replaced by the regression imputed
value, in a ’missing at random’ framework. The completed database can be
used to estimate the functional coefficient of the model and to predict new
values of the response. The practical behaviour of the method is also studied
on simulated data sets. A real dataset study is performed in the environmental
context of air quality.
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1 Introduction

Literature on functional data is really wide, as attested by the numerous books
on this subject these last years. The estimation and forecasting theories of lin-
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ear processes in function spaces are developed in [1]. A comprehensive intro-
duction to functional data analysis can be found in [25]. [12] focus on nonpara-
metric approaches. Computational issues are explained in [26]. Nonparametric
statistical methods for functional regression analysis, specifically the meth-
ods based on a Gaussian process prior in a functional space are discussed in
[27]. [17] consider inferential procedures based on functional principal com-
ponents. [31] mainly focuses on hypothesis testing problems about functional
data. Among this, the functional linear model has received a special attention
(see [24, 4, 5, 3, 15, 10, 6, 30] for main references).

In this paper, we are interested in the functional linear model

Y = 〈θ,X〉+ ε, (1)

where θ is the unknown function of the model, Y is a real variable of inter-
est, ε is a centered real random variable representing the error of the model,
with finite variance E(ε2) = σ2

ε , and X is a functional covariate belonging to
some functional space H endowed with an inner product 〈., .〉 and its associ-
ated norm ‖.‖. Usually, H is the space L2([a, b]) of square integrable functions
defined on some real compact [a, b] and the corresponding inner product is

defined by 〈f, g〉 =
∫ b
a
f(t)g(t) dt for functions f, g ∈ L2([a, b]). Without loss

of generality, we consider our work on [0, 1]. Moreover, we assume that X and
ε are independent.

All the previously cited works are devoted to analyze complete data, how-
ever, this is not the case in many interesting applications including for example
survival data analysis. For this reason, we focus in this work on the problem
of missing data (see [19, 14] for a wide introduction in the multivariate frame-
work). This subject has been widely studied, in particular the way to impute
missing data and the accuracy of this imputation according to the types of
missing data: Missing Completely At Random (MCAR), Missing At Random
(MAR) and Missing Not At Random (MNAR). Even if this problematic has
received a lot of attention in a multivariate framework, it is not the case for
the functional data framework. Our objective is to study the problem of com-
bining regression imputation, missing data mechanisms and functional data
analysis. As far as we know, few results are available for the moment. In MAR
setting, [16] have explored this area by developing a functional multiple im-
putation approach modeling missing longitudinal response under a functional
mixed effects model. They developed a Gibbs sampling algorithm to draw
model parameters and imputations for missing values. Besides, [13] have con-
sidered two kinds of mean estimates of a scalar outcome, based on a sample
in which an explanatory variable is observed for every subject while responses
are missing (which is the closest to our context). A weak convergence result
was proved. In MCAR setting, [23] have adapted a methodology based on the
NIPALS (Nonlinear Iterative Partial Least Squares) algorithm, which provides
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an imputation method for missing data, which have affected the functional co-
variates. In MNAR setting, [2] adapts a specification test for functional data
with the presence of missing observations. His method is able to extract the
information available in the observed portion of the data while being agnostic
about the nature of the missing observations. In MAR and MCAR setting,
[9] have recently proposed a nonparametric approach to missing value impu-
tation and outlier detection for functional data. To our knowledge, there is no
existing theoretical result in the case of functional linear model under missing
assumption operating on the response variable, this problem only being until
now the subject of studies in the multivariate framework (see for instance [20],
[21]).

We carefully distinguish the missing data problem from a simple predic-
tion problem. Indeed, the missing data mechanism involves a random variable
(which indicates whether the response is missing or not) which plays a cen-
tral role when obtaining our asymptotic results. This random variable and the
variable X are dependent in the MAR case. This is also highlighted in [13]. In
this paper, we first propose an imputation method, based on the completely
observed cases, to replace missing values in the response of the functional lin-
ear model. We get mean square error rates for these imputed values. Secondly,
once the database is completed, we are able to estimate the unknown function
θ of the model with the whole sample. This estimator can then be used for
predicting other values of the response on a test set.

Combining missing data and functional variables offers a very large field
of applications. Among all possible applications, environment is a core issue
interesting many people for the future of our planet, in particular in the study
of pollution indexes. The dataset we study here deals with temperature curves
in some French cities to predict a specific pollution atmospheric index. The
atmospheric index is missing in some cities in the northwest of France, for
which the corresponding temperature curves (the explanatory variable) are
mild, and leads to consider MAR data. The main objective is to get a map of
the atmospheric index on the whole French territory.

The rest of the paper is organized as follows. Section 2 introduces the
problem of functional linear model under missing assumption operating on the
response variable and formulates our main results of the imputation method
and of the mean square error for prediction of a new observation using the
complete dataset. A simulation study is performed in Section 3. The environ-
mental application is presented in Section 4. Some preliminary lemmas, which
are used in the proofs of the main results, are collected in Section 5.
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2 Imputation of a missing value of the response

2.1 Functional principal components regression

Let us consider a sample (Xi, Yi)i=1,...,n independent and identically distributed
with the same distribution as (X,Y ). An estimation of θ based on princi-
pal components analysis of the curves X1, . . . , Xn has been studied in many
papers, see for instance [4]. We recall below the construction of this estima-
tor. Considering the covariance operator of X defined under the condition

E
(
‖X‖2

)
< +∞ (which is supposed to be satisfied in the following) by

Γu = E
(
〈X,u〉X

)
,

for all u ∈ H and its empirical version

Γ̂nu =
1

n

n∑
i=1

〈Xi, u〉Xi,

we call (λj)j≥1

(
resp.

(
λ̂j

)
j≥1

)
the sequence of eigenvalues of Γ

(
resp. Γ̂n

)
and (vj)j≥1

(
resp. (v̂j)j≥1

)
the sequence of eigenfunctions of Γ

(
resp. Γ̂n

)
.

The identifiability of model (1) is ensured as long as we assume that λ1 >

λ2 > . . . > 0 (see [4]). Moreover, assuming that λ̂kn > 0 for some integer kn
depending on n, the estimator of θ is defined by

θ̂ =
1

n

n∑
i=1

kn∑
j=1

〈Xi, v̂j〉Yi
λ̂j

v̂j . (2)

A consistency result of this estimator is given in [4], while more recent results
can be found in [3, 15]. In particular, [4] give technical conditions on the
decreasing rate to zero of the eigenvalues λj ’s in order to ensure the consistency
of the estimator.

2.2 Operatorial point of view

We notice in this subsection that the model (1) can be seen from an operatorial
point of view. Indeed, we can write the model

Y = ΘX + ε, (3)

where Θ : H −→ R is a linear continuous operator defined by Θu = 〈θ, u〉 for

any function u ∈ H. Let us consider ∆̂n the cross covariance operator defined
by ∆̂nu = 1

n

∑n
i=1〈Xi, u〉Yi, for all u ∈ H. Then, it is easily seen that an

estimator Θ̂ of Θ, satisfying Θ̂ = 〈θ̂, .〉, is given by
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Θ̂ = Π̂kn∆̂n

(
Π̂kn Γ̂n

)−1
, (4)

where Π̂kn is the projection operator onto the subspace span(v̂1, . . . , v̂kn).

2.3 Imputation principle

Now, we present the context of missing data. There can be many reasons
for which missing data can appear: breakdown in a measurement process, a
person who is not willing to answer to some question of a questionnaire, . . . We
consider that some of the observations Y1, . . . , Yn are not available. We define
the real variable δ and we consider the sample (δi)i=1,...,n such that δi = 1 if
the value Yi is available and δi = 0 if the value Yi is missing, for all i = 1, . . . , n.
The data we observe are

{(Yi, δi, Xi)}ni=1.

We consider that the missing values are MAR. The MAR assumption implies
that δ and Y are conditionally independent given X. That is,

P (δ = 1 | X,Y ) = P (δ = 1 | X) . (5)

Note that the MAR assumption is much weaker than MCAR (for which
P (δ = 1 | X,Y ) = P (δ = 1)), as it allows the missing data to possibly depend
on the observed data and may be reasonable for many practical problems.
As a consequence of this MAR assumption, the variable δ (the fact that an
observation is missing) is independent of the error of the model ε, conditionally
on X. In the following, the number of missing values in the sample is denoted

mn =

n∑
i=1

11{δi=0}. (6)

Then, to impute a missing value, say Y` (where ` is a given integer between 1
and n), a simple way is to consider complete case analysis (see for instance [19,
7, 29, 22, 28]). This regression imputation method uses the pairs of observed
data to define the estimator of the model coefficient. More precisely, we define

Y`,imp =
1

n−mn

n∑
i=1
i 6=`

kn∑
j=1

〈Xi, v̂j〉〈X`, v̂j〉δiYi
λ̂j

. (7)

From the operatorial point of view, the imputation of the missing value Y`
comes back to

Y`,imp = Π̂kn,obs∆̂n,obs

(
Π̂kn,obsΓ̂n,obs

)−1
X`, (8)
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where Γ̂n,obs = 1
n−mn

n∑
i=1

〈Xi, .〉δiXi, ∆̂n,obs = 1
n−mn

n∑
i=1

〈Xi, .〉δiYi and Π̂kn,obs

is the projection operator onto the subspace span(v̂1,obs, . . . , v̂kn,obs) where
v̂1,obs, . . . , v̂kn,obs are the kn first eigenfunctions of the covariance operator

Γ̂n,obs.

Now we give our main results. We consider the following assumptions.

(A.1) We assume that there exists a convex function λ such that λ(j) = λj
for all j ≥ 1 that continuously interpolates the λj ’s between j and j + 1.

(A.2) There exists a positive constant C such that

E
(
‖X‖4

)
≤ C.

Our assumptions are quite classic in this context. Assumption (A.1) is sim-
ilar to an assumption from [11]. It is a mild condition that allows a large class
of decreasing rate of eigenvalues for the covariance operator Γ , for example
polynomial decay or exponential decay (see example 1 below, in page 7, for
more details). Assumption (A.2) holds for many processes X (Gaussian pro-
cesses, bounded processes) and can also be found for example in [4]. Then, we
give our main results.

Remark 1 Notice that the assumptions (A.1) and (A.2) are just needed to
obtain a convergence rate, whether there are missing data on the response or
not. The only assumption needed on missing data is actually the MAR model.

Theorem 1 Assume (A.1) and (A.2) are satisfied, if, moreover λknkn goes
to zero as n goes to infinity, we have

E
(
Y`,imp − 〈θ,X`〉

)2
=

+∞∑
j=kn+1

(
ΘΓ 1/2vj

)2
+

σ2
εkn

n−mn
+ o

(
kn

n−mn

)
.

Moreover, for the aggregate error of all the imputed values, we have

n∑
`=1

(1−δ`)E
(
Y`,imp−〈θ,X`〉

)2
= mn

+∞∑
j=kn+1

(
ΘΓ 1/2vj

)2
+
σ2
εknmn

n−mn
+ o

(
knmn

n−mn

)
.

In order to precise the convergence rate of the imputed value Y`,imp to the
real one 〈θ,X`〉, we need an additional notation. For a function ϕ : R?+ −→ R?+
and a positive real number L, we define

C(ϕ,L) =
{
T : H −→ R / ∀j ≥ 1, T vj ≤ L

√
ϕ(j)

}
.

Note that simple cases satisfy the fact that ΘΓ 1/2 belongs to C(ϕ,L). For
example, consider the operator Θ expressed in the eigenfunctions basis (vj)j≥1
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such that Θu =
∑+∞
j=1 θj〈vj , u〉 for any u ∈ H, with θj going to zero as j goes

to infinity. Hence there exists a bound L such that θj ≤ L for any j ≥ 1 and
ΘΓ 1/2vj = θj

√
λj ≤ L

√
λj .

Remark 2 We introduce two notations to compare the magnitudes of two func-
tions ũ(x) and ṽ(x) as the argument x tends to a limit ˜̀(not necessarily finite).
The notation ũ(x) ∼

x→˜̀
ṽ(x), stands for

lim
x→˜̀

ũ(x)

ṽ(x)
= 1,

and the notation ũ(x) .
x→˜̀

ṽ(x) denotes that |ũ(x)/ṽ(x)| remains bounded as

x→ ˜̀.

Theorem 2 Let L =
∥∥ΘΓ 1/2

∥∥
∞ and ϕ the function defined by

ϕ(j) =
(ΘΓ 1/2vj)

2

L2 for all j ≥ 1 that continuously interpolates the ϕ(j)’s be-

tween j and j+1. Under assumptions (A.1)-(A.2), the operator ΘΓ 1/2 belongs
to C(ϕ,L) and

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?n
n−mn

,

where k?n is the solution of the equation in x

∫ +∞

x

ϕ(t) dt =
σ2
ε

L2(n−mn)
x. (9)

Again, for the aggregate error of all the imputed values, we have

n∑
`=1

(1− δ`)E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?nmn

n−mn
.

Remark 3 Notice that the equation (9) has a unique solution (the left and
right hand sides are descreasing and increasing in x, respectively).

The last result giving the convergence rate of the imputed value Y`,imp is
similar to the convergence rate obtained in [11] (who considered the case of a
completely observed functional response). The rate is simply affected by the
number mn of missing values. We precise the resulting rate of convergence in
the following example.

Example 1 We consider three different cases.
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[Case 1] If the number of missing values is negligible compared to the sample size,
that is mn = ann with an going to zero as n goes to infinity, then the result
of Theorem 2 becomes

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?n
n
,

for a single imputation and

n∑
`=1

(1− δ`)E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?nmn

n
,

for the aggregate error of all the imputed values.

To go further, we consider two different functions ϕ such that
ϕpol(j) = Cαj

−(2+α) and ϕexp(j) = Dα exp(−αj) where Cα and Dα are
positive constants and α > 0. Then the solution of equation (9) is

k?n,pol ∼
n→+∞

(
CαL

2

(1+α)σ2
ε

)1/(2+α)
n1/(2+α), if ϕ = ϕpol,

k?n,exp .
n→+∞

logn
α , if ϕ = ϕexp.

For ϕ = ϕpol, the result of Theorem 2 becomes

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
(
σ2
ε

)(1+α)/(2+α)(CαL2

1 + α

)1/(2+α)
1

n(1+α)/(2+α)
,

for a single imputation and

n∑
`=1

(1−δ`)E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
(
σ2
ε

)(1+α)/(2+α)(CαL2

1 + α

)1/(2+α)

ann
1/(2+α),

for the aggregate error of all the imputed values.

For ϕ = ϕexp, the result of Theorem 2 becomes

E (Y`,imp − 〈θ,X`〉)2 .
n→+∞

log n

αn
,

for a single imputation and

n∑
`=1

(1− δ`)E (Y`,imp − 〈θ,X`〉)2 .
n→+∞

an log n

α
,

for the aggregate error of all the imputed values. In particular, we can see
that missing data do not affect the convergence rate for a single imputed
value. The rate 1

n(1+α)/(2+α) matches the usual optimal rates in this context.
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The rate logn
αn is not exact but obviously sharp since parametric up to a

logarithm. For the aggregate error of several imputed values, the number
of missing values plays a crucial role, since the convergence depends on the
fact that ann

1/(2+α) or an log n go to zero as n goes to infinity.
[Case 2] If the number of missing values is proportional to the sample size,

mn = ρn with 0 < ρ < 1, then the result of Theorem 2 becomes

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
σ2
ε

1− ρ
k?n
n
,

for a single imputation and

n∑
`=1

(1− δ`)E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
σ2
ερ

1− ρ
k?n,

for the aggregate error of all the imputed values. Then, for a single impu-
tation, the rate of convergence of Theorem 2 is

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
(
σ2
ε

)(1+α)/(2+α)(Cα(1− ρ)L2

1 + α

)1/(2+α)
1

n(1+α)/(2+α)
,

for ϕ = ϕpol and

E (Y`,imp − 〈θ,X`〉)2 .
n→+∞

log n

αn
,

for ϕ = ϕexp. In this case, missing data do not affect the convergence
rate of a single imputed value. However, it affects the convergence of the
aggregate error term for several imputed values, since the term of order k?n
cannot converge to zero.

[Case 3] If the number of observed values is un = o(n), then the result of Theorem
2 becomes

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?n
un
,

for a single imputation and

n∑
`=1

(1− δ`)E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2σ2
ε

k?nmn

un
,

for the aggregate error of all the imputed values. Then, for a single impu-
tation, the rate of convergence of Theorem 2 is

E (Y`,imp − 〈θ,X`〉)2 ∼
n→+∞

2
(
σ2
ε

)(1+α)/(2+α)(CαL2

1 + α

)1/(2+α)
1

u
(1+α)/(2+α)
n

,

for ϕ = ϕpol and
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E (Y`,imp − 〈θ,X`〉)2 .
n→+∞

log un
αun

,

ϕ = ϕexp. In this case, missing data affects the convergence rate of a single
imputed value. This seems natural since the number of missing values is
much more important than the number of observed values. The convergence
results collapse for the aggregate error of several imputed values with a

term of order
k?nmn
un

.

2.4 Estimation of θ and prediction of future values

Once the database being reconstructed, we can use the full database to esti-
mate the functional coefficient θ of the model (directly inspired from (2)) (see
also [8]), namely

θ̃ =
1

n

n∑
i=1

kn∑
j=1

〈Xi, v̂j〉Y ?i
λ̂j

v̂j , (10)

where Y ?i = Yiδi + Yi,imp(1− δi) for all i = 1, . . . , n. Then this estimator of θ
can be used to predict new values of the response Y on a test sample. Indeed,
if Xnew is a new curve, the corresponding predicted response value is

Ŷnew = 〈Xnew, θ̃〉 =
1

n

n∑
i=1

kn∑
j=1

〈Xi, v̂j〉〈Xnew, v̂j〉Y ?i
λ̂j

. (11)

We give below a result allowing to control the mean square prediction error
of Ŷnew.

Theorem 3 Under the assumptions of Theorem 1, if we additionnaly assume
that mn = o(n) and m2

nkn = O(n), then

E
(
Ŷnew − 〈θ,Xnew〉

)2
=

+∞∑
j=kn+1

(
ΘΓ 1/2vj

)2
+O

(
kn
n

)
.

Remark 4 This result shows that, under the condition that there are not too
many missing values, the convergence rate of the mean square error prediction
of a new value of the covariate remains the same compared to the non missing
values case.

3 Simulations

To observe the behavior of our estimator in practice, this section considers a
simulation study.
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3.1 Models

Two models are considered:

Model1 : Y =

∫ 1

0

sin(4πt)Xt dt + ε, (12)

Model2 : Y =

∫ 1

0

(
log(15t2 + 10) + cos(4πt)

)
Xt dt + ε, (13)

where the error ε is a Gaussian noise : ε ∼ N (0, σε) and

• in equation (12), X := {Xt}t∈[0,1] is the standard Brownian motion.

• In equation (13), X := {Xt}t∈[0,1] is a Gaussian process where the covari-

ance function is defined as cov(Xt, Xt′) = exp(−|t−t
′|2

0.2 ).

The simulation aims at considering processes X with different regularities
(the standard Brownian motion being the case of the less smooth) in order to
see if it has an impact on the results.

All the procedures described below were implemented by using the R soft-
ware:

? the trajectories of Xi, 1 ≤ i ≤ n, in the two models are discretized in
p = 100 equidistant points,

? values of Y are computed using integration by rectangular interpolation,

? the variability of noise is such that σε = τ ∗Var
( ∫ 1

0
θ(t)X(t)dt

)
≈ 0.2,

? the sample sizes are respectively n = 100, 300 and 1200 for the train-
ing sets (X1, Y1), . . . , (Xn, Yn) and n1 = 50, 150 and 600 for the test sets
(Xn+1, Yn+1), . . . , (Xn+n1 , Yn+n1).

Note that some Monte Carlo experiments are achieved to determine the
values of τ : τ ≈ 21.726 for the model1 and τ ≈ 0.048 for the model2.

3.2 Criteria

The criteria we used are the following. Criteria 1, 2, 3 are related to the
imputation step with the training samples, criteria 4, 5, 6 are related to the
prediction step with the test samples, and criteria 7 is related to the estimation
step with the reconstructed database.

• Criterion 1: the mean square errors (MSE) averaged over S samples

MSE =
1

S

S∑
j=1

MSE(j),

where MSE(j) = 1
mn

n∑
`=1

(
Y j`,imp − 〈θ,X

j
` 〉
)2

(1 − δ`) is the mean square

error computed on the jth simulated sample, j ∈ {1, . . . ,S}.
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• Criterion 2: the mean absolute errors (MAE) averaged over S samples

MAE =
1

S

S∑
j=1

MAE(j),

where MAE(j) = 1
mn

n∑
`=1

∣∣∣Y j`,imp − 〈θ,Xj
` 〉
∣∣∣ (1 − δ`) is the mean absolute

error computed on the jth simulated sample.
• Criterion 3: the ratio between the mean square prediction error and the

mean square prediction error when the true mean is known averaged over
S samples

CR3 =
1

S

S∑
j=1

CR3(j),

where CR3(j) =

n∑
`=1

(
Y j`,imp − 〈θ,X

j
` 〉
)2

(1− δ`)

n∑
`=1

(
εj`
)2

(1− δ`)
is the ratio between the

mean square prediction error and the mean square prediction error when
the true mean is known, computed on the jth simulated sample.

• Criterion 4: the mean square errors (MSE′) averaged over S samples

MSE′ =
1

S

S∑
j=1

MSE′(j),

where MSE′(j) = 1
n1

n+n1∑
`′=n+1

(
Y j`′ − 〈θ,X

j
`′〉
)2

is the mean square error

computed on the jth simulated sample, j ∈ {1, . . . ,S}.
• Criterion 5: the mean absolute errors (MAE′) averaged over S samples

MAE′ =
1

S

S∑
j=1

MAE′(j),

where MAE′(j) = 1
n1

n+n1∑
`′=n+1

∣∣∣Y j`′ − 〈θ,Xj
`′〉
∣∣∣ is the mean absolute error

computed on the jth simulated sample.
• Criterion 6: the ratio between the mean square prediction error and the

mean square prediction error when the true mean is known averaged over
S samples

CR3′ =
1

S

S∑
j=1

CR3′(j),
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where CR3′(j) =

n+n1∑
`′=n+1

(
Y j`′ − 〈θ,X

j
`′〉
)2

n+n1∑
`′=n+1

(
εj`′
)2 is the ratio between the mean

square prediction error and the mean square prediction error when the true
mean is known, computed on the jth simulated sample.

• Criterion 7: the mean square errors (MSE′′) averaged over S samples

MSE′′ =
1

S

S∑
j=1

MSE′′(j),

where MSE′′(j) =
∥∥∥θ̃j − θ∥∥∥2 is the square error of estimation computed

on the jth simulated sample. The MSE′′ criterion is decomposed into vari-
ance and square bias in our results.

Notice that all the criteria tend to zero when the sample size tends to
infinity.

3.3 Methodology

We smooth the estimator (2) by a pre-processing step based on the Smooth
Principal Components Regression (SPCR) [5]. In our context, we use the re-
gression spline such as the original curves X1, . . . , Xn are projected on a regres-
sion spline basis. Then, our estimator depends on other additional parameters:
the number ’κ’ of knots of the spline functions, the degree ’q’ of spline func-
tions and the number ’m’ of derivatives. Here, we have fixed the number of
knots to be 20, the degree has been chosen to be 3 and the number of deriva-
tives was fixed to the moderate value of 2. These parameters are not the most
important in our study, especially in comparison with the choice of the number
of principal components.

In this subsection, we show firstly how to determine the number of missing
data in the MAR case. Secondly, we present a procedure to choose the opti-
mal tuning parameter (the best dimension k∗n of the projection space for the

SPCR). Thirdly, in order to illustrate the performance of the estimator θ̃ using
imputed values with the optimal chosen dimension, we have chosen a percent-
age of missing values equal to 45.8518% for model1 and equal to 46.8888% for
model2 (we obtain this rate with ct = 1 for both models, see next paragraph
below).
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3.3.1 Missing data simulation scenarios

To determine the number of missing data in our simulations, we have adopted
two scenarios. In the first one, we use an scheme based on the the confidence
band associated to the functional covariate. This scheme is done in two ways
(the first way illustrates the principle to determine missing data, the second
way gives the possibility to control the missing data percentage). The second
scenario is based on the logistic functional regression. We give below more de-
tails on both scenarios. In the simulations we present, we adopted the second
scenario.

The fact that Y is observed or missing can be linked to a condition on the
curve X which reaches high or low levels or not. In the first way, this number
is associated to the number of curves which do not belong to some confidence
band (90%, 95%, 97% and 99%). More precisely, each curve Xi, i = 1, . . . , n,
is said to belong to the confidence band if all discretization points are in the
band. Then the variable of interest Yi, associated to Xi, is called available. In
the second way, we modify the first way such that a curve is said to belong to
the confidence band if some rate of the discretization points (80 percent) are
in the band. This strategy allows to control the rate of missing data, this rate
being decreasing from the first way to the second. Fig. 1 illustrates a simple
example. We have considered Model2 under n = 200 observations and p = 100
discretization points. For the first way, the number of missing data (27 points,
see (b)) is associated to the number of curves that do not belong to the 97%
confidence band (see (a)). In the second way, the number of missing data (12
points, see (d)) is associated to the number of curves that do not belong to
the 97% confidence band (see (c)). Notice that, in the last case, if more than
20 discretization points of a curve Xi are not in the confidence band then the
variable of interest Yi, associated to Xi, is called missing.

Now, we present the second scenario which is a simpler strategy to simulate
missing data. We used this simulation method to obtain the results we present.
In the MAR case, we simulate δ according to the logistic functional regression.
The variable δ follows the Bernoulli law with parameter p(X) such that

log

(
p(X)

1− p(X)

)
= 〈α0, X〉+ ct,

where α0(t) = sin(2πt) for all t ∈ [0, 1] and ct is a constant allowing to take
different levels of missing data. We take ct = 2 for around 12.5% of missing
data, ct = 1 for around 27.4% of missing data and ct = 0.2 for around 44.9% of
missing data. Notice that, in the MCAR case, we simulate δ with the Bernoulli
law with parameter p = 0.9 (10% of missing data), p = 0.75 (25% of missing
data) or p = 0.6 (40% of missing data).
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Fig. 1 Plots of functional covariate and variable of interest in the first way of scenario 1
(resp. (a) and (b)) and the second way of scenario 1 (resp. (c) and (d)) under Missing At
Random case.

3.3.2 Criteria for optimal parameter selection

We focus on the procedure allowing to select the optimal tuning parameter.
We consider a Generalized Cross Validation (GCV) criterion versus a Cross
Validation (CV) criterion and K-fold Cross Validation (K-fold CV) criterion
and we select the optimal tuning parameter k∗n by minimizing these criteria.
The GCV procedure is known to be computationally fast. The CV, K-fold CV
and GCV criteria are respectively given as follows for imputation

CV(kn) =
1

n−mn

n∑
i=1

(Ŷ
[−i]
i − 〈θ,Xi〉)2δi,

K-fold CV(kn) =
1

K

K∑
k=1

|Bk|−1
∑
i∈Bk

(Ŷ
[−Bk]
i − 〈θ,Xi〉)2δi,

GCV(kn) =
(n−mn)

∑n
i=1(Ŷi − 〈θ,Xi〉)2δi

((n−mn)− kn)2
.
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The analogous criteria are given as follows for prediction

CV(kn) =
1

n

n∑
i=1

(Ŷ ∗
[−i]

i − 〈θ,Xi〉)2,

K-fold CV(kn) =
1

K

K∑
k=1

|Bk|−1
∑
i∈Bk

(Ŷ ∗
[−Bk]

i − 〈θ,Xi〉)2,

GCV(kn) =
n
∑n
i=1(Ŷ ∗i − 〈θ,Xi〉)2

(n− kn)2
,

where Ŷ
[−i]
i and Ŷ

[−Bk]
i respectively mean that the value of Yi is predicted

using the whole sample except the ith observation or except the set of obser-

vations indexed in Bk. In the same way Ŷ ∗
[−i]

i and Ŷ ∗
[−Bk]

i respectively mean
that the value of Yi is predicted using the whole sample except the ith observa-
tion or except the set of observations indexed in Bk. The data set is randomly
partitioned into K equally sized (as equal as possible) subsets ∪Kk=1Bk such
that Bj ∩ Bk = ∅ (j 6= k). In practice, often K = 5 or K = 10 are used. In
our case, the K-fold CV splits are chosen in a special deterministic way. For
imputation, we consider

K-fold CV(kn) =
1

K

K∑
k=1

((n−mn)/K)−1
nk/K∑

i=(n(k−1))/K +1

(Ŷ
[−k]
i − 〈θ,Xi〉)2δi.

The analogous criterion is given as follows for prediction

K-fold CV(kn) =
1

K

K∑
k=1

(n/K)−1
nk/K∑

i=(n(k−1))/K +1

(Ŷ ∗
[−k]

i − 〈θ,Xi〉)2.

In order to illustrate the advantage of the GCV criterion, we compared the
computational times to obtain the tuning parameter with the three criteria
on a growing sequence of dimension kn = 2, . . . , 22. The characteristics of the
computer used to perform these computations were McBook pro: Processor
2.66 GHz intel core 2 Duo, Memory 4 Gb 1067 MHz DDR3. The computational
times are displayed in Table 15 in the appendix. The GCV criterion shows a
clear advantage with regard to computational time compared with the CV and
K-fold criteria. In addition, we see that the three criteria behave in the same
way and select the same optimal projection dimension (see Fig. 2 and 3) for
both models (under n = 1000 and p = 100).

We show on Fig. 4 and Fig. 5 different estimates of the slope function of
the Model1 and Model2 (under n = 1000 and p = 100) with different values
of dimension (kn = 4, 6, 8, 12, 16) and (kn = 2, 3, 5, 7, 8), respectively, by using
the GCV criterion (used for its computational efficiency).
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Fig. 2 GCV, CV and K-fold criteria for different values of dimension kn in model1: best
dimension k∗n = 8 and MSE’ (×104) = 1.6640 (in GCV criterion case), best dimension
k∗n = 6 and MSE′ (×104) = 2.3081 (in 5-fold CV criterion case), best dimension k∗n = 8
and MSE′ (×104) = 1.9584 (in 10-fold CV criterion case), best dimension k∗n = 8 and
MSE′ (×104) = 1.6598 (in CV criterion case), for the model1.
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Fig. 3 GCV, CV and K-fold criteria for different values of dimension kn in model2: best
dimension k∗n = 5 and MSE′ (×104) = 3.7589 (in GCV criterion case), best dimension
k∗n = 5 and MSE′ (×104) = 4.2132 (in 5-fold CV criterion case), best dimension k∗n = 5
and MSE′ (×104) = 3.9758 (in 10-fold CV criterion case), best dimension k∗n = 5 and
MSE′ (×104) = 3.7270 (in CV criterion case), for the model2.
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Fig. 4 Plots of the true slope function (solid black) and estimates with different values of
dimension kn in model1. The plots of estimates slope function with best dimension k∗n =
8 (solid red), with dimension kn = 4 (dotted), with dimension kn = 6 (dashed), with
dimension kn = 12 (dotdashed), with dimension kn = 16 (twodash).
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Fig. 5 Plots of the true slope function (solid black) and estimates with different values of
dimension kn in model2. The plots of estimates slope function with best dimension k∗n =
5 (solid red), with dimension kn = 2 (dotted), with dimension kn = 3 (dashed), with
dimension kn = 7 (dotdashed), with dimension kn = 8 (twodash).

3.4 Analysis of results

In this subsection, we analyse the results of the criteria presented in the previ-
ous subsection. Both MAR and MCAR context were considered. The different
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results given in Appendix A. Tables 2, 3, 4, 5 give the mean and standard
deviation errors for the imputed values on training samples for both models
and for MAR and MCAR cases. Tables 6, 7, 8, 9 give the mean and standard
deviation errors for the predicted values on test samples for both models and
for MAR and MCAR cases. Tables 10, 11, 12, 13 give the mean and stan-
dard deviation errors for the estimation of θ using the fullfilled database with
imputed values for both models and for MAR and MCAR cases. We can see
that the errors increase when the rate of missing data increases. Similarly, the
errors decrease as the size of the sample increases. When we compare the case
of MAR and MCAR, we see that the error in case of MAR is higher that in the
MCAR case. Moreover, we can see that the regularity of the process X does
not have a crucial impact on the results. All the results in these simulations
are in accordance with what we can expect and confirm the theoretical results
obtained in the previous section.

4 Application

In order to illustrate the contribution of our approach in functional prediction
setting when the covariates are functions and some observations of the real
response are missing, we present in this section an environmental dataset study.

We start by describing the dataset. The functional covariate X is a daily
temperature curve in some cities in France (from May 7, 2015 at 4 pm up to
May 8, 2015 at 3 pm) obtained from www.meteociel.fr. This daily continu-
ous curve is observed at some discretization points (here, at 24 discretization
points, every hour). The graphical display of this daily temperature curves
can be observed in Fig 6. The response variable Y is an atmospheric index of
air quality called ATMO (for a detailed description of this atmospheric index,
see www.atmo-france.org). Its values range from 1 (very good quality of air)
to 10 (very bad quality of air). We obtained the values of the atmospheric
index on May 8, 2015, for these same cities, from www2.prevair.org. Further-
more, we added some cities for which the temperature curve is available but
the atmospheric index is missing. Notice that the response is missing for mild
temperature curves cities: the fact that the value of the response variable Y
is missing for these cities depends on the temperature curve X, and thus we
consider the MAR case. We also refer the reader to the paper [18] for more
discussions about missing data mechanism when dealing with air quality data.
In particular, this paper highlights the fact that air quality missing data can be
considered as MAR. Fig 7 illustrates the selected cities in our study, the blue
cities are given when the response variable Y is missing and the red cities are
given when the response variable Y is observed. It is of primary importance
to get a map of the atmospheric index on the whole French territory, and thus
to impute missing data.

http://www.meteociel.fr/temps-reel/obs_villes.php
www.atmo-france.org/fr/index.php?/2008043044/indice-de-qualite-d-air/id-menu-275.html
www2.prevair.org
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Fig. 6 Plot of the 78 daily temperature curves (the blue curves are given when the response
variable Y is missing).

We have built a sample of 78 pairs {(Yi, Xi)}78i=1, where we have 8 missing
values of the variable Y (the Y ′i s, i = 71, . . . , 78, are missing). Our goal is to
impute these missing values {Yi}78i=71.

We have fixed the number of knots to be 20, the degree of splines has
been chosen equal to 3 and the number of derivatives was fixed to the mod-
erate value of 2. Then, we use the GCV criterion to find the best parameter
of projection dimension kn trying growing sequences: kn = 2, 3, . . . , 21, 22. In
order to see the impact of missing data on this dataset, we have randomly
drawn 700 tests samples in the initial sample and computed prediction errors
on these tests samples, using the remaining of the sample as training sample.
Results are given in Table 14. Here again, the more we have missing data in
the training set, the more the prediction error on the test sample is.

Now, we come back to the initial goal, imputing the missing data. The
minimum value of the GCV criterion is reached for k∗n = 5 and MSE′ (×102)
= 20.791. Table 1 gives the imputed values of the missing data. We see imputed
values mainly around 4, which is a moderate value for the atmospheric index
corresponding to a good quality of air. It is in accordance with the fact that
these cities have moderate temperature curves. We can mention two particular
cases. The highest imputed value (4.161) corresponds to the city of Angers,
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md - Google Maps https://www.google.fr/maps/@47.4202487,3.5858941,6z/data=!4m2!6m1!1szHYIqmp8S1XA.kzQ22r...

2 sur 3 20/10/2015 13:16

Fig. 7 Map of France locating the selected cities of our study: the cities are red when the
variable Y is observed and the cities are blue when the variable Y is missing.

and in parallel, we can see that the temperature curve of this city becomes
high at the end of May 8. On the contrary, the lowest imputed value (3.491)
corresponds to the city of Quimper, and the temperature curve of this city
presents few variations along the 24 hours.

Table 1 Imputed values of the missing response variable.

Missing values of Y Y71 Y72 Y73 Y74 Y75 Y76 Y77 Y78
Imputed values 4.161 3.496 3.850 3.758 3.590 3.491 3.990 3.821

5 Proof of the results

5.1 Proof of Theorem 1

We begin with the following decomposition

∆̂n,obs =
1

n−mn

n∑
i=1

〈Xi, .〉δiΘXi +
1

n−mn

n∑
i=1

〈Xi, .〉δiεi = ΘΓ̂n,obs + Un,obs,
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with Un,obs = 1
n−mn

n∑
i=1

〈Xi, .〉δiεi. Then, ε being independent from X and δ

(MAR assumption), we deduce

E (Y`,imp − 〈θ,X`〉)2 = E
(
ΘΠ̂kn,obsX` −ΘX`

)2
+E

(
1

n−mn

n∑
i=1

〈Xi,
(
Π̂kn,obsΓ̂n,obs

)−1
X`〉δiεi

)2

≤ 2E
(
ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2
+2E (ΘΠkn,obsX` −ΘX`)

2

+E

(
1

n−mn

n∑
i=1

〈Xi,
(
Π̂kn,obsΓ̂n,obs

)−1
X`〉δiεi

)2

,

where Πkn,obs is the projection onto the subspace span(v1,obs, . . . , vkn,obs)
where v1,obs, . . . , vkn,obs are the kn first eigenfunctions of the covariance opera-
tor Γn,obs. For a single imputation, the end of the proof of Theorem 1 is based
on the following lemmas. For the aggregate error term of mn imputed values,
it is just a sum of mn terms that behave like the term for single imputation.

Lemma 1 We have

E
(
ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2
= o

(
λknk

2
n

n−mn
+

kn
n−mn

)
.

Lemma 2 We have

E

(
1

n−mn

n∑
i=1

〈Xi,
(
Π̂kn,obsΓ̂n,obs

)−1
X`〉δiεi

)2

=
σ2
εkn

n−mn
+ o

(
kn

n−mn

)
.

Lemma 3 We have

E (ΘΠkn,obsX` −ΘX`)
2

=

+∞∑
j=kn+1

(
ΘΓ 1/2vj

)2
.

5.2 Proof of Lemma 1

Writing X` in the basis (vj)j≥1, we obtain

E
(
ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2
=

+∞∑
j=1

+∞∑
j′=1

E
[
〈X`, vj〉〈Xm, vj′〉Θ

(
Π̂kn,obs −Πkn,obs

)
vjΘ

(
Π̂kn,obs −Πkn,obs

)
vj′
]
.
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Noticing that the variable X` corresponds to the missing data Y` hence inde-
pendent of Π̂kn,obs, we get

E
(
ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2
=

+∞∑
j=1

+∞∑
j′=1

〈Γvj , vj′〉E
[
Θ
(
Π̂kn,obs −Πkn,obs

)
vjΘ

(
Π̂kn,obs −Πkn,obs

)
vj′
]

=

+∞∑
j=1

λjE
[
Θ
(
Π̂kn,obs −Πkn,obs

)
vj

]2
.

Now, following the proof of Proposition 15 in [11], for any m ≥ 1 we denote
Bm the oriented circle of the complex plane with center λm and radius ρm/2
where ρm = min (λm − λm+1, λm−1 − λm) for m ≥ 2 and ρ1 = λ2 − λ1. With
the convexity assumption (A.1), we actually have ρm = λm − λm+1 for all
m ≥ 1. With these notations, denoting by ι the complex number such that
ι2 = −1, the difference between the projection operators Π̂kn,obs and Πkn,obs

can be written

Π̂kn,obs −Πkn,obs =
1

2πι

kn∑
m=1

∫
Bm

Λ(z)
(
Γ − Γ̂n,obs

)
Λ(z)dz,

where Λ(z) = (zI − Γ )−1. Noticing that Λ(z)vj = 1
z−λj vj , we deduce

Θ
(
Π̂kn,obs −Πkn,obs

)
vj

=
1

2πι

kn∑
m=1

Θ

∫
Bm

Λ(z)
(
Γ − Γ̂n,obs

) dz

z − λj

=
1

2πι

kn∑
m=1

Θ

∫
Bm

+∞∑
j′=1

〈
(
Γ − Γ̂n,obs

)
vj , vj′〉vj′

(z − λj′)(z − λj)
dz.

Still using the results from [11], we have

kn∑
m=1

∫
Bm

dz

(z − λj′)(z − λj)
=


0, if j, j′ > kn,
0, if j, j′ ≤ kn,
(λj − λj′)−1, if j ≤ kn < j′,
(λj′ − λj)−1, if j′ ≤ kn < j.

hence we deduce
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E
(
ΘΠ̂kn,obsX` −ΘΠkn,obsX`

)2
= E

 1

4π2

kn∑
j=1

λj

 +∞∑
j′=kn+1

〈
(
Γ − Γ̂n,obs

)
vj , vj′〉

λj − λj′
Θvj′

2


+E

 1

4π2

+∞∑
j=kn+1

λj

 kn∑
j′=1

〈
(
Γ − Γ̂n,obs

)
vj , vj′〉

λj′ − λj
Θvj′

2
 .

In the following, C corresponds to a generic constant. We denote E(A) and
E(B) the above two terms. We start with the computation of E(A). Using the
same technique as in [11], we get the following bound

E
(
〈
(
Γ − Γ̂n,obs

)
vj , vj′〉〈

(
Γ − Γ̂n,obs

)
vj , vr〉

)
≤ C

n−mn
λj
√
λj′
√
λr,

noticing that the n rate of convergence given in [11] is here transformed into

the n−mm rate because we use Γ̂n,obs with n−mm observed data. Hence we
deduce

E

 〈
(
Γ − Γ̂n,obs

)
vj , vj′〉

λj − λj′
Θvj′

2

=

+∞∑
j′=kn+1

+∞∑
r=kn+1

E
(
〈
(
Γ − Γ̂n,obs

)
vj , vj′〉〈

(
Γ − Γ̂n,obs

)
vj , vr〉

)
(λj − λj′)(λj − λr)

Θvj′Θvr

≤ Cλj
n−mn

 +∞∑
j′=kn+1

√
λj

λj − λj′
Θvj′

2

.

Coming back to the computation of E(A), we can write (using Lemma 12 in
[11])

E(A) ≤ C

n−mn

kn∑
j=1

λ2jλkn+1

(λj − λkn+1)
2

 +∞∑
j′=kn+1

Θvj′

2

≤ Cλkn+1

n−mn

kn∑
j=1

(kn + 1)2

(kn + 1− j)2

 +∞∑
j′=kn+1

Θvj′

2

≤ Cλkn+1(kn + 1)2

n−mn

kn∑
j=1

1

j2

 +∞∑
j′=kn+1

Θvj′

2

.
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As θ ∈ L2([0, 1]) (hence θ is integrable), we finally get

E(A) ≤ Cλknk
2
n

n−mn
an,

where (an)n≥1 is a sequence of real numbers going to zero as n goes to infinity.
We are now interested in the computation of E(B). Beginning in the same way
as E(A) and still using Lemma 12 in [11], we get

E(B) ≤ C

n−mn

+∞∑
j=kn+1

λ2j

 kn∑
j′=1

√
λj′

λj′ − λj
Θvj′

2

≤ C

n−mn

+∞∑
j=kn+1

λj

 kn∑
j′=1

λj′

λj′ − λj
Θvj′

2

≤ C

n−mn

+∞∑
j=kn+1

λj

(
j

j − kn

)2
 kn∑
j′=1

Θvj′

2

.

Now, again with the integrability of θ and the fact that

+∞∑
j=kn+1

λj

(
j

j − kn

)2

≤ Cknbn,

with (bn)n≥1 going to zero as n goes to infinity (see [11] p.19 in the proof of
Proposition 15), we conclude

E(B) ≤ Ckn
n−mn

bn,

and this achieves the proof of Lemma 1.

5.3 Proof of Lemma 2

Let us denote

Tn =
1

n−mn

n∑
i=1

〈Xi,
(
Π̂kn,obsΓ̂n,obs

)−1
X`〉δiεi.

We can write

T 2
n =

1

(n−mn)2

n∑
i=1

〈Xi,
(
Π̂kn,obsΓ̂n,obs

)−1
X`〉2δ2i ε2i

+
1

(n−mn)2

n∑
i=1

n∑
i′=1
i′ 6=i

〈Xi,
(
Π̂kn,obsΓ̂n,obs

)−1
X`〉〈Xi′ ,

(
Π̂kn,obsΓ̂n,obs

)−1
X`〉δiδi′εiεi′ .
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From the independence between ε and X and the MAR assumption, the ex-
pectation of the second term above is zero, hence

E
(
T 2
n

)
=

1

n−mn
E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1
X`〉2δ2i ε2i

]
=

σ2
ε

n−mn
E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1
X`〉2δ2i

]
,

the index i corresponding to an observed data in the sample (and consequently
δi = 1 for this observation). We finally get

E
(
T 2
n

)
=

σ2
ε

n−mn
E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1
X`〉2

]
.

Following the same lines of the proof of Proposition 17 and Lemma 19 in [11],
we obtain

E
[
〈Xi,

(
Π̂kn,obsΓ̂n,obs

)−1
X`〉2

]
= kn + o (kn) ,

which achieves the proof of the Lemma.

5.4 Proof of Lemma 3

The proof of this lemma is quite immediate, noticing that

E (ΘΠkn,obsX` −ΘX`)
2

= E
(
〈(Πkn,obs − I)X`, θ〉2

)
= 〈(Πkn,obs − I)Γθ, θ〉

=

+∞∑
j=kn+1

(
ΘΓ 1/2vj

)2
.

5.5 Proof of Theorem 2

From Theorem 1, the last term in the asymptotic development is negligible,
so we just have to achieve the usual trade-off between the square bias and the
variance. Given that

+∞∑
j=kn+1

(
ΘΓ 1/2vj

)2
=

+∞∑
j=kn+1

L2ϕ(j),

we approximate this sum with the integral
∫ +∞
x

L2ϕ(t) dt, which gives the
desired result.
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5.6 Proof of Theorem 3

First, if we follow the same lines of the proof of Lemmas 1 and 3 in Theorem
1 but with all the sample X1, . . . , Xn, we get

E
(
ΘΠ̂knXnew −ΘΠknXnew

)2
= o

(
λknk

2
n

n
+
kn
n

)
, (14)

and

E (ΘΠknXnew −ΘXnew)
2

=

+∞∑
j=kn+1

(
ΘΓ 1/2vj

)2
. (15)

Now, let us denote, for i = 1, . . . , n,

εi,imp = Yi,imp − 〈θ,Xi〉,

and
ε?i = δiεi + (1− δi)εi,imp.

We immediately can write

εi,imp = εi + Yi,imp − Yi,

and
ε?i = εi + (1− δi)(Yi,imp − Yi).

Then, following the proof of Lemma 2 in Theorem 1, we denote

Sn =
1

n

n∑
i=1

〈Xi,
(
Π̂kn Γ̂n

)−1
Xnew〉ε?i ,

whence,

S2
n =

1

n2

n∑
i=1

〈Xi,
(
Π̂kn Γ̂n

)−1
Xnew〉2 (ε?i )

2

+
1

n2

n∑
i=1

n∑
i′=1
i′ 6=i

〈Xi,
(
Π̂kn Γ̂n

)−1
Xnew〉〈Xi′ ,

(
Π̂kn Γ̂n

)−1
Xnew〉ε?i ε?i′ .

We notice that, for i 6= i′, we have

E (ε?i ε
?
i′) ≤ 4E(Yi,imp − Yi)2 ≤ 8

[
E(Yi,imp − 〈θ,Xi〉)2 + σ2

ε

]
.

This bound and the lines of the proof of Lemma 2 give

E

(
1

n

n∑
i=1

〈Xi,
(
Π̂kn Γ̂n

)−1
Xnew〉ε?i

)2

= O

(
(n−mn)kn

n2
+
m2
nk

2
n

n2

)
. (16)

Now, combining relations (14), (15) and (16) and the fact that mn = o(n) and
m2
nkn = O(n), we get the desired result.
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A Appendix

Table 2 MAR (Model1): Imputed values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%)
Mean 12.520 27.420 44.882
Median 13 27 45
SD 3.307 4.515 5.038

Criterion 1: [MSE×103] 2.3592 2.7845 3.2821
(1.8375) (2.0370) (2.0679)

Criterion 2: [MAE×102] 3.7000 3.9846 4.3836
(1.4326) (1.4321) (1.3655)

Criterion 3: [CR3 × 102] 7.0001 7.5194 8.6148
(6.6216) (5.7701) (5.7158)

n+ n1 = 450

Rate of missing data (%)
Mean 12.433 27.456 45.209
Median 12.333 27.333 45.333
SD 1.877 2.487 3.041

Criterion 1: [MSE×103] 0.8349 1.0048 1.3364
(0.5728) (0.6843) (0.9037)

Criterion 2: [MAE×102] 2.2037 2.4084 2.7716
(0.7494) (0.8128) (0.9264)

Criterion 3: [CR3 × 102] 2.2327 2.5724 3.4547
(1.5754) (1.7245) (2.3383)

n+ n1 = 1800

Rate of missing data (%)
Mean 12.529 27.536 45.213
Median 12.500 27.500 45.250
SD 0.934 1.280 1.355

Criterion 1: [MSE×103] 0.2326 0.2759 0.3521
(0.1321) (0.1519) (0.2018)

Criterion 2: [MAE×102] 1.1765 1.2807 1.4424
(0.3218) (0.3480) (0.4069)

Criterion 3: [CR3 × 102] 0.5933 0.6962 0.8822
(0.3492) (0.3891) (0.5036)
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Table 3 MAR (Model2): Imputed values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%)
Mean 12.912 28.026 45.472
Median 13 28 45
SD 3.524 4.493 5.118

Criterion 1: [MSE×103] 2.4786 2.9537 3.7448
(2.0871) (2.2814) (2.8036)

Criterion 2: [MAE×102] 3.7528 4.1059 4.6319
(1.5474) (1.5388) (1.6688)

Criterion 3: [CR3 × 102] 7.5424 7.7867 9.7596
(8.0437) (5.7674) (7.1366)

n+ n1 = 450

Rate of missing data (%)
Mean 12.924 28.018 45.277
Median 13 28 45.33
SD 1.871 2.533 2.844

Criterion 1: [MSE×103] 0.8594 1.0189 1.2727
(0.6156) (0.6901) (0.8227)

Criterion 2: [MAE×102] 2.2223 2.4241 2.7102
(0.8085) (0.8217) (0.8878)

Criterion 3: [CR3 × 102] 2.2861 2.6008 3.2415
(1.6605) (1.7465) (2.0856)

n+ n1 = 1800

Rate of missing data (%)
Mean 13.010 28.081 45.289
Median 13 28.083 45.250
SD 0.970 1.330 1.456

Criterion 1: [MSE×102] 0.1958 0.2420 0.2977
(0.1262) (0.1610) (0.1852)

Criterion 2: [MAE×102] 1.0634 1.1794 1.3112
(0.34262) (0.3912) (0.4218)

Criterion 3: [CR3 × 102] 0.5023 0.6193 0.7618
(0.3284) (0.4157) (0.4776)
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Table 4 MCAR (Model1): Imputed values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%) 10 25 40

Criterion 1: [MSE×103] 2.3450 2.7328 3.1500
(2.0545) (2.0723) (2.0949)

Criterion 2: [MAE×102] 3.6740 3.9815 4.2895
(1.5563) (1.4156) (1.3849)

Criterion 3: [CR3 × 102] 7.4705 7.5016 8.5432
(8.5200) (5.8912) (5.7471)

n+ n1 = 450

Rate of missing data (%) 10 25 40

Criterion 1: [MSE×103] 0.8064 0.9545 1.1958
(0.5548) (0.6462) (0.8148)

Criterion 2: [MAE×102] 2.1578 2.3500 2.6215
(0.7334) (0.7865) (0.8774)

Criterion 3: [CR3 × 102] 2.2137 2.4524 3.0869
(1.6687) (1.6200) (2.0933)

n+ n1 = 1800

Rate of missing data (%) 10 25 40

Criterion 1: [MSE×103] 0.2233 0.2608 0.3182
(0.1260) (0.1469) (0.1769)

Criterion 2: [MAE×102] 1.1524 1.2443 1.3743
(0.3191) (0.3426) (0.3768)

Criterion 3: [CR3 × 102] 0.5757 0.6577 0.8019
(0.3444) (0.3757) (0.4551)
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Table 5 MCAR (Model2): Imputed values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%) 10 25 40

Criterion 1: [MSE×103] 2.3450 2.7328 3.0946
(2.0545) (2.0723) (2.1618)

Criterion 2: [MAE×102] 3.6740 3.9815 4.2279
(1.5563) (1.4156) (1.4373)

Criterion 3: [CR3 × 102] 7.4705 7.5016 8.3376
(8.5200) (5.8912) (5.8543)

n+ n1 = 450

Rate of missing data (%) 10 25 40

Criterion 1: [MSE×103] 0.7846 0.8936 1.0994
(0.5912) (0.6505) (0.7586)

Criterion 2: [MAE×102] 2.1094 2.2476 2.5089
(0.7779) (0.8129) (0.8770)

Criterion 3: [CR3 × 102] 2.1662 2.2971 2.8173
(1.7611) (1.6425) (1.9292)

n+ n1 = 1800

Rate of missing data (%) 10 25 40

Criterion 1: [MSE×102] 0.1904 0.2312 0.2847
(0.1246) (0.14623) (0.1697)

Criterion 2: [MAE×102] 1.0468 1.1533 1.2908
(0.3512) (0.3763) (0.3883)

Criterion 3: [CR3 × 102] 0.4963 0.5901 0.7264
(0.3340) (0.3754) (0.4296)
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Table 6 MAR (Model1): Predicted values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%)
Mean 12.520 27.420 44.882
Median 13 27 45
SD 3.307 4.515 5.038

Criterion 4: [MSE′×103] 2.3383 2.7173 3.1939
(1.4987) (1.8390) (2.0391)

Criterion 5: [MAE′×102] 3.6757 3.9491 4.3158
(1.2150) (1.3714) (1.3954)

Criterion 6: [CR3′ × 102] 5.9523 6.9769 8.2677
(3.7338) (4.9933) (5.6516)

n+ n1 = 450

Rate of missing data (%)
Mean 12.433 27.456 45.209
Median 12.333 27.333 45.333
SD 1.877 2.487 3.041

Criterion 4: [MSE′×103] 0.8453 0.9984 1.3046
(0.5530) (0.6729) (0.8897)

Criterion 5: [MAE′×102] 2.2109 2.3926 2.7376
(0.7064) (0.7893) (0.9182)

Criterion 6: [CR3′ × 102] 2.1534 2.5348 3.3255
(1.3984) (1.6629) (2.2417)

n+ n1 = 1800

Rate of missing data (%)
Mean 12.529 27.536 45.213
Median 12.500 27.500 45.250
SD 0.934 1.280 1.355

Criterion 4: [MSE′×103] 0.2295 0.2746 0.3474
(0.1282) (0.1512) (0.1982)

Criterion 5: [MAE′×102] 1.1677 1.2762 1.4322
(0.3141) (0.3449) (0.4000)

Criterion 6: [CR3′ × 102] 0.5756 0.6887 0.8699
(0.3165) (0.3753) (0.4888)
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Table 7 MAR (Model2): Predicted values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%)
Mean 12.912 28.026 45.472
Median 13 28 45
SD 3.524 4.493 5.118

Criterion 4: [MSE′×103] 2.3556 2.9148 3.6204
(1.6157) (2.2111) (2.7093)

Criterion 5: [MAE′×102] 3.6745 4.0741 4.5309
(1.2491) (1.4459) (1.6198)

Criterion 6: [CR3′ × 102] 6.0704 7.4692 9.2007
(4.1999) (5.6623) (6.5708)

n+ n1 = 450

Rate of missing data (%)
Mean 12.924 28.018 45.277
Median 13 28 45.33
SD 1.871 2.533 2.844

Criterion 4: [MSE′×103] 0.8183 0.9882 1.2666
(0.5391) (0.6270) (0.8146)

Criterion 5: [MAE′×102] 2.1664 2.3915 2.7022
(0.7343) (0.7692) (0.8827)

Criterion 6: [CR3′ × 102] 2.0977 2.5322 3.2364
(1.3686) (1.5836) (2.0620)

n+ n1 = 1800

Rate of missing data (%)
Mean 13.010 28.081 45.289
Median 13 28.083 45.250
SD 0.970 1.330 1.456

Criterion 4: [MSE′×102] 0.1896 0.2360 0.2935
(0.1216) (0.1531) (0.1812)

Criterion 5: [MAE′×102] 1.0461 1.1647 1.3029
(0.3391) (0.3851) (0.4177)

Criterion 6: [CR3′ × 102] 0.4856 0.6035 0.7492
(0.3148) (0.3959) (0.4618)
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Table 8 MCAR (Model1): Predicted values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%) 10 25 40

Criterion 4: [MSE′×103] 2.1987 2.6269 3.0539
(1.4590) (1.7678) (1.9643)

Criterion 5: [MAE′×102] 3.5704 3.8919 4.2080
(1.1945) (1.3137) (1.3769)

Criterion 6: [CR3′ × 102] 5.6938 6.7835 7.9564
(3.8735) (4.5734) (5.2684)

n+ n1 = 450

Rate of missing data (%) 10 25 40

Criterion 4: [MSE′×103] 0.8310 0.9569 1.1812
(0.5507) (0.6430) (0.8286)

Criterion 5: [MAE′×102] 2.1921 2.3466 2.6039
(0.7055) (0.7653) (0.8748)

Criterion 6: [CR3′ × 102] 2.11684 2.4349 3.0227
(1.3864) (1.5951) (2.1066)

n+ n1 = 1800

Rate of missing data (%) 10 25 40

Criterion 4: [MSE′×103] 0.2229 0.2620 0.3184
(0.1237) (0.1496) (0.1787)

Criterion 5: [MAE′×102] 1.1506 1.2451 1.3732
(0.3094) (0.3433) (0.3768)

Criterion 6: [CR3′ × 102] 0.5589 0.6579 0.7986
(0.3056) (0.3721) (0.4458)
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Table 9 MCAR (Model2): Predicted values mean errors and standard deviations for sam-
ples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%) 10 25 40

Criterion 4: [MSE′×103] 2.1987 2.6269 3.1007
(1.4590) (1.768) (2.2980)

Criterion 5: [MAE′×102] 3.5704 3.8919 4.2134
(1.2206) (1.2660) (1.4992)

Criterion 6: [CR3′ × 102] 5.6938 6.7835 8.2320
(3.8735) (4.5734) (6.6390)

n+ n1 = 450

Rate of missing data (%) 10 25 40

Criterion 4: [MSE′×103] 0.7882 0.8988 1.1058
(0.5638) (0.6565) (0.7629)

Criterion 5: [MAE′×102] 2.1154 2.2558 2.5095
(0.7590) (0.8192) (0.8682)

Criterion 6: [CR3′ × 102] 1.9766 2.2647 2.7929
(1.3459) (1.5910) (1.8796)

n+ n1 = 1800

Rate of missing data (%) 10 25 40

Criterion 4: [MSE′×102] 0.1905 0.2300 0.2844
(0.1216) (0.1462) (0.1709)

Criterion 5: [MAE′×102] 1.0461 1.1493 1.2875
(0.3466) (0.3776) (0.3892)

Criterion 6: [CR3′ × 102] 0.4843 0.5847 0.7224
(.3098) (0.3712) (0.4300)
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Table 10 MAR (Model1): Estimation of θ mean square errors, variance and square bias for
samples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%)
Mean 12.520 27.420 44.882
Median 13 27 45
SD 3.307 4.515 5.038

MSE′′ × 102 20.33993 22.84329 25.59843

V ariance× 102 16.42143 17.02001 17.58919

Biais2 × 102 3.918497 5.823277 8.009239

n+ n1 = 450

Rate of missing data (%)
Mean 12.433 27.456 45.209
Median 12.333 27.333 45.333
SD 1.877 2.487 3.041

MSE′′ × 102 8.923099 10.01299 12.37846

V ariance× 102 7.636041 8.680379 10.64885

Biais2 × 102 1.287058 1.332613 1.729613

n+ n1 = 1800

Rate of missing data (%)
Mean 12.529 27.536 45.213
Median 12.500 27.500 45.250
SD 0.934 1.280 1.355

MSE′′ × 102 3.268755 3.663376 4.294925

V ariance× 102 2.517848 2.870331 3.410527

Biais2 × 102 0.7509066 0.793045 0.884398



Regression imputation in the FLM with missing values in the response 37

Table 11 MAR (Model2): Estimation of θ mean square errors, variance and square bias for
samples with different sizes discretized in p = 100 equidistant points based on 500 simulation
replications.

n+ n1 = 150

Rate of missing data (%)
Mean 12.912 28.026 45.472
Median 13 28 45
SD 3.524 4.493 5.118

MSE′′ × 102 25.77594 30.94147 35.58789

V ariance× 102 17.87099 20.83862 21.5734

Biais2 × 102 7.904949 10.10285 14.01449

n+ n1 = 450

Rate of missing data (%)
Mean 12.924 28.018 45.277
Median 13 28 45.33
SD 1.871 2.533 2.844

MSE′′ × 102 12.80462 14.15714 16.64587

V ariance× 102 6.696352 8.047992 10.44823

Biais2 × 102 6.108267 6.109149 6.197638

n+ n1 = 1800

Rate of missing data (%)
Mean 13.010 28.081 45.289
Median 13 28.083 45.250
SD 0.970 1.330 1.456

MSE′′ × 102 7.50709 8.091252 8.477034

V ariance× 102 1.746334 2.096911 2.495418

Biais2 × 102 5.760756 5.994341 5.981616
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Table 12 MCAR (Model1): Estimation of θ mean square errors, variance and square bias
for samples with different sizes discretized in p = 100 equidistant points based on 500
simulation replications.

n+ n1 = 150

Rate of missing data (%) 10 25 40

MSE′′ × 102 19.94417 22.79952 25.66592

V ariance× 102 15.47478 17.26436 17.30118

Biais2 × 102 4.469392 5.535164 8.364744

n+ n1 = 450

Rate of missing data (%) 10 25 40

MSE′′ × 102 8.900453 9.732244 11.44174

V ariance× 102 7.619475 8.368201 9.842181

Biais2 × 102 1.280978 1.364043 1.599558

n+ n1 = 1800

Rate of missing data (%) 10 25 40

MSE′′ × 102 3.213433 3.567813 4.038663

V ariance× 102 2.483842 2.781455 3.183366

Biais2 × 102 0.7295905 0.7863581 0.855297
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Table 13 MCAR (Model2): Estimation of θ mean square errors, variance and square bias
for samples with different sizes discretized in p = 100 equidistant points based on 500
simulation replications.

n+ n1 = 150

Rate of missing data (%) 10 25 40

MSE′′ × 102 27.05626 29.45794 33.92307

V ariance× 102 18.66185 20.61093 21.52999

Biais2 × 102 8.394406 8.847012 12.39308

n+ n1 = 450

Rate of missing data (%) 10 25 40

MSE′′ × 102 12.23935 13.62752 16.05732

V ariance× 102 6.128976 7.515442 9.942408

Biais2 × 102 6.110378 6.112074 6.114911

n+ n1 = 1800

Rate of missing data (%) 10 25 40

MSE′′ × 102 7.482996 7.923035 8.384754

V ariance× 102 1.9044 2.106332 2.478208

Biais2 × 102 5.578596 5.816703 5.906546
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Table 14 Real data set: prediction errors over 700 drawn samples.

n = 78, 8 missing data, 70 observed data

Test sets n/4 n/3 n/2

Rate of missing data (%) 13 15 20

MSE × 102 24.5650 25.5172 29.7827
(8.4750) (8.1444) (15.0889)

MSA× 102 37.8834 38.4424 41.1194
(6.5104) (6.0372) (8.3055)

Table 15 MAR (Model1): Computation times and selected dimensions of the CV, GCV
and K-fold criteria for samples with different sizes discretized in p = 100 equidistant points.

n+ n1 150 450 1800

CV
Computational times (sec.) 10.5928 74.1095 1158.8180

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6

5-fold CV
Computational times (sec.) 0.7885 1.3610 4.6047

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6

10-fold CV
Computational times (sec.) 1.2671 2.6702 9.9181

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6

GCV
Computational times (sec.) 0.3235 0.4065 1.3558

Best dimension k∗n (For imputation) 5 5 6

Best dimension k∗∗n (For prediction) 5 5 6
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