
HAL Id: hal-01521920
https://hal.science/hal-01521920v3

Submitted on 2 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tentacle-based Moving Obstacle Avoidance for
Omnidirectional Robots with Visibility Constraints
Abdellah Khelloufi, Nouara Achour, Robin Passama, Andrea Cherubini

To cite this version:
Abdellah Khelloufi, Nouara Achour, Robin Passama, Andrea Cherubini. Tentacle-based Moving Ob-
stacle Avoidance for Omnidirectional Robots with Visibility Constraints. IROS: Intelligent Robots
and Systems, Sep 2017, Vancouver, BC, Canada. pp.1331-1336, �10.1109/IROS.2017.8202310�. �hal-
01521920v3�

https://hal.science/hal-01521920v3
https://hal.archives-ouvertes.fr

Tentacle-based Moving Obstacle Avoidance for
Omnidirectional Robots with Visibility Constraints

Abdellah Khelloufi1,2, Nouara Achour2, Robin Passama3, Andrea Cherubini3

Abstract— This paper presents a tentacle-based obstacle
avoidance scheme for omnidirectional mobile robots that
must satisfy visibility constraints during navigation. The
navigation task consists of driving the robot towards a
visual target in the presence of environment (static or
moving) obstacles. The target is acquired by an on-board
camera, while the obstacles surrounding the robot are
sensed by laser range scanners. To perform such task,
the robot must avoid the obstacles while maintaining the
target in its field of view. The approach is validated in both
simulated and real experiments.

I. INTRODUCTION

Navigation strategies generally aim at endowing a
mobile robot with capacities of perception, decision,
and action, that allow it to autonomously navigate
in its environment. These strategies are traditionally
divided in two main classes, depending on whether
the problem is solved locally or globally. Indeed, the
global approach [1] [2], usually consists of motion
planning that relies on the knowledge of an accurate
robot pose and on a global map of the environment. On
the other hand, local or reactive strategies are based on
instantaneous information acquired by the robot sensors.
These strategies include: potential fields [3], vector field
histogram [4], elastic band [5], dynamic window [6],
obstacle-restriction method [7], and closest gap [8].

One of the advantages of these techniques is that
they can be well combined with other sensor-based
approaches such as visual servoing [9], [10]. In these
cases, the task is defined in the sensor space, instead of
configurations space, and it does not require neither a
global model of the environment nor robot localization.
Works in this area include the one presented in [11]. The
authors merge an image-based controller with obstacle
avoidance, for a differential-drive robot equipped with
a pan actuated camera. Moving obstacles may also be
considered in this approach, as shown in [12]. Recently,
another interesting framework for visual navigation with
obstacle avoidance has been presented in [13], for a car-
like robot equipped with an actuated camera and a range
scanner. The framework is based on tentacles [14], [15],
i.e., drivable paths used to predict possible collisions
in the near future. The task realized in [13] consists

1Center for Development of Advanced Technologies
CDTA, 20 Aout 1956 City, Baba Hassen Algiers, Algeria.
akhelloufi@cdta.dz

2Faculty of Electronics and Computer Science, University of Sci-
ences and Technology Houari Boumediene USTHB, BP32 EL-ALIA,
16111 Bab Ezzouar Algiers, Algeria.

3Laboratory for Compute Science, Micro-electronics and Robotics
LIRMM - Université de Montpellier CNRS, 161 Rue Ada, 34090
Montpellier, France. lastname@lirmm.fr

in following a visual path represented by key images,
without colliding with the ground obstacles. The authors
showed that obstacle avoidance had no effect on visual
navigation. Furthermore, the approach presents many
advantages compared to the potential fields [16]. The
framework was improved in [17], by using a Kalman
filter for estimating the obstacle velocities, in order to
deal with moving obstacles during navigation.

In this paper, we address the problem of avoiding
collisions during visual navigation of an omnidirectional
mobile robot that is equipped with a fixed camera and
distance sensors. Specifically, we propose a generaliza-
tion of the framework from [13], by introducing omnidi-
rectional tentacles. These tentacles are characterized not
only by curvature, but also by course angle, since the
robot linear velocity is not necessarily aligned with the
robot heading, as in traditional non-holonomic systems.
We also consider the visibility constraints induced by
the limitations of the - fixed - camera field of view. To
our knowledge, this is the first time that safe navigation
with moving obstacle avoidance is carried out on omni-
directional robots with visibility constraints.

The remainder of the paper is organized as follows.
In Section II, the problem and relevant variables are
defined. The control scheme is presented in Sect. III.
In section IV, we develop our strategy for determining
the best tentacle. Simulated and real experimental results
are presented in Sect.V, and we conclude in Sect. VI.

II. PROBLEM DEFINITION

A. General Definitions
We consider an omnidirectional robot, which can

move in any direction on the ground, with control inputs:

u = (vX , vY , ω) .

These are aligned with the axes of the robot frame
FR (R,XR,YR) (see Fig. 1), with R the robot center of
rotation, XR pointing forward and YR pointing leftward.
The robot is equipped with a fixed forward looking cam-
era with limited field of view β (so that its heading also
determines its viewing direction) and distance sensors
for building a local map of the obstacles surrounding it.

The task to be performed by the robot consists in
driving toward a target that is seen by the camera, while
avoiding the environment obstacles. We assume that the
target can be visually detected and tracked by the robot.
When the environment is safe, the robot should progress
forward with its camera pointing at the visual target.
In the case where avoidable obstacles (either static or
dynamic) are present, the robot should circumnavigate

YR

XR

XC

𝛽
ZC

C

 R

Fig. 1. General definitions.The robot frame FR is shown along with
the occupancy grid (yellow) occupied cells (gray), omni-directional
tentacles (red), and the camera field of view (cyan).

YR

𝜃𝑡

R

𝜃𝑡
∗

XR

𝑋𝑡

𝑋𝑡
∗

𝑌𝑡 𝑌𝑡
∗

𝛼𝑡

𝜌𝑡

𝛼∗ 𝜌∗

𝑇

𝑇

Fig. 2. Definition of the visual task variables.

them and maintain the target visibility in the camera field
of view. If collision is inevitable or the target is lost, the
robot should stop. The navigation task specifications are:

1) orient the robot in order to point the camera toward
the target (we assume that the target is visible
when the robot starts the navigation task),

2) make the robot progress toward the target,
3) avoid collision with the obstacles, while keeping

the target in sight (in the camera field of view).
More formally, this consists in driving the robot so that
the visual target T (that we assume static) moves from
current pose rpt = [rXt

rYt
rθt]
> in the robot frame FR

to a desired pose, rp∗t = [rX∗t
rY ∗t

rθ ∗t]
> (see Fig. 2 for a

complete illustration of these variables), while keeping T
in the field of view, and avoiding collisions. We define:

1) the distance from the desired pose as:

ρ
∗ =

√
(rYt −r Y ∗t)

2 +(rXt −r X∗t)
2, (1)

2) the heading to the desired position, ∀(rXt ,
r Yt) 6=

(rX∗t ,
r Y ∗t) as:

α
∗ = atan2(rYt −r Y ∗t ,

r Xt −r X∗t) , (2)

3) the distance between the robot and the target as:

ρt =

√(
rY 2

t +r X2
t
)2
, (3)

4) the heading toward the target as:

αt =

{
atan2(rYt ,

r Xt) if(rXt ,
r Yt) 6= (0,0) ,

0 otherwise.
(4)

B. Obstacle Representation
For obstacle modeling, we use the occupancy grid

shown in Fig. 1: it is linked to FR , with cell sides par-
allel to X and Y . Its longitudinal and lateral extensions
are limited (Xm ≤ X ≤ XM and Ym ≤ Y ≤ YM), to ignore
obstacles that are too far to jeopardize the robot. Any
grid cell c centered at (X ,Y) is considered occupied if
an obstacle has been sensed in c. The set of occupied
cells with their estimated velocities, is denoted by O:

O = {c1, . . . ,cn} .
This is used, along with the robot geometric and kine-
matic characteristics, to derive possible future collisions.
Indeed, the estimations of the obstacles positions and
velocities are updated at every iteration, by the observer
proposed in [17]. Then, for each ci that may be occupied
by an obstacle within time horizon T , we can predict
initial ti0 (ci,O) ∈ [0,T] and final ti f (ci,O) ∈ [ti0,T]
obstacle occupation times, as a function of O .

C. Tentacles
We hereby present a generalization of the tentacles-

based approach proposed in [17] and [13], to omnidirec-
tional robots. We use a set of drivable paths (tentacles)
both for perception and motion execution. Each tentacle
j is a semicircle that starts in R and is tangent to the
robot linear velocity v. In contrast with the tentacles
originally proposed in [17], our omnidirectional tenta-
cles are characterized not only by their curvature (i.e.,
inverse radius) κ j = ω/v, but also by their course angle
α j = atan2(vY ,vX). In fact, note that on traditional non-
holonomic systems, where v is aligned with the robot
heading, since vY = 0, α is null (all tentacles are tangent
to the robot heading). Curvature κ j belongs to K , a
uniformly sampled set:

κ j ∈K = {−κM, . . . ,0, . . . ,κM}
and α j belongs to A , another uniformly sampled set:

α j ∈A = {αMin, . . . ,αMax} ⊆ [−π,π] .

The total number of tentacles is the product of the
number of possible curvatures by the number of course
angles. An example with 36 tentacles is shown in Fig. 1.
Since our tentacles are used both for perception and
motion execution, a compromise between computational
cost and control accuracy must be reached to tune the
size of K and A , i.e., their sampling intervals. Each

tentacle j is characterized by two classification areas
(collision and dangerous), which are obtained by rigidly
displacing, along the tentacle, two rectangular boxes,
with increasing size. The boxes are overestimated with
respect to the real robot dimensions. For each tentacle
j, the sets of cells belonging to the two classification
areas are noted C j and D j

1. The sets O , C j and D j are
used to calculate the variables required in our control
law, as will be explained just below. In particular, the
largest classification area D is used to select the safest
tentacle and its risk function, while the thinnest one C
determines the - eventually needed - deceleration.

D. Robot occupation times
For each dangerous cell in tentacle j (i.e., for each cell

ci ∈D j), we compute the robot occupation time ti j. This
is an estimate of the time at which the large box will
enter the cell, assuming the robot follows the tentacle
at the current velocity. To calculate ti j (ci,v,α j,κ j), we
assume that the robot motion is uniform, and displace
the box at the current robot velocities, vX = vcosα j and
vY = vsinα j, and ω j = κ jv.

E. Dangerous and collision instants
Once the obstacle and robot occupation times have

been calculated for each cell, we can derive the earliest
time instant at which a collision between obstacle and
robot may occur on each tentacle j. By either checking
all cells in D j, or focusing just on C j, we discern
between dangerous instants and collision instants. These
are defined respectively as:

t j = inf
ci∈D j

{
ti j : ti0 ≤ ti j ≤ ti f

}
,

and
tc

j = inf
ci∈C j

{
ti j : ti0 ≤ ti j ≤ ti f

}
.

In both cases, we seek the earliest time at which a
cell is simultaneously occupied by the obstacle and by
the robot box. Assuming constant robot and obstacle
velocities, these metrics give an approximation of the
time that the robot can travel along the tentacle without
colliding.

III. CONTROL SCHEME

A. Tentacle risk function
For each tentacle j, we design a tentacle risk function,

by using t j and tuned thresholds td > 0 and ts > td (d
stands for dangerous, and s for safe):

H j=


0 if t j≥ ts
1
2

[
1+ tanh

(
1

t j−td
+ 1

t j−ts

)]
if td < t j < ts

1 if t j≤ td .

Note that H j smoothly varies from 0, when possible
collisions are in the far future, to 1, when they are
forthcoming. If H j = 0, the tentacle is tagged as clear.

1For further details on the derivation of C j and D j , refer to [13].

To determine the best behaviour to adopt (among visual
target tracking and obstacle avoidance), we assess the
danger of the environment via the risk function of the
best tentacle (κb,αb) (selected considering both the
visual and avoidance tasks, as we will see in Section IV),
i.e., H = Hb. Depending on the value of H, we distin-
guish the cases explained below.

B. Safe context
In the safe context (H = 0), no dangerous obstacle is

detected on the robot path. In this case, it is desirable
that the robot realizes the task of driving rpt to rp∗t , while
keeping as much as possible T in its field of view. Since
the angular velocity ω determines both the convergence
of rθt to rθ ∗t (for pose regulation) and that of αt to 0
(for target visibility), a compromise must be reached.
We weigh the two objectives, respectively with a gain
λω ∈ [0,1] and with its complementary 1−λω . Priority is
given to target visibility when the desired pose is farther
than ρt ; then, we prioritize pose regulation. For instance,
we can apply:

λω (ρ∗) =

{ 1 ifρ∗ > 2ρt
ρ∗

2ρt
otherwise. (5)

The translation velocity must be aligned with the head-
ing towards α∗, while its norm must be reduced, as the
target is approached. We specify this by setting:

vs (ρ
∗) =

{ V ifρ∗ > ρv
ρ∗

ρv
V otherwise, (6)

with V > 0 the maximum desired value for vs and ρv
the distance at which the robot should slow down. All
these parameters are hand-tuned variables. Then, the
specifications in the safe context are:{

vX = vs cosα∗

vY = vs sinα∗

ω = (1−λω)(
rθt −r θ ∗t)+λω αt .

(7)

C. Unsafe context
In the unsafe context (H = 1), dangerous obstacles are

detected. The robot should circumnavigate them by fol-
lowing the best tentacle. This path variation can drive the
target out of the camera field of view. Correspondingly,
the heading must be controlled to maintain visibility of
the target, just like in the safe task. The translational
velocity must be reduced for safety reasons; we specify
this by using a function vu ∈ [0,vs] that is designed as:

vu =

{ vs if tc
b ≥ tc

s
vs
√

tc
b− tc

d/tc
s − tc

d if tc
d < tc

b < tc
s

0 if tc
b ≤ tc

d

(8)

(with tc
d > 0 and tc

s > tc
d two thresholds corresponding

to dangerous and safe collision times) to guarantee that
the vehicle decelerates (and eventually stops) as the
collision instant on the best tentacle tc

b decreases. Then,
the specifications in the unsafe context are:{

vX = vu cosαb
vY = vu sinαb
ω = vu κb,

(9)

so that the translational and angular velocities guarantee
that the robot follows the best tentacle, i.e., (κb,αb).

D. General control law
In intermediate contexts (0<H < 1), the robot should

navigate between the visual path, and the best tentacle.
The transition between these two extremes will be driven
by H. Using all the variables above, we can write our
controller for visual navigation with obstacle avoidance:{

vX = (1−H) vs cosα∗+H vu cosαb
vY = (1−H) vs sinα∗+H vu sinαb
ω = (1−H)((1−λω)(

rθt −r θ ∗t)+λω αt)+H vu κb.
(10)

In the next section, we explain the stategy that is adopted
to select the best tentacle.

IV. TENTACLES SELECTION STRATEGY
A. Sorting tentacles

To calculate the best tentacle, we must define a
criterion for sorting tentacles, in order to assess their
proximity in terms of control effort. The sorting will
be needed to explore the whole set to find (κb,αb).
Considering that varying the robot position is more
energy-consuming than varying its orientation (the robot
mass being more important than its moment of inertia),
we use position alone to sort the tentacles. In practice,
we sort all tentacles based on the future robot position
after time ∆t (iteration duration). We define a fixed
frame FO (O,XO,YO) (See Fig. 3) that represents the
robot frame at the beginning of an iteration. For each
tentacle j, we must then calculate the robot position
opr = [oXr

oYr]
> in FO after the robot has followed the

tentacle for time ∆t. We have the following relationship
between the robot pose derivative and the control inputs:

˙oθr = ω j
˙oXr = vX cos(oθr)− vY sin(oθr)
˙oYr = vX sin(oθr)+ vY cos(oθr) .

(11)

Rewriting the control inputs in function of κ j and α j:{
ω j = v κ j
vX = v cosα j
vY = v sinα j,

(12)

with v=
√

v2
X + v2

Y the current robot linear velocity. From
(11) and (12), we can rewrite the robot pose derivative
in function of κ j and α j :

˙oθr = v κ j
˙oXr = v (cosα j cos (oθr)− sinα j sin(oθr))
˙oYr = v (cosα j sin(oθr)+ sinα j cos(oθr))

,

(13)
By integrating this expression, we can obtain the robot
position at ∆t. We distinguish two cases according to κ j:
• if κ j = 0, the robot position is defined as :{

oXr = v ∆t cosα j
oYr = v ∆t sinα j,

(14)

YO

𝛼𝑗

𝑟𝑗

𝑟𝑗

𝜔𝑗𝑡

𝛼𝑗

O

𝜋 − 𝜔𝑗𝑡

2

𝜔𝑗𝑡

2

Fig. 3. Variables needed for tentacle selection.

• if κ j 6= 0 the robot position is given by:{
oXr = 2/κ j sin(κ j v ∆t/2) cos(α j +κ j v ∆t/2)
oYr = 2/κ j sin(κ j v ∆t/2) sin(α j +κ j v ∆t/2).

(15)
Let us convert the position to Polar coordinates

(rr,βr), with rr =
√

oX2
r +o Y 2

r and βr = atan2(oYr,
o Xr)

rr (α j,κ j) =

{
v ∆t ifκ j = 0
2
κ j

sin
(

κ j
2 v ∆t

)
otherwise, (16)

βr (α j,κ j) = α j +κ j v
∆t
2
. (17)

Since the robot movement is considered small during an
iteration, sin

(
κ j
2 v∆ti

)
≈ κ j

2 v∆ti, and therefore rr will not
vary much from a tentacle to the other (rr ≈ v∆ti). Hence,
the variations of the robot position are only caused by
variations of βr. Therefore, we have decided to sort the
tentacles set according to the values of βr, calculated
using (17). Accordingly, we compute, for each tentacle
j, a sorting angle βr, j.

B. Tentacles guaranteeing visibility
In this section, we introduce the visibility constraints

in our strategy of obstacles avoidance. In fact, to ensure
that the target is not lost during navigation, the best
tentacle should allow the robot to circumnavigate the
obstacles while keeping the target in sight. However, this
is not possible for all tentacles (since the camera looks
in the direction of the robot heading). In particular, we
consider as tentacles guaranteeing visibility, those that
maintain the target in the field of view after time ∆t.

For a given tentacle j, we define (see Fig. 3):
1) (oXt ,

o Yt) : the target position (at t = 0) in the initial
robot frame FO (RO,XO,YO)

Fig. 4. V-REP simulation, with four obstacles (1 static, 3 moving).

2) (rXt ,
r Yt) : the target position (at t = ∆t) in the

robot frame FR (RR,XR,YR).
The relation between these two positions is given by :[rXt

rYt
1

]
=

[
cos(ω j ∆t) sin(ω j ∆t) rXo
−sin(ω j ∆t) cos(ω j ∆t) rYo

0 0 1

][oXt
oYt
1

]
(18)

where (rXo,
r Yo) are the coordinates of the origin of FO

in FR . Typically, after ∆t these are:{
rXo = rr cos(βr−ω j ∆t +π)
rYo = rr sin(βr−ω j ∆t +π) . (19)

We distinguish two cases:
• when κ j 6= 0, the target position (rXt ,

r Yt) in the
robot frame after ∆t is given by:

rXt = cos(κ j v ∆t) oXt + sin(κ j v ∆t) oYt
+2/κ j sin(κ j v ∆t/2) cos(α j−κ j v ∆t/2+π)
rYt =−sin(κ j v ∆t) oXt + cos(κ j v ∆t) oYt
+2/κ j sin(κ j v ∆t/2) sin(α j−κ j v ∆t/2+π).

(20)
• If κ j = 0, the previous expression is:{

rXt =
o Xt − v ∆t cos(α j)

rYt =
o Yt − v ∆t sin(α j).

(21)

To keep the target in the robot field of view, tentacle j
has to satisfy the following constraints:{

rXt > 0
− tan(β/2) rXt <

r Yt < tan(β/2) rXt ,
(22)

with β the camera field of view (see Fig. 1). In sum-
mary, to determine wether tentacle j guarantees target
visibility, we inject its (κ j,α j) into (20) or (21) and then
check wether the resulting rXt , rYt verify constraints (22)

C. Selecting the best tentacle (κb,αb)

The best tentacle selection strategy is as follows.
1) All tentacles are sorted according to their βr, j,

calculated with (17).
2) All tentacles that guarantee the visibility con-

straints are derived as explained in Sect. IV-B.
3) We compute: the course angle αv = arctan(vY/vX),

curvature κv = ω/vs, hence βr of the path that the
robot would perform if there were no obstacles,
i.e., if the safe context controller (7) was applied.

Fig. 5. V-REP youBot Control inputs during the simulation.

Fig. 6. MPO700 Control inputs.

4) The tentacle that best approximates the visual path
(the nearest one in terms of βr) is computed;
we denote it as the visual task tentacle and its
situation risk function as Hv.

5) If Hv = 0, the visual task tentacle is clear and can
be followed: we set αb = αv and κb = κv.

6) Instead, if Hv 6= 0, we seek a clear tentacle (i.e.,
one with H j = 0). a) first, we search among
the tentacles with βr, j between the one of the
visual task tentacle and that of the best tentacle
at the previous iteration, b) if many clear ten-
tacles are present, the nearest to the visual task
tentacle is chosen, c) if none of them is clear,
we search among the others (the tentacles that are
not between the visual task and the previous best
tentacles), d) If none of the visibility guaranteeing
tentacles is clear, the one with minimum H j is
chosen. Again, the best tentacle will be the clear
one that is closest to the visual task tentacle.

V. EXPERIMENTS
Here, we report the simulated and real experiments

that we performed to validate our approach. These are
also shown in the video attached to this paper2. For
simulations, we used V-REP3, with the KUKA youBot,
an omnidirectional mobile robot with 4 Swedish wheels.
The robot is equipped with a fixed 55.8◦ field of view
camera, and with two 270◦ Hokuyo lidars operating at
40 Hz. The sampling time is fixed to ∆t = 0.1s. The
occupancy grid is built by projecting the laser readings,
using: XM =YM = 8 m, Xm =Ym =−8 m. The cells have
size 20× 20 cm. We use 285 tentacles, with κM = 0.6

2Also visible online at http://bit.do/dfXJG
3www.coppeliarobotics.com

Fig. 7. Real experiment with our MPO700 platform navigating towards a blue chariot. Top: images from the on-board camera, bottom: robot
behaviour while avoiding two obstacles.

m−1, αMin = −2π/3 rad, and αMax = 2π/3 rad. The
maximum translational velocity is set to V = 0.4 ms−1.

Let us firstly describe the simulations, shown in Fig. 4,
where the robot progresses toward the visual target (rep-
resented by a blue box) while avoiding four obstacles
(represented by brown boxes) that are present in the
environment. The closest obstacle is static, the second
and third ones are moving in opposite direction to the
robot and the farthest one is moving laterally. We have
plotted, in Fig. 5, the robot control inputs during this
navigation task. The plot shows that after approximately
5 s, the robot is deviated (vy) and oriented (ω) so that
the camera is pointing at the target. When the robot is
near the obstacles, it starts avoiding them while keeping
the target in the camera field of view. The vx velocity
increases gradually up to the maximum safe velocity
V = 0.4 ms−1. This velocity can be maintained even
while avoiding obstacles, since our algorithm always
selects a clear best tentacle (hence H = 0). Then (at
t ≈ 65 s), the environment is free again, and the visual
task can be performed for the rest of the experiment. At
the end, the robot decelerates and stops when the desired
pose relative to the target has been reached.

After the simulations, we have also validated our
approach on real experiments that have been carried
out on our Neobotix MPO700 platform. This robot is
an omnidirectional platform with 4 steering wheels.
Note that the mobility space of this platform is reduced
in comparison to the one with swedish wheels. Since
the visual target detection is not yet available in our
real experiments framework, we have used the robot
odometry to calculate the target pose in the robot frame.
The data processing and control strategy have been
implemented on a laptop PC communicating with an
embedded PC through a local network. The robot is
controlled by a low level controller that is implemented
on the embedded PC and running at a rate of 40 Hz.
In this experiment, the robot navigates towards a blue
chariot, with two obstacles present in the environment.
The maximum safe velocity is fixed at V = 0.2 ms−1. We
show in Fig. 7 the test scenario and the images acquired
by the robot camera during navigation. As can be seen,
the robot has successfully maintained the target visibility
while avoiding both obstacles. The control inputs are
plotted in Fig. 6. Less smooth control inputs are due to
the nature of our approach, that is based on sampling a
set of drivable paths. However, since the sample time is
higher than the one of the embedded controller, it could
be possible to filter this signal at low level but this was

out of scope in this work.

VI. CONCLUSIONS

In this paper, we have presented a framework that
guarantees obstacle avoidance during a visual navigation
task for an omni-directional mobile robot that has to
deal with visibility constraints. Our technique exploits
the kinematic of the platform by using omni-directional
tentacles for both perception and motion execution.
Simulated and real experiments show that the robot can
perform the task, safely and smoothly, in spite of the
visibility constraints. In the future, we plan to take into
account the visual occlusions provoked by the obstacles.

REFERENCES

[1] J. C. Latombe, “Robot motion planning”, 1991, Kluwer Academic,
Dordredt.

[2] S. M. LaValle, “Planning Algorithms,” Cambridge, U.K.: Cam-
bridge Univ. Press, 2006.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots”, 1985, IEEE ICRA.

[4] J. Borenstein and Y. Koren, “The Vector Field Histogram - Fast
obstacle avoidance for mobile robots”, IEEE Trans. on Robotics
and Automation, vol. 7, no. 3, 1991, pp. 278-288.

[5] S. Quinlan and O. Khatib, “Elastic bands: connecting path plan-
ning and control”, IEEE ICRA, 1993.

[6] D. Fox, W. Burgard and S. Thrun, “The Dynamic Window ap-
proach to obstacle avoidance”, in IEEE Robotics and Automation
Magazine, vol. 4, no. 1, 1997, pp. 23–33.

[7] J. Minguez, “The Obstacle-Restriction Method (ORM) for robot
obstacle avoidance in difficult environments”, IROS, 2005.

[8] M. Mujahad, D. Fischer, B. Mertsching and H. Jaddu “Closest
Gap based (CG) reactive obstacle avoidance navigation for highly
cluttered environments”, IROS, 2010.

[9] F. Chaumette and S. Hutchinson, “Visual servo control, Part I:
Basic approaches,” IEEE Robotics and Automation Magazine, vol.
13 , no. 4, pp. 82–90, December 2006.

[10] F. Chaumette and S. Hutchinson, “Visual servo control, Part II :
Advanced approaches,” IEEE Robotics and Automation Magazine,
vol. 14 , no. 1, pp. 109–118, March 2007.

[11] D. Folio and V. Cadenat, “A redundancy-based scheme to per-
form safe vision-based tasks amidst obstacles”, IEEE Int. Conf.
on Robotics and Biomimetics, 2006, Kunming, China.

[12] M. Futterlieb, V. Cadenat, T. Sentenac, “A Navigational Frame-
work Combining Visual Servoing and Spiral Obstacle Avoidance
Techniques”, ICINCO, 2014.

[13] A. Cherubini and F. Chaumette. “Visual navigation of a mo-
bile robot with laser-based collision avoidance”, Int. Journal of
Robotics Research, vol. 32 no. 2, 2013, pp. 189–205.

[14] D. Bonnafous, S. Lacroix and T. Siméon, “Motion generation
for a rover on rough terrains”, IEEE/RSJ IROS, 2001.

[15] F. Von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller
and H.-J. Wuensche, “Driving with tentacles-Integral structures of
sensing and motion”, in Journal of Field Robotics, 2008, vol. 25,
no. 9, pp. 640–673.

[16] A. Cherubini, F. Spindler and F. Chaumette, “A New Tentacles-
based Technique for Avoiding Obstacles during Visual Naviga-
tion”, IEEE Int. Conf. on Robotics and Automation, 2012.

[17] A. Cherubini, B. Grechanichenko, F. Spindler and F. Chaumette.
“Avoiding moving obstacles during visual navigation”, IEEE Int.
Conf. on Robotics and Automation, 2013.

