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Abstract

A Phase Field model accounting for anisotropic elasticity as well as isotropic strain
gradient viscoplasticity is employed to study the growth of acicular precipitates. First,
following some recent work [M. Cottura et al., Acta Mater., 2014], it is shown that
an anisotropic eigenstrain describing the change in lattice structure during the phase
transformation can generate microstructures with the morphological and kinetic feature
of Widmanstätten plates. Second, we demonstrate that when isotropic visco-plasticity
is accounted for, the plate lengthening remains stationary in isothermal conditions, but
features slower growth rates and larger tip radii.

Introduction

Many metallic alloys undergoing allotropic transformations such as steels, brass or Ti-
based alloys exhibit colonies of acicular precipitates called Widmanstätten structures re-
sulting from diffusion-controlled phase transformations at high temperatures [1]. Despite
different crystallographies, they share generic features: they consist of parallel lamellae
that display the same crystalline orientation and, in isothermal conditions, they follow
a highly anisotropic stationary growth process. Although extensively studied for many
years, it is still unclear how to predict this growth process. We believe that there are
two main reasons for this situation. First, because Widmanstätten plates display a con-
stant lengthening rate, models describing dendrite growth during solidification have been
applied, which gives the prominent role to the interface energy. If this is legitimate for
solid/liquid interfaces, attempts to reproduce Widmanstätten plates with phase field (e.g.
[2]) have shown that the required anisotropies of the interface energy feature unrealistic
magnitudes. Second, contrary to dendrites, there is no analytical theory encompassing
both the diffusion-controlled interface migration and elasticity due to the long range na-
ture of elasticity.
Very recently, we have used the phase field approach to bring new insights into the still
debated mechanism selecting the velocity and tip shape by highlighting the prominent
role of the elastic driving forces [3]. In particular, we have shown that elastic anisotropy
qualitatively changes the growth mechanism that may display a stationary regime. Based
on calculations with generic elastic anisotropies, we have succeeded in rationalizing the
different occurrences of Widmanstätten structures in different metallic alloys.



Usually, Widmanstätten structures are formed at intermediate temperatures where plas-
ticity may operate to relax the transformation induced stresses. This argument has
often been put forward to discard the necessity to involve elasticity in the modeling of
diffusion-controlled transformations, contrary to our recent findings (see also [4]). Thus,
it is legitimate to question the validity of our previous results when plasticity is accounted
for. In this paper, we will address this concern as follows. First, we will present a recent
coupling between phase field and isotropic strain gradient plasticity [5]. Then, we will
analyze the impact of plasticity on the free growth of acicular precipitates in presence of
elastic interactions favoring a single growth direction.

Coupled Model

Phase Field Model

In this work, the Phase Field method has been used for its capacity to handle easily
morphological evolutions at the mesoscale and its ability to couple many phenomena. In
addition to the local concentration field c(r ,t), the model relies on the introduction of a
phase field ϕ(r , t) displaying constant values in the bulk phases: ϕ = 0 in β; ϕ = 1 in α.
Classically, the mesoscopic free energy functional F is split into chemical, interfacial and
elastic contributions. As usually done in mesoscale viscoplastic model, the free energy
functional may also contain a viscoplastic contribution Fvp. Hence,

F = Fch(c, ϕ) + Fel(c, ε∼
el) + Fvp(α∼ , p) (1)

where ε∼
el is the elastic strain tensor. Fvp as well as the new fields necessary to describe

hardening (α∼ , p) will be described hereafter. The chemical free energy Fch accounts for
the volume free energy associated with phase transformation and interface energies.

Fch(c, ϕ) =

∫
V

fhom(c, ϕ) +
λ1
2
|∇c|2 +

λ2
2
|∇ϕ|2 dV (2)

where the homogeneous contribution is approximated by a polynomial expansion, whose
coefficients are chosen to reproduce the equilibrium concentrations of the coexisting
phases [5]. In the framework of linear elasticity, the potential elastic energy reads:

Fel(ε∼
el) = F a

el(ε̄∼) +
1

2

∫
V

λ
≈

: ε∼
el : ε∼

el dV (3)

where λ
≈

is the local elastic tensor and ε̄∼ is the average value of the total strain tensor ε∼(r ).

F a
el(ε̄∼) is an homogeneous term which depends on the choice of the driving conditions.

In the present work where stress free conditions have been considered F a
el = 0. Assuming

that the local concentration is the relevant field for discriminating the elastic properties,
λ
≈

is assumed to depend linearly on c(r ) and is thus space dependent [6]. In the small

deformation framework, ε∼(r ) can be divided into three contributions:

ε∼(r ) = ε∼
el(r ) + ε∼

0(r ) + ε∼
p(r ). (4)



where ε∼
0(r ) and ε∼

p(r ) are the eigenstrain and plastic strain fields, respectively. Assum-
ing Vegard’s law, ε∼

0(r ) = ε∼
T ∆c(r ) where ε∼

T stands for the eigenstrain associated
with the precipitate of α phase. In diffusive phase transformations, static mechanical
equilibrium can be assumed because the relaxation of the elastic waves is by orders of
magnitude faster than the evolution of c and ϕ. In the case of homogeneous elasticity,
this problem can be solved analytically in Fourier space [7]. Otherwise, a fixed-point
algorithm is used at each time step to numerically solve mechanical equilibrium [6].

The concentration and order parameter evolution is governed by kinetic equations re-
lating time derivatives to the corresponding driving forces, defined as the functional
derivatives of F with respect to the fields (noted δF/δ.). Assuming linear constitutive
relationships, the Cahn-Hilliard equation is derived for the conserved concentration field
and the Allen-Cahn equation for the non-conserved order parameter one:

∂c

∂t
(r , t) = M∇2 δF

δc(r , t)
(5)

∂ϕ

∂t
(r , t) = − L δF

δϕ(r , t)
(6)

M and L are assumed constant for simplicity.

Strain gradient Mesoscale Plasticity Model

Following [5], the Phase Field method is coupled to a mesoscale strain gradient viscoplas-
tic model, similar to the one proposed in [8] which has the advantage of being simple
and in which the intrinsic plastic length is easily controlled through the value of a single
parameter. Also, for the sake of simplicity, the present formulation is limited to isotropic
viscoplasticity even though the extension to an anisotropic viscoplastic behavior could
be obtained by explicitly introducing an appropriate set of slip systems. The full model
derivation within a coherent thermodynamic framework is presented in [5].

The free energy depends on two viscoplastic internal variables α∼ and p related to kine-
matic and isotropic hardening, respectively [9], as follow:

Fvp(α∼ , p) =

∫
V

1

3
C α∼ : α∼ +

1

2
H p2 +

1

2
A |∇p|2 dV (7)

The last term in (7), proportional to the square gradient of p introduces an intrinsic
length scale in the plastic model ξ̃ =

√
A/E defined in [5], E being Young’s modulus.

The thermodynamic forces associated with the internal variables are given by:

X∼ =
δF

δα∼
=

2

3
C α∼ (8)

R =
δF

δp
= H p− A∆p (9)

These thermodynamic forces correspond to the hardening variable defining the elastic
domain and the corresponding plastic/viscoplastic potential [9]. More precisely, X∼ is
the center of the elastic domain, and R is its radius.



The kinetic equations of the viscoplastic model are expressed as:

ṗ =

〈
J2(σ∼ −X∼ )−R0 −R

K

〉N
(10)

ε̇∼
p =

3

2
ṗ
σ∼
′ −X∼

′

J2(σ∼ −X∼ )
(11)

α̇∼ = ε̇∼
p −Dpα∼ ṗ (12)

ṗ follows a Norton type flow rule with J2(S∼ ) the second invariant of the deviatoric stress
S∼ , and where R0 is the initial yield stress and R the isotropic hardening. It is worth
noting that R includes both linear isotropic hardening and the strengthening resulting
from the plastic size effect (9).

In heterogeneous materials, the viscoplastic parameters C, Dp, A, N , K and R0 depend
on the position r . In our case, only β undergoes plastic strain while α behaves elasti-
cally. To reproduce this behavior all the viscoplastic parameters have been set at their
value in the β phase, except the initial yield stress R0 which is interpolated as follows
R0(r ) = R̄0 +R′0 tanh [θ (ϕ2(r )− 1/2)] with R̄0 = (Rα

0 +Rβ
0 )/2, R′0 = (Rα

0 −R
β
0 )/2

and θ a parameter controlling plasticity in the interface.

Model parameters

σint (mJ.m−2) D (m2.s−1) C11 (GPa) C12 (GPa) C44 (GPa) C (GPa) Dp N K (MPa.s1/N )

5 3 10−19 197 144 90 150 1900 5 150

Table 1: Physical quantities used in the Phase Field simulations.

The following calculations are not intended to study a specific material but rather to in-
vestigate the generic role of isotropic plasticity during the growth of acicular precipitates
in metallic alloys at high temperatures. Consequently, the physical parameters used for
the calculations (Tab. 1) are not those of a particular alloy, but have nonetheless been se-
lected to comply with realistic orders of magnitude. Homogeneous elasticity is assumed.
The non-dimensional gradient coefficients λ̃1 = λ1/(∆fd

2) and λ̃2 = λ2/(∆fd
2), where

d is the grid spacing and ∆f is an energy density scale, are chosen as λ̃1 = 0.21 and
λ̃2 = 9.8 10−4. Without loss of generality, the equilibrium concentrations of the phases
are set to c0β = 0 and c0α = 1. We have used L = 100 M d−2, where d is the grid spacing,
to ensure that kinetics is much faster for ϕ than for c. M is such as to recover the
interdiffusion coefficient D. We have used θ = 100 which leads to variations of the vis-
coplastic parameters over the grid spacing d, a distance smaller than the interface width.
Finally, for purely numerical reasons, the value of Rα

0 is chosen large enough (100 GPa)
to prevent any plastic relaxation of α even in presence of a characteristic plastic length,
and the linear isotropic hardening modulus H and yield stress in β Rβ

0 are set to zero to
mimick a high temperature situation where plastic relaxation always occurs.



Results

Elastic reference case

For the sake of comparison, we first discuss the main features found recently in [3] con-
cerning the basic role played by the anisotropic elasticity in the growth of Widmanstätten
plates. We focus here on a particular eigenstrain (only εT22 6= 0) which features a single
soft elastic direction corresponding to an infinite plate with an interface along [100] as
the equilibrium shape. We refer the reader to [3] for a complete investigation of different
generic shapes of the eigenstrain able to generate Widmanstätten structures.

Consistently with many experimental observations, we have considered a 2D system
with 3D elasticity (invariant along [001]). Preliminary calculations have shown that a
1024× 384 nodes box is necessary to consider free growth with the periodic conditions.
We have considered a grid spacing d = 1.8 nm leading to a total size 1.9 × 0.7 µm2.
Initially a cylindrical nucleus of radius 9 nm, with a concentration c0α = 1 and an eigen-
strain ε22 = 4% is introduced in a supersaturated β matrix with c∞ = 0.3. The initial
size has been chosen to be greater than the critical size above which the plate shape
induced by the anisotropic elastic energy is favored over the circular shape favored by
the isotropic interface energy. Growth is thus promoted along the [100] direction from
the very beginning of the process.
The evolution of the tip position, along the horizontal axis, has been determined from
the level set ϕ = 0.5 (Fig. 1). After a transient stage shorter than 1 min, the growth
features a linear lengthening regime. The growth rate is quantitatively measured using
a polynomial axn + b that fits the position curve after the transient stage (dashed red
curve). A linear regime is admitted when n = 1± 0.01 for a growth of at least 100 nm.
The stationary growth rate is 0.9 nm.s−1. The determination of the tip radius Rp is more
involved and relies on high orders interpolations of the phase field to reach a precision
smaller than the grid spacing [3]. The evolution of Rp in Fig. 1 starts with a decrease
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Figure 1: On the left, snaphots (enlargements showing 1/4 and 1/3 of the simulation box
along [100] and [010] directions respectively) at t = 4 min of a) ϕ(r ) (black: matrix, white:
precipitate). b) Effective Von Mises equivalent stress J2(σ∼ −X∼ ) in the matrix. c) σ22(r ). d)
σ12(r ). The color scales are from dark blue to red. On the right, radius of curvature (dashed
red curve: average value calculated during the last 4 min) and growth rate (inset) vs. time.



during the first 3 min down to a plateau at the value of 8 nm.

In the snapshots c and d in Fig. 1, we have plotted the distributions of components σ22
and σ12 respectively: as expected, strong stress concentrations are localized ahead of the
plate tip due to its high curvature. σ22 is in compression in front of the precipitate and
in tension and in tension everywhere else. σ12 is non-zero only in front the precipitate
exhibiting both tension and compression states, and displays a space distribution quite
similar to the one generated by a dislocation. The effective equivalent von Mises stress,
i.e. J2(σ∼ −X∼ ), is plotted in Fig. 1b so as to give clues about where plastic relaxation
is likely to occur, as discussed in the next section: clearly, plasticity relaxation will be
activated in front of the plate tips.

Growth with plastic relaxation

Next, we have investigated the role that viscoplasticity can play in the growth of Wid-
manstätten plates using the coupled phase field-viscoplasticity model. Beyond the elastic
anisotropy that has been shown above to be of prime importance for generating Wid-
manstätten structures, it is worth emphasizing that ingredients relevant for the present
problem are included in the plasticity model such as the hardening and viscosity. In par-
ticular, it accounts for the size effect of the plastic behavior beyond the volume fraction
effect, i.e. for the hardening (resp. softening) induced by the decrease (resp. increase) of
the size of the plastic regions. During the acicular precipitate growth, since the stresses
generated by the eigenstrain are strongly localized in front of the precipitate tip as shown
above, it is important to account for this size effect.

Considering the same configuration as for the elastic case, we have performed calculations
with different values of the intrinsic plastic length ξ̃. Figure 3 compares the corresponding
microstructures predicted after t = 5 min In all the cases, the initial ellipsoidal precipi-
tates grow from the supersaturated matrix into acicular precipitates elongated along the
[100] direction. They all follow stationary growth regimes after short initial transient
stages as shown in Fig. 2 (left). Concomitantly, the tip radii Rp decrease during the
transient stages down to stationary values (Fig. 2 right). The viscoplastic curves with
ξ̃ = 0 (red) feature the slowest growth rate with the largest tip radius whereas the elastic
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Figure 2: Lengthening (left) and tip radius (right) vs. time for different behaviors of the
matrix: elastic and viscoplasticity with different plastic lengths ξ̃.



Figure 3: Snapshots (enlargements showing 1/4 and 1/3 of the simulation box along [100]
and [010] directions respectively) at t = 5 min of left: c(r ) (blue: matrix, red: precipitate);
middle: cumulative plastic strain rate ṗ(r ); right: cumulative plastic strain p(r ). a) Elasticity;
viscoplasticity with b) ξ̃ = 100 nm; c) ξ̃ = 10 nm; d) ξ̃ = 0. Color scales are from dark blue to
red.

ones (black) exhibit the fastest kinetics and the sharpest tip. The cases with ξ̃ 6= 0 are in
between those limit cases. Hence, plasticity seems to only reduce the growth rate and to
coarsen the plate tip without changing the mechanism. It is worth stressing that the case
with no contribution from the mechanics cannot be considered as a limit case of plastic
relaxation, as usually implicitly assumed in the modeling of diffusion-controlled trans-
formations. Indeed, neglecting elasticity would simply generate circular precipitates.

In Fig. 3, in agreement with the distribution of the equivalent Von Mises stress in Fig. 1b,
the plastic strain is non-zero mainly in front of the plate tip. The distribution of the
plastic strain (right column) explains the decrease in growth rate with respect to the elas-
tic case because it relaxes the coherent stresses at the interface near the precipitate tip.
The plastic length introduces several differences with conventional plasticity (Fig. 3b-c)
(i) plastic activity is weaker; (ii) p varies more smoothly and (iii) p is more diffuse than
when ξ̃ = 0. The first point can be attributed to the hardening associated with the con-
finement of plasticity in a region close to the tip in the matrix. Indeed, the magnitude
of this strengthening increases with |∇p|2 as given by Eq. 7. It is worth noting that
increasing ξ̃ makes β behave purely elastically: the evolutions of the tip position and
radius become very close to the elastic behavior when ξ̃ → 100 nm (Fig. 2). To proceed
further toward quantitative predictions would require the identification of the intrinsic
plastic length by comparison with experimental measurements [5].



Conclusion

The present work has illustrated what role can play isotropic strain-gradient plasticity in
the growth of Widmanstätten structures in isothermal conditions. The stationary growth
obtained when only elasticity is accounted for is still predicted with plastic relaxation:
plasticity only modifies slightly the couple tip radius/growth rate. By relaxing the stress
levels, the growth is slowed down and the radius of curvature of the precipitate tip
increases. A natural extension of this work would be the investigation of the growth
of acicular precipitate colonies. Finally, it would be necessary to extend this study to
anisotropic plastic relaxation.
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[2] I. Loginova, J. Ågren, G. Amberg, On the formation of Widmanstätten ferrite in
binary Fe-C –phase-field approach, Acta Mat. 52 (2004) 4055–4063.

[3] M. Cottura, B. Appolaire, A. Finel, Y. L. Bouar, Phase field study of acicular
growth: Role of elasticity in widmanstätten structure, Acta Mater. 72 (2014) 200–
210.

[4] K. Ammar, B. Appolaire, S. Forest, M. Cottura, Y. Le Bouar, A. Finel, Modelling
inheritance of plastic deformation during migration of phase boundaries using a
phase field method, Meccanica 49 (2014) 2699–2717.

[5] M. Cottura, Y. L. Bouar, A. Finel, B. Appolaire, K. Ammar, S. Forest, A phase
field model incorporating strain gradient viscoplasticity: Application to rafting in
ni-base superalloys, J. Mech. Phys. Solids 60 (2012) 1243–1256.

[6] G. Boussinot, Y. Le Bouar, A. Finel, Phase-field simulations with inhomogeneous
elasticity comparison with an atomic-scale method and application to superalloys,
Acta Mat. 58 (2010) 4170–4181.

[7] A. G. Khachaturyan, The Theory of Structural Transformations in Solids, Wiley,
New York, 1983.

[8] S. Forest, E. C. Aifantis, Some links between recent gradient thermo-elasto-plasticity
theories and the thermomechanics of generalized continua, Int. J. Solids Struct. 47
(2010) 3367–3376.

[9] J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University
Press, 1990.


