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Abstract. In this research, attempts are made to conduct concrete mus-
cle fatigue analysis of arbitrary motions on OpenSim, a digital human
modeling platform. A plug-in is written on the base of a muscle fa-
tigue model, which makes it possible to calculate the decline of force-
output capability of each muscle along time. The plug-in is tested on a
three-dimensional, 29 degree-of-freedom human model. Motion data is
obtained by motion capturing during an arbitrary running at a speed of
3.96 m/s. Ten muscles are selected for concrete analysis. As a result, the
force-output capability of these muscles reduced to 60% - 70% after 10
minutes’ running, on a general basis. Erector spinae, which loses 39.2%
of its maximal capability, is found to be more fatigue-exposed than the
others. The influence of subject attributes (fatigability) is evaluated and
discussed.

Keywords: muscle fatigue analysis; digital human modeling; OpenSim;
muscle fatigue model; muscle fatigability.

1 Introduction: muscle fatigue and digital human
modeling

1.1 Muscle fatigue

Muscle fatigue is defined as the decrease in maximum force [1]. Work-related
muscle fatigue contributes to occupational Musculoskeletal Disorders (MSDs)
[2], which makes up the vast proposition of the occupational diseases [3]. As
illustrated by Armstrong [4], improper physical work requirements lead to mus-
cle fatigue. It is important to quantify fatigue and to determine the limits of
acceptable work requirements [2]. Proper work design would reduce the risk of
excessive physical workload.

In the effort to involve muscle fatigue analysis into work design, there are two
key problems that bother us. First, in actual working scene, the motion adopted
by workers to finish a task would be arbitrary rather than routine and repeated.
This makes it difficult to evaluate the exact workload carried by a certain muscle.
Fatigue analysis, without the exact information about muscle workload, would



be inaccurate. Second, muscle fatigue process varies a lot among human groups.
The utilization of fatigue analysis would be limited without proper consideration
about demographical human attribute.

1.2 Digital human modeling

Digital human modeling (DHM) technique offers an efficient way to simulate
ergonomics issues in the process of work design. The integration of biomechani-
cal models with DHM systems allows us to evaluate musculoskeletal workload in
manual work simulations. Related software such as Jack [5], Delmia [6], 3DSSPP
[7], Anybody [8], OpenSim [9] are available for work design. All these softwares
render realistic mannequins to visualize work tasks. Backward or inverse dynam-
ics methods are used to calculate the muscle-tendon reaction force [10].

Among the mentioned software, the mannequin used by Jack, Delmia and
3DSSPP shall be settled by the gender and the percentile of body height and
weight in a given anthropometric database (USA, Canadian, German, Korean,
etc). This makes it easy to apply analysis for a specific group of people. Unfortu-
nately, as a vital parameter of work design, muscle force capacity is not included
in the database. It is unreasonable to assume the same muscle capacity among
different anthropometric groups while the other measures diverse. Further mus-
cle analysis on the basis of this muscle capability would be low-effective.

In Jack, Delmia and 3DSSPP, a motive task is simulated by the congregation
of a set of static tasks with a certain posture. Each working posture is evaluated
separately without considering the history of the motion. The external loads,
the duration time and the frequency of the posture is identified. By applying
strength models or inverse dynamic models, load of several major joints are
calculated. In 3DSSPP and Jack, fatigue analysis is available based on the static
joint load, task duration and frequency. This method goes well for simple and
repetitive tasks. But when it comes to arbitrary task, there would be a great
lack of accuracy.

The simulation and analysis by OpenSim and Anybody are more specified.
The mannequin is constituted of concrete bones and muscles where musculoskele-
tal geometry is scaled and adaptive to subjects. The motions obtained by a mo-
tion capture system or computed along a simulated task permitted us to have
the kinematic information, such as positions, velocities and accelerations of a
motion. The inertial properties of body segments are estimated. By applying
the Newtonian principles, the prediction of the resultant extrinsic forces and
moments are then available.

Although the joint reaction force and muscle load are accessible in OpenSim
and Anybody, the accumulation effect has not been taken into account; and no
accurate fatigue analysis is available.

1.3 Objectives

In this research, a plug-in to OpenSim is written to involve the muscle fatigue
analysis to an arbitrary task. Concrete muscle force capability change is specified



and the influence of demographic human attributes is considered. This work is
promising to offer a virtual work design platform that helps to predict muscle
fatigue.

2 Methodology: OpenSim human modeling and muscle
fatigue analysis

2.1 Human modeling and dynamic simulation in OpenSim

As mentioned above, OpenSim is a digital human modeling platform. It allows
users to build and analyze different musculoskeletal models. A model consists
of a set of rigid segments connected by joints. Muscles and ligaments span the
joints, develop force, and generate movements of the joints. After the build-up of
a musculoskeletal model, OpenSim takes experimentally-measured kinematics,
reaction forces and moments as input data. This is usually obtained by motion
capture system from a subject. The experimental kinematics (i.e., trajectories
of markers, joint centers, and joint angles) are used to adjust and scale the
musculoskeletal model to match the dimensions of the subject[9].

For dynamic simulation, an inverse kinematics problem is solved to find the
model joint angles that best reproduce the experimental kinematics. Then a
residual reduction algorithm is used to adjust the kinematics so that they are
more dynamically consistent with the experimental reaction forces and moments.
Finally, a computed muscle control (CMC) algorithm is used to find a set of
muscle excitations and distribute forces across synergistic muscles to generate a
forward dynamic simulation that closely tracks the motion [9]. In this way, the
workload of each muscle is accessible along an arbitrary motion, which paves
way for the fatigue analysis.

2.2 Muscle fatigue analysis

Ma et al. [11] proposed a ”Force-load fatigue model based on mechanical parame-
ters. It depicts how muscle force declines with time with consideration of relative
workload and intrinsic human attribute. The model was described as a differen-
tial function (Eq. 1). According to this model, during a fatiguing process, muscle
force capability (Fcem(t)) changes depending on a) Maximal (or initial) muscle
force capability, Fmax; b) External load on the muscle, FLoad(t) and c) Intrinsic
muscle fatigability, k. For detailed explanation of this model was introduced in
Ma et al. [11, 12] and [13] for static and dynamic cases, respectively.

dFcem(t)

dt
= −kFcem(t)

Fmax
FLoad(t) (1)

This model has been mathematical validated in Ma et al. [11] with static
MET models and other existing dynamic theoretical models.

In this model, intrinsic human attribute concerning to fatigue rate is taken
into consideration, which is referred to fatigability. The definition of fatigability



is proposed by Ma & Chang [14] “Muscle fatigability describes a tendency of
a muscle from a given subject to get tired or exhausted, and it should only
be determined by the physical and psychological properties of the individual
subject”. According to this model, the decrease rate of muscle capability is in
proportion with both work load and current muscle capability. The proportion
coefficient k quantifies the tendency of muscle strength descending, and is noted
as fatigability.

Fatigability varies significantly among human groups. For example, females
are found to be more fatigue-resistant than males [15]; and the older groups
shows significantly much less force loss than the younger group after a certain
exercises [16]. Fatigability k has been determined by comparing the Force-Load
muscle fatigue model with the empirical maximal endurance models [12]. The
determined value of k varies from 0.87 min−1 to 2.15 min−1 for general muscle
groups. Ma et al [17] also conducted experiments to measure fatigability. In
a static drilling task, the fatigability of 40 male workers was identified to be
1.02 ± 0.49 min−1 for the upper limbs.

2.3 Muscle fatigue analysis in OpenSim

The object of this research is a concrete analysis of muscle fatigue. In another
word, how force capability of each muscle declines during an arbitrary motion.
According to the Force-load muscle fatigue model, this objective can be achieved
on condition of two values: workload on each muscle along the motion and the
maximal muscle capability.

Workload on each muscle The muscle force generation dynamics can be
divided into activation dynamics and contraction dynamics [18]. Activation dy-
namics corresponds to the transformation of neural excitation to activation of the
muscle fibers. Muscle contraction dynamics corresponds to the transformation
of activation to muscle force.

Fig. 1. Muscle force generation dynamics. Adapted from Zajac (1989) [18].

Activation dynamics is related to calcium release, diffusion and uptake from
the sarcoplasmic reticulum [19]. It is modeled by a first-order differential equa-
tion [20]:

da

dt
=

u− a

τ(u, a)
(2)



where u is excitation (from 0 to 1), a is activation (from 0 to 1), and τ is a
variable time constant.

Muscle contraction dynamics deals with the force-length-velocity relation-
ships and the elastic properties of muscles and tendons. In OpenSim, it is mod-
eled by a lumped-parameter model [9]:

dlm
dt

= f−1
v (lm, lmt, a) (3)

where lm is the muscle length, lmt is the muscle-tendon actuator length, and fv
is the force velocity relation for muscle.

As mentioned in chapter 2.1, OpenSim develops a CMC algorithm to cal-
culate muscle activation and therefore to distribute joint force among a series
of muscles. By applying the CMC algorithm, the workload on each muscle is
accessible.

The Maximal muscle force capability of each muscle Muscle activation
depends on the neural excitation level. In the case of a certain muscle contraction
speed and muscle length, muscle force increases with muscle activation. Full
activation (i.e., a(t) = 1) happens when a muscle contractile component has
been maximally excited (i.e., u(t) = 1) for a long time [18]. During an arbitrary
motion, muscle kinematics changes from time to time. We calculate the maximal
muscle force Fmax based on the CMC algorithm, in addition that the activation
level of each muscle is preset to full level (a(t) = 1).

As the final step, a Plug-in is written based on the Force-load muscle fatigue
model, with the required inputs obtained by the above methods.

3 Data and Simulation

The plug-in is tested on a three-dimensional, 29 degree-of-freedom human model
developed by Stanford [21]. The model, as the other OpenSim musculoskeletal
models, is made up of bodies, joints, and muscle-tendon actuators. Specifically,
this model consists of 20 body segments, 19 joints and 92 muscle actuators, as
shown in Figure 2. The inertial parameters for the body segments in the model
are based on average anthropometric data obtained from five subjects (age 26
± 3 years, height 177 ± 3 cm, and weight 70.1 ± 7.8 kg).

This model is developed to study the muscles’ contribution to the acceleration
of the body during running. It covers the muscles that needed for arbitrary
running motions. These muscles could be classified into three groups: torso-core
muscle group, pelvis-femur muscle group, and lower knee extremities muscle
group.

The simulation data is also from the project of Hamner et al. [21]. It is
recorded from a healthy male subject (height 1.83 m, mass 65.9 kg) running
on a treadmill at 3.96 m/s. A total of 41 reflective markers are placed on the
subjects anatomical landmarks during the experiment to scale the model to the



Fig. 2. Full body running digital human modeling. Muscles are represented by red
lines.

subjects anthropometry. Ground reaction forces and markers’ trajectories are
recorded. The recorded motion lasts for 10 seconds.

In our study, 10 muscles are selected from the three muscle groups to conduct
muscle fatigue analysis. The basic characteristics of these muscles are listed in
Table 3.

Table 1. Basic characteristics of the analyzed muscles.

Muscle name
Appertained
group

Optimal fiber
length (m)

Maximal isometric
force (N)

Erector spinae Torso-core 0.120 2500.0
External oblique Torso-core 0.120 900.0
Internal oblique Torso-core 0.100 900.0
Adductor magnus Pelvis-femur 0.131 488.0
Glute maximus Pelvis-femur 0.142 573.0
Glute medius Pelvis-femur 0.065 653.0
Tibialis posterior Lower knee 0.031 1588.0
Lateral gastrocnemius Lower knee 0.064 683.0
Extensor digitorum Lower knee 0.102 512.0
Soleus Lower knee 0.050 3549.0



4 Results of simulation

During the arbitrary running, workloads on muscles vary from moment to mo-
ment. A typical muscle workload change is shown in Figure 4.

Fig. 3. Workload on erector spinae muscle during 10s arbitrary running at 3.96 m/s.

4.1 General muscle force decline

In order to investigate the fatigue process, the motion data is duplicated to
10 min. During the running process, muscle force capabilities decline with time.
After input the fatigability (k) of the subject, the detail information about force
capability changes is accessible. A general view of force capability changes of the
selected muscles are shown in Figure 4. Here the fatigability is set to 1.0 min−1.
Generally, the muscles’ capabilities reduce to 60% to 70% of their maximum
after running for 10 min.

4.2 Comparison among different muscles

The initial and ending force capabilities of the selected muscles are shown in
Table 2.

The proportion of force capability reduction is between 30% to 40% for each
of the ten muscles. Erector spinae loses the maximal proportion of force. As
far as the selected muscles, torso-core muscle group fatigues no less than the
pelvis-femur or the lower knee group (average fatigue level: (36.8 ± 2.1)%, (35.1
± 2.7)%, (36.1 ± 3.2)%, respectively).



Fig. 4. Force capability lines of ten muscles during 10 min running. k = 1.0 min−1.
Force of each muscle is normalized by its maximum.

Table 2. General information of muscle force capabilities

Muscle name
Appertained
group

Initial
capabilities
(N)

Finial
capabilities
(N)

Proportion
of reduction

Erector spinae Torso-core 38703.5 23563.3 39.1%
External oblique Torso-core 19876.2 12926.2 35.0%
Internal oblique Torso-core 18374.8 11705.9 36.3%
Adductor magnus Pelvis-femur 10923.7 7322.3 33.0%
Glute maximus Pelvis-femur 12304.1 8096.3 34.2%
Glute medius Pelvis-femur 19134.0 11817.8 38.2%
Tibialis posterior Lower knee 36901.9 22624.1 38.7%
Lateral gastrocnemius Lower knee 18231.9 12481.3 31.5%
Extensor digitorum Lower knee 8940.7 5558.1 37.8%
Soleus Lower knee 95221.7 60708.3 36.3%

4.3 Influence of fatigability index k

Fatigability is a subject-specific parameter that might also varies between muscle
groups. As mentioned in Chapter 2.2, the determined value of k varies from 0.87
min−1 to 2.15 min−1 for general muscle groups. In the current study, we examine
the influence of fatigability by comparing the fatigue level when k = 1.0 min−1

with that when k = 2.0 min−1. A typical comparison is shown in Figure 5.

Table 3 manifests the fatigue level comparisons of all the ten muscles. Gen-
erally, the muscle reduces to 40% to 50% of its initial maximal capability. The
relative sort of muscles’ fatigue level remains unchanged.



Fig. 5. Force capability lines of erector spinae with different preset k values. Force is
normalized by the maximum.

Table 3. Comparison of muscle force capabilities between different fatigabilities

Muscle name Appertained group Proportion of capability loss

k = 1.0 min−1 k = 2.0 min−1

Erector spinae Torso-core 39.1% 62.9%
External oblique Torso-core 35.0% 57.7%
Internal oblique Torso-core 36.3% 59.4%
Adductor magnus Pelvis-femur 33.0% 55.1%
Glute maximus Pelvis-femur 34.2% 56.7%
Glute medius Pelvis-femur 38.2% 61.9%
Tibialis posterior Lower knee 38.7% 62.4%
Lateral gastrocnemius Lower knee 31.5% 53.1%
Extensor digitorum Lower knee 37.8% 61.4%
Soleus Lower knee 36.3% 59.4%

5 Discussions

According to the simulation data, after 10 minutes’ running at the speed of
3.96 m/s, a healthy male subject is likely to lose 30% to 40% of his maximal
muscle capability. The requirement of the running task at the current posture is
about 5% of his maximal muscle capability. If the task continues, there would
be a time in future when the subject’s muscle capability reduces to near to
the required workload. Muscles will enter into a risk zone [23, 22]. Damage will



occur to muscles, which increases the risk of MSDs. The subject would change
his posture unconsciously [24]. It is important to predict the exhausting time in
the early process of work design.

In Hammer’s research [21], the quadriceps (pelvis-femur muscle group) and
plantar flexors (lower knee muscle group) are the major contributors to accel-
eration of the body mass center during running, compared with the torso-core
muscle group (erector spinae and iliopsoas). While in the current study, erector
spinae, who loses 39.2% of its maximal capability, is found to be more fatigue-
exposed than the others. Also, torso-core muscle group fatigues no less than the
other two muscle groups. This phenomenon indicates that torso-core muscles un-
dertake other supportive functions than contributing to body accelerating, such
as counterbalancing the vertical angular momentum of the legs.

A subject with a higher fatigability value (k = 2.0 min−1) losses about 20%
of his maximal capability more than the subject with a lower fatigability value
(k = 1.0 min−1). The influence of fatigability is evident. It is essential to study
the fatigability among different human groups.

It should be noticed that the current study considers no effect of fatigue
recovery. Future study should integrate the muscle recovery for more accurate
calculation.

6 Conclusions and implications

In this study, a plug-in to OpenSim is written on the base of the Force-load mus-
cle fatigue model and muscle force generation dynamics to obtain the concrete
information about how force-output capability of each muscle declines along
time.

Simulation on a three-dimensional, 29 degree-of-freedom human model shows
that the force-output capability of ten selected muscles reduced to 60% - 70%
after 10 minutes’ running at the speed of 3.96 m/s, with a fatigability value of
1.0 min−1. Torso-core muscle group, which has been found to contribute less to
the body’s acceleration in previous research, shows no less proportion of force
loss than the other two groups. The difference in fatigue level caused by the
change of fatigability is evident, which emphasizes the necessity of the study
and determination of fatigability among different human groups.

This work offers a virtual work design platform that helps to predict muscle
fatigue and thereby to control the MSDs risks at the early stage of work design.
In future works, the Motion Capture System of the École Centrale de Nantes
will be used to acquire data for industrial tasks. A force platform will be used to
validate the muscle properties during experiments. The study of the fatigability
k as a function of the people will also be addressed in these new experiments.
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