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Introduction

Stochastic processes have been extensively used to model numerous types of applications from stock prices in finance to systems degradation in engineering, or epidemiological patterns in biology, to only name a few. Their popularity mainly comes from their ability to capture certain observed patterns to then give predictions. In many areas, problems can be impacted by a great number of variables thus requiring models of high-dimension random systems. By consequence, this can become a very complex task in constructing models where dependence is involved and must be further evaluated.

In multivariate statistics or multivariate analysis, recent attractive approaches refer to copula-based graphical models. A copula captures the dependence between multiple random variables. Their attractiveness is largely due to the flexibility that copula models provide, whereby the marginal distributions can be modelled arbitrarily, and any dependence captured by the copula. Copula have been extensively developed over the years; see [START_REF] Joe | Dependence Modeling with Copulas[END_REF] for a recent overview. For data-driven time series modelling, there can be a wide variety of copulae from which to choose and only a few are readily applicable to high-dimensional problems. Copula built from elliptical distributions, such as the Gaussian or the t-copula are most popular in this case. However, these can prove restrictive [START_REF] Kurowicka | Uncertainty Analysis with High Dimensional Dependence Modelling[END_REF], and in the recent graphical models literature, alternative approaches have been proposed that construct series of bivariate copulae as opposed to a one or more large multivariate copula(e).

The merging of stochastic process and statistical copula approaches, to the best of our knowledge, have not been examined in the literature. The main reason lies in the purpose of each. The former assumes a priori an evolution governed through the collection of time-based probabilistic distributions. On the other hand, the latter uses observations of data to describe the dependence of a certain events involving various variables. Nevertheless, both exhibit dependence characteristics, and both have proven efficient in domains where the ability to model high-dimensional problems is required. Our objective is thus to advantageously combine the two frameworks in order to provide a Markov process representation as a dynamic copula-based graph. Among these advantages the parametrization of the model would be drastically diminished as only the stochastic process parameters would be needed. Moreover, conditioning may be analytically performed upon the nature of the conditional densities. Conditioning for Markov processes can sometimes be difficult, especially in cases where the conditioning set cannot be broken down in order to make use of conditional independencies. Furthermore, the need to recalibrate the whole process can be tedious whenever continuous information is available. The pair-copula construction approach is able to directly generate the conditional pair-copula and marginal densities appear straightforward integral form. The conditional expectation of any time epoch can be thus be obtained using this formulation in a more clean way without requiring a complete recalculation of the parameters at each update. The ability to dynamically recognize non-stationary characteristics through the pair-copula representation is also a benefit that our combined approach provides.

Most of the research on copulae has been devoted to spatial dependence due to great interest in practice for new spatial dependence models [START_REF] Kurowicka | Dependence Modeling: Vine Copula Handbook[END_REF], but the analysis of temporal dependence is also possible by the copula approach. In order to account for the time component inherent in the definition of stochastic processes, so-called time-copula have been developed. The first paper dealing exclusively with copulae and stochastic processes was presented by [START_REF] Darsow | Copulas and markov processes[END_REF] who established the connection between copulae and Markov processes by providing a copula representation for the Chapman-Kolmorgorov equation. [START_REF] Këllezi | Numerical methods for lévy processes: Lattice methods and the density, the subordinator and the time copula[END_REF] derive some results on the time-copula of time-changed Brownian motions and discuss the time-copula of a Lévy process, showing how the dependency evolution of a Lévy process can be modelled with a copula. [START_REF] Bedford | Vines-a new graphical model for dependent random variables[END_REF] organize the different decompositions of multivariate distributions in a systematic way. They label the resulting pairwise copulae vines, while [START_REF] Aas | Pair-copula constructions of multiple dependence[END_REF] label the component bivariate copulae pair-copula. Henceforth in this paper, we will refer to them as pair-copula. When considering a T -variate vine copula model, this requires the specification of T 2 = T (T -1)/2 pair-copula, and the marginal densities evaluated at each time point. Nevertheless, this number could be reduced upon the nature of the data in which conditional independences may be found. In this case, the corresponding pair-copula are set to be independence copulae, i.e. C(u 1 , u 2 ) = u 1 u 2 . Instead of leaving the detection of conditional independences to chance, one may, however, consider modelling these independences in the a priori to obtain more efficient models. Unfortunately, the construction of vine copula models satisfying pre-specified conditional independence restrictions is a hard problem in general. A class of models suited for this task are so-called non-parametric Bayesian networks (NPBN) as they are directed graphs to capture dependence as opposed to the undirected vine framework. NPBN are comprised of pair-copula and rank correlations and will be formally defined in the next section.

Among these relative recent developments in the copula-based graph field, models accounting for time dynamic systems generated in a systematic way are lacking. For example, a data-driven dynamic NPBN was developed by [START_REF] Morales-Nápoles | Large-scale hybrid Bayesian network for traffic load modeling from weigh-in-motion system data[END_REF] to model traffic behaviour through vehicle loads. The dependence metrics which are essentially given by conditional time-copulae and conditional rank correlations turn out to be time-varying through data parametrization. Overall, research in multivariate dependence modelling using copulae is focused mostly on the case of time-homogeneous [START_REF] Brechmann | COPAR-multivariate time series modeling using the copula autoregressive model[END_REF] dependence structures. However, promising approaches for allowing time variation in dependence have been put forth [START_REF] Manner | A survey on time-varying copulas: Specification, simulations, and application[END_REF]. The dependence among variables can be rendered time-varying by allowing either the dependence parameter or the copula function to vary over time. However, those dynamic dependence metrics have never been combined thus far within probabilistic graph frameworks. By doing so, this would dynamically highlight the ability to capture characteristics such as tail or non stationary dependencies. For the latter, the classic stochastic process modelling approach does not facilitate its identification as, for instance, Levy processes possess independent and stationary increments.

Time-copula were specifically studied for Markov processes since there is a close relationship between the timecopula and the conditional distribution of two different times. [START_REF] Darsow | Copulas and markov processes[END_REF] define a product of copulae that corresponds in a natural way to the operation on transition probabilities contained in the Chapman-Kolmogorov equations. For non-Markovian processes, the expression of conditional distributions for two time steps may be more complicated to evaluate as the past up to a certain time step influences the future. This could even become harder if non-stationarity or non-homogeneity features come into play. Theoretically, a time-copula could be derived from any stochastic process. This existence and uniqueness of copula was answered by Sklar [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]. Moreover, compared to the statistics-based approach, the time copula makes the model less flexible but on the other hand reduces the parametrization burden. The rank correlation component of an NBPN may be directly derived from the chosen stochastic process and no additional parameters need to be determined.

Our goal is to combine the NPBN framework with k-th order Markov processes in order to model univariate time series. In fact, we prove that any k-th order Markov process may be represented as a dynamic NBPN. In doing so, the resulting framework desirably allows the generation of dynamic pair-copula-based models in a structured manner. We also explicitly provide the exact necessary and sufficient dependence metrics borrowed from the NPBN framework to represent any k-th order Markov process.

When it comes to Bayesian network (BN) modelling, one of the main challenges refers to inference. For discrete BN, it is widely known that inference grows exponentially across the number of states and degree of vertices. In the original NPBN framework, conditioning can be analytically undertaken provided that the copula is chosen to be Gaussian [START_REF] Hanea | Hybrid method for quantifying and analyzing Bayesian belief nets[END_REF]. If any other copula is assumed, the inference problem reverts to the discrete case due to the numerical evaluation of the integrals. Following the pioneering work of [START_REF] Kurowicka | Distribution-Free Continuous Bayesian Belief Nets[END_REF], who introduced NBPN and inference methods for them, the authors of [START_REF] Bauer | Pair-copula Bayesian networks[END_REF] recently derived the expressions of joint and conditional distributions in terms of pair-copula decomposition similar to that of the vinecopula approach. The pair-copula decomposition allows better understanding of the role of blocks of pair-copula into joint and conditional distributions as well as the impact of the copula itself regarding conditioning. With respect to the framework of the k-th order Markov representation, we extend the findings of [START_REF] Bauer | Pair-copula Bayesian networks[END_REF] on conditional and marginal distributions to fit our approach. It is found that analytical conditioning can be performed if the k-th order Markov process is a Gaussian process as well. Therefore, we extend the Gaussian copula requirement to encompass other types of copulae, i.e. time-copula, that comply with the Gaussian process requisite. Additionally, the computational complexity of the [START_REF] Bauer | Pair-copula Bayesian networks[END_REF] algorithm is reduced for deriving the marginal densities of a k-th order Markov process necessary for analytical conditioning

The remainder of this paper is organized as follows. The next section presents the original framework of nonparametric Bayesian networks. Section 3 details the dependence metrics borrowed from the NPBN specific to the Markov process framework. Section 4 shows the k-th order Markov process representation as dynamic NPBN. It is further explicitly provided the requirements to perform conditioning using the NPBN characteristics in section 5. An example using Brownian motion is finally presented in order to illustrate our findings.

Non-parametric Bayesian networks

Non-parametric Bayesian networks (NPBN) are probabilistic graphical objects that capture an n-dimensional distribution (n referring to the number of vertices) where to each edge is associated a conditional pair-copula and a conditional rank correlation. In practice, such BN have been developed in various fields (see for a review on the use of BN in the reliability domain) because dependence is handled in a very flexible way, i.e., copula and rank correlations allow a great deal of ways to capture a specific dependence structure.

Nodes are associated with arbitrary, continuous, invertible distributions, influences are associated with conditional rank correlations and are realized by conditional copulae. A copula C is a distribution on the unit square with uniform margins. Random variables X and Y are joined by copula C if their joint distribution can be written

F XY (xy) = C(F X (x), F Y (y)) (1) 
Sklar's theorem stipulates that this copula exists for any X and Y and is unique if F X and F Y are continuous. Let us consider a BN on n variables. Then the factorization of the joint density in the standard way (following the sampling order 1, ..., n) is

f 1,...,n (x 1 , ..., x n ) = f 1 (x 1 ) n i=2 f i|pa(i) (x i |x pa(i) ) (2) 
where f 1,...,n denotes the joint density of the n variables, f i denotes their marginal densities, and f i| j denotes conditional densities. Each variable X i is represented by the node i. The parent nodes of i form the set pa(i). Conversely, for node i the set of the children nodes is denoted as ch(i). The set of parents including the node itself is called the family: fa(i) = pa(i) ∪ {i} and for a subset A of nodes we let fa(A) = ∪ a∈A fa(a). Assume pa(i) = {i 1 , ..., i |pa(i)| }. We associate the arcs i |pa(i)|-k → i with the conditional rank correlations:

       r(i, i |pa(i)| ) s = 0 r(i, i |pa(i)|-s |i |pa(i)| , ..., i |pa(i)|-s+1 ) 1 ≤ s ≤ |pa(i)| -1 (3)
The assignment is vacuous if {i 1 , ..., i |pa(i)| } = ∅. Assigning conditional rank correlations for i = 1, ..., n, as the above results in associating every arc of the NPBN with a conditional rank correlation between parent and child.

Our objective is to give the necessary and sufficient conditions to represent for any k-th order Markov process as a dynamic NPBN. To do so, we make use of the conditional rank correlation assignment given in eq.( 3)as well as the following in order to complete the characterization.

Theorem 2.1 [START_REF] Bauer | Pair-copula constructions for non-gaussian bayesian networks[END_REF]). Let D = (V, E) be a directed acyclic graph on d = |V| vertices. Let P be a probability measure on R d translating the conditional independent statements corresponding to the directional separation criterion (also called the D-Markov probability measure). Then P is uniquely determined by the margins of each node i ∈ V and its conditional pair-copula c i,i

|pa(i)|-s |i |pa(i)| ,...,i |pa(i)|-s+1 , 1 ≤ s ≤ |pa(i)| -1.

Dependence framework for a k-th order Markov process

Little focus has been given for these classic NPBN to fit within a full probabilistic framework, even less for dynamic modelling, e.g. with stochastic processes. In order to do so, we must extract from any Markov process the dependence metrics NPBN use, i.e. conditional copulae, conditional rank correlations and their specific dependence structure. The idea is then to make use of the conditional rank correlation assignment eq.( 3) and Theorem 2.1 to represent any Markov process by 1. vertices standing for the margins at each time step 2. constructing the exact dependence structure corresponding to the stochastic process 3. assigning to each edge the related conditional time-copula and conditional rank correlation While the first item should remain unchanged regardless of the Markov process considered, the second and third items should be closely examined according to the choice of the Markov process. Without loss of generality, we first propose that copulae are chosen to be exactly the time-copula any stochastic process exhibits. Let X = {X t , t ≥ 0} be an R-valued stochastic process and let the time interval [0, τ] with lattice 0 = t 0 < t 1 < t 2 < • • • < t n-1 < t n = τ. One may consider the joint distributions F t i ,t j (x, y),

F t i ,t j (x, y) = P[X t i < x, X t j < y] (4) 
of the process at times t i and t j , i j. The copula C t i ,t j (u, v) defined as

F t i ,t j (x, y) = C t i ,t j (F X t i (x), F X t j (y)) (5)
is called the time copula for the process X, where F t (x) is the marginal distribution function of X t at time t. Notice that eq. ( 5) is similar to eq. ( 1) but applied to process X. Compared to the data-oriented approach, the time-copula is parameter-free since the complete dependence is determined by time epochs t i and t j . The main downside here lies in the loss of flexibility in terms of dependence modelling which trades off with the reduction of the estimation of copula parameter(s). In practice, the derivation of such a copula is carried out using the relationship between the copulae and conditional probabilities as follows :

P(X t i ≤ x|X t j = y) = lim h 0 P(X t i ≤ x|y ≤ X t j ≤ y + h) = lim h 0 F X t i X t j (x, y + h) -F X t i X t j (x, y) F X t j (y + h) -F X t j (y) = lim h 0 C(F X t i (x), F X t j (y + h)) -C(F X t i (x), F X t j (y)) F X t j (y + h) -F X t j (y) = lim h 0 C(F X t i (x), F X t j (y) + ∆(h)) -C(F X t i (x), F X t j (y)) ∆(h) = ∂ ∂v C(u, v) F Xt i (x),F Xt j (y) (6) 
with ∆(h) := F X t j (y + h) -F X t j (y) wherever the derivative exists. Conversely, one can check that

P(X t j ≤ y|X t i = x) = ∂ ∂u C(u, v) F Xt i (x),F Xt j (y) (7) 
Likewise, additional to the time-copula associated to each of the edges, we use the rank correlation specification given in (3). As we force the distribution to follow a particular stochastic process, the complete rank correlation structure can as well be computed first using Pearson's autocorrelation function

ρ(i, j) = Cov(i, j) σ i σ j (8)
where Cov(i, j) = E(X t i X t j ) -µ i µ j , with µ i = E(X t i ), and σ 2 i = Var(X t i ). The relationship between conditional rank correlation and Pearson's correlation is then given by

r(i, j) = ρ(F i (i), F j ( j)) (9) 
Note that the rank correlation can be expressed in terms of the copula as well as

r(i, j) = 12 [0,1] 2 C i, j (u, v) du dv -3 (10) 
To simplify notation, we use the bijection X t i → i to refer to vertex X t i . For the time interval [0, τ], the complete autocorrelation/autocovariance matrix is thus provided with indices i and j denoting the rows and columns, respectively. For the reader's convenience we refer to [START_REF] Kurowicka | Uncertainty Analysis with High Dimensional Dependence Modelling[END_REF] for the definition of the dependence metrics introduced thus far. To investigate points two and three of the requirements cited earlier, we present the case addressing Markov processes next.

Representing Markov processes as a dynamic NPBN

We are now able to formulate the representation of any k-th order Markov process as a dynamic NPBN. Note that due to the so-called directional Markov property, we believe that this class of stochastic process are the only class applicable to the NPBN framework. Let G = (V, E) be an directed acyclic graph (DAG) over vertices V where elements are connected by directed edges E ⊆ V × V. Then let us introduce a total order < v on pa(v) for every v ∈ V.

For every v ∈ V and w ∈ pa(v), set pa(v; w) = {u ∈ pa(v) : u < v w}
Then the joint distribution function f can hence be written as [START_REF] Bauer | Pair-copula Bayesian networks[END_REF])

f (x) = v∈V f v (x v ) w∈pa(v) c v,w|pa(v;w) (F v|pa(v;w) (x v |x pa(v;w) ), F w|pa(v;w) (x w |x pa(v;w) )) (11) 
where

x = (x v ) v∈V ∈ R |V| .
We are now able to formulate any k-th order Markov process as a non-parametric BN.

Theorem 4.1. Let (Ω, F , (F t ) t∈T , P) be a filtered probability space with T = [0, τ] ⊂ R + for any τ ∈ (0, ∞). Take time lattice

0 = t 0 < t 1 < t 2 < • • • < t n-1 < t n = τ with n ∈ N * . Let X = (X t )
t∈T be an adapted k-th order Markov process, k ∈ N * . Then, X has the NPBN specification as the couple B = (G, P) where

• G = (V, E) and V = {X t i : i ∈ N * }, E = n-k i=0 E i ∪ n j=n-k+1 E j
, where E i = {(i, l), ∀l ∈ {1, ..., n} : li ≤ k} and E j = {( j, m) : m ∈ {nk + 2, ..., n}}.

• P = (P X , C E , R E ), where P X is the set of all marginal distributions of X, C E and R E denote the set of conditional time-copula (see eq. ( 5)) and conditional rank correlations, respectively, associated to each of the edges.

Proof. The main idea is to show that the joint density f X t 0 ,...,X tn , for any n ∈ N * , is equal in both cases. For the sake of simplicity, we will use the abbreviation F i to denote distribution F X t i . The same applies to conditional distributions (F i| j to denote F X t i |X t j ) and density functions ( f i to denote f X t i ). For any (x 0 , ..., x n ) ∈ R n+1 , the joint cdf F 0,...,n (x 0 , ..., x n ) of a k-th order Markov process X = (X t ) t∈T is given by F 0,...,n (x 0 , ...,

x n ) = F 0 (x 0 )F 1|0 (x 1 |x 0 ) • • • F n|n-1,...,n-k (x n |x n-1 , ..., x n-k ) (12) 
Eq. ( 12) is obtained using the simple chain rule and the k-th order Markov property. The marginal conditional densities

f X t i (x i ) = ∂ ∂x i F X t i (x i
) are assumed to exist so the density is straightforwardly given as f 0,...,n (x 0 , ...,

x n ) = f 0 (x 0 ) f 1|0 (x 1 |x 0 ) • • • f n|n-1,...,n-k (x n |x n-1 , ..., x n-k ) (13)
Next, we use the pair copula construction of joint distributions originally proposed by [START_REF] Joe | Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters[END_REF]. For the reader's convenience we omit the function arguments. The conditional density f n|n-1,...,n-k can be written as

f n|n-1,...,n-k = f n-k,n|n-1,...,n-k+1 f n-k|n-1,...,n-k+1 = c n-k,n|n-1,...,n-k+1 (F n-k|n-1,...,n-k+1 , F n|n-1,...,n-k+1 ) f n-k|n-1,...,n-k+1 f n|n-1,...,n-k+1 f n-k|n-1,...,n-k+1 = c n-k,n|n-1,...,n-k+1 (F n-k|n-1,...,n-k+1 , F n|n-1,...,n-k+1 ) f n|n-1,...,n-k+1
where c i, j|w denotes the conditional pair-copula density of variables X t i and X t j given X t w By iterating k times on the conditioning set {n -1, ..., n -k} we obtain

f n|n-1,...,n-k = f n c n-1,n (F n-1 , F n ) k-2 i=0 c n-k+i,n|n-1,...,n-k+i+1 (F n-k+i|n-1,...,n-k+i+1 , F n|n-1,...,n-k+i+1 ) (14) 
Again iterating over every density in (13) the same way to that of ( 14) we finally get

f 0,...,n = n i=0 f i k i=1 i j=1
c j-1,i|i-1,..., j (F j-1|i-1,..., j , F i|i-1,..., j )

n i=k+1 c i-1,i (F i-1 , F i ) k-2 j=0 c i-k+ j,i|i-1,...,i-k+ j+1 (F i-k+ j|i-1,...,i-k+ j+1 , F i|i-1,...,i-k+ j+1 ) (15) 
For the NPBN density, according to its specification, we simply use the decomposition given in (11) to formulate the joint density f 0,...,n . Suffice to consider the parent orderings i -1

< i i -2 < i • • • < i i -k and j -1 < j j -2 < j • • • < j 0 for each vertex i ∈ {k, .
.., n} and j ∈ {0, ..., k}, respectively. By doing so, we obtain the same density to that of eq. ( 15).

An NPBN representation of the k-th order Markov process is given in Fig. 1. The total ordering is chosen as is in the conclusion of the proof. The NPBN representation thus provides that any k-th order Markov process can be jointly characterised by its dependence structure, i.e. the graph set G, and its probabilistic part given by the marginal distributions, conditional time-copula and rank correlations. In order to provide more guidance on how to use Theorem 4.1, we summarize below the step-by-step procedure that provides the NPBN representation of any k-th order Markov process.

• for the graph part G 1. The elements composing the set of vertices V are obtained by taking the corresponding random variable X t i given the time lattice 0

= t 0 < t 1 < • • • < t n .
2. The set of edges E is directly derived from the exact dependence structure any k-th order Markov process exhibits; in other words, it is known that

X t 0 , . . . , X t n-k-1 ⊥ X t n | X t n-k , . . . , X t n-1 ⇔ X t 0 , . . . , X t n-k-1 ⊥ X t n |pa X t n X t 0 X t 1 • • • X t k-1 X t k X t k+1 • • • r 0,1 r 1,2 r k-2,k-1 r k-1,k r k,k+1 r k+1,k+2 r 0,k-1|1,...,k-2 r 0,k|1,...,k-1 r 1,k-1|2,...,k-2 r 1,k|2,...,k-1 r 1,k+1|2,...,k
Figure 1: NPBN representation of k-th order Markov process

• for the probabilistic part P 3. The marginal distributions for each X t i are obtained for each element of the sets P X or V which have a one-to-one correspondence 4. The set of time copula C E is obtained using, for each conditional copula associated to an edge in E, eq. 5 details provided by Theorem 3.1 from [START_REF] Darsow | Copulas and markov processes[END_REF] 5. The rank correlation set R E is obtained using eq. ( 9) or eq. ( 10) for every conditional rank correlation associated to an edge in E

Conditioning

Conditioning is known to be one of the major advantages BN possess. Recall that compared to discrete BN framework, where conditioning can rapidly become intractable, for the NPBN methodology it has been proven that whenever the Gaussian copula is assumed conditioning can be done analytically [START_REF] Hanea | Hybrid method for quantifying and analyzing Bayesian belief nets[END_REF]. If the Gaussian copula is not assumed, the NPBN can be sampled and a discrete version is obtained so that traditional updating methods are summoned. As part of eq. ( 15), one of the challenges is to estimate conditional distributions F v|J , for v ∈ V and J ⊆ V \ {v}. Notice that using conditional independence provided by the k-th order Markov property, if, for any v ∈ V, pa(v) ⊆ J, then

f v|J = f {v}∪J f J = f {v}∪pa(v)∪(J\pa(v)) f J = f v|pa(v) f J f J = f v|pa(v)
More generally, we seek to determine the following

F v|J (y|x J ) = y -∞ f {v}∪J (x {v}∪J )dx v f J (x J ) ( 16 
)
We borrow from [START_REF] Bauer | Pair-copula Bayesian networks[END_REF] the main thread, that is, to provide pair-copula decomposition for marginal distributions. Let us first recall their development. 

W v max :=              ∅ if I -v max = ∅ {w 1 } ∪ pa(v max ; w 1 ) if I -v max ⊆ pa(v max ) and I -v max ∅ {w 2 } ∪ pa(v max ; w 2 ) otherwise
where w 1 and w 2 denote the maximal vertex in I -v max and pa(v max )\S v max , respectively, according to the parent ordering < v max . Further let J denote the set of vertices corresponding to the iterative procedure whose purpose is to obtain the pair-copula decomposition for pdf f W vmax ∪I -vmax (and including W v max \ I). Then

f I (x I ) = R |J| v∈I + f v (x v ) w∈W v c v,w|pa(v;w) (F v|pa(v;w) (x v |x pa(v;w) ), F w|pa(v;w) (x w |x pa(v;w) ))dx J (17) 
We are thus interested in formulating f I for the NPBN representation given in Theorem 4.1. In order to do so, we exploit the k-th order Markov property and the corresponding conditional independence property. For the reader's convenience, we will use as short-hand notation i to interchangeably refer to either vertex or random variable X t i . Now define M = {(i, j) ∈ I 2 : |i -j| > k}. Depending on whether M is empty, we have the the following lemmas.

Lemma 5.1. Let I + be the well-ordered set I augmented with every missing vertex between the minimal and maximal vertices in I and let

J = I + \ I. If M = ∅ then f I (x I ) = R |J| v∈I + f v (x v ) w∈T v c v,w|pa(v;w) (F v|pa(v;w) (x v |x pa(v;w) ), F w|pa(v;w) (x w |x pa(v;w) ))dx J ( 18 
)
where T v := {w ∈ I + : w < v}.

Proof. In the present case, the set M indicates whether there are vertices in I separated by more than k other vertices. If this set is empty, when applying Theorem 4.3 in Bauer and Czado (2016) the marginalization set J appears immediately.

For the more general case where M ∅, we have the following lemma. 

f I (x I ) = R |J| v∈I + \I + 0 f v (x v ) K m=1 c v m max ,pa(v m max )|pa(v m max ;pa(v m max )) (F v m max |pa(v m max ;pa(v m max )) (x v m max |x pa(v m max ;pa(v m max )) ), F pa(v m max )|pa(v m max ;pa(v m max )) (x pa(v m max ) |x pa(v m max ;pa(v m max )) )) × f I + 0 (x I + 0 )dx J (19) with c v,pa(v)|pa(v;pa(v)) (F v|pa(v;pa(v)) (x v |x pa(v;pa(v)) ), F pa(v)|pa(v;pa(v)) (x pa(v) |x pa(v;pa(v)) )) = w∈pa(v) c v,w|pa(v;w) (F v|pa(v;w) (x v |x pa(v;w) ), F w|pa(v;w) (x w |x pa(v;w) ))
and {v m max } is the maximal vertex of I + m , i.e. {v m max } = {m + v min + k}.

Proof. The main body of the proof uses again Theorem 4.3 from [START_REF] Bauer | Pair-copula Bayesian networks[END_REF]. For the case |I| = 1 the proof is trivial. Thus, assume I -v max ∅. Observe from the definition of W v , the condition I -v max ⊆ pa(v max ) is the main driving factor to either obtain {w 1 } ∪ pa(v max ; w 1 ) or {w 2 } ∪ pa(v max ; w 2 ). Since we assume M ∅, then necessarily K > 0. The partition of I into sets I m each of length k facilitates the use of the k-th order Markov property. The procedure proceeds backwards taking vertex {v m max } and testing condition I -v max ⊆ pa(v m max ), where I + gets shrunk of v m max at each iteration. First, by noticing that I + m = pa(m + v min + k) ∪ {m + v min + k} = fa(v m max ) and since M ∅, I -v max pa(v m max ). Thus, W v max is essentially determined by the third condition up to the last iteration when I + reduces to I + 0 . When reaching I + 0 , W v max is determined by the second condition as M = ∅ the term f I + 0 remains as last and is decomposed using Lemma 5.1 as the set {I + 0 } is of length equal to k. For each I m , with 1 ≤ m ≤ K, we thus compute

I I

+ m pa(v m max ) V v min v max v m max J m
f I m (x I m ) = R |Jm | f v m max (x v m max ) w∈pa(v m max ) c v m max ,w|pa(v m max ;w) (F v m max |pa(v m max ;w) (x v m max |x pa(v m max ;w) ), F w|pa(v m max ;w) (x w |x pa(v m max ;w) ))dx J m
Whenever I m = ∅, then we assume by convention that f I m = 1. By iterating over m, it finally yields

f I (x I ) = f I + 0 (x I + 0 ) K m=0 f I m (x I m )
In terms of efficiency, the algorithm summarizing Theorem 5.1 developed in [START_REF] Bauer | Pair-copula Bayesian networks[END_REF] could be said to have a weak lower bown of |I| iterations to complete. We believe that this lower bound can be improved to |I + | if the algorithm is fed with any |I| from k-th order Markov NPBN framework. We also conjecture that Algorithm 1 summarizing Lemma 5.2 should have lower bound K ≤ |I + |, thus performing at worse equally. We leave the proofs of these claims as future work. These reduction is mostly due to the deletion of the unnecessary conditions meant to determine the set W v . In fact, it was pointed out in the proof of Lemma 5.2 that in the k-th order Markov process framework, the set W v is known mainly because the dependence structure is known as well. This is a dramatic computation reduction compared to [START_REF] Bauer | Pair-copula Bayesian networks[END_REF] who must construct the set in each iteration.

As an immediate consequence of Lemma 5.2, one can check that for Gaussian k-th order Markov processes conditioning can be performed analytically on Gaussian densities.

Corollary 5.1. Let X = (X t ) t∈T be an adapted k-th order Gaussian Markov process and consider its dynamic NPBN representation. Then for any v ∈ V and any J ⊆ V -v , the conditional density f v|J = f {v}∪J f J reduces to the division of Gaussian integrals.

Proof. Using Lemma 5.2 on both the numerator and the denominator, the marginal density of any set I m can be written input : Well ordered NPBN; set of parent ordering for each node; non-empty set I ⊆ V; order k of the Markov process output:

Factorisation f I f ← 1; K ← v max -(v min + k) ; I + ← {v min , . . . , v max } ;
// I populated with all missing nodes between v min and v max J ← ∅ ;

// indices of integration variables for m ∈ {1, . . . , K} do

I + m ← {m + v min , . . . , m + v min + k}; v m max ← m + v min + k; f ← f • f v m max ; I m ← I ∩ I + m ; J m ← I + m \ I m ; J ← J ∪ J m ; if I m ∅ then for w ∈ pa(v m max ) do f ← f • c w,v m max |pa(w;v m max ) (F w|pa(w;v m max ) (x w |x pa(w;v m max ) ), F v m max |pa(w;v m max ) (x v m max |x pa(w;v m max )
)) end end end /* Terminate by using Lemma 5.1 applied to the set By definition, the density f m+v min +k|m+v min ,...,m+v min +k-1 is a Gaussian density and when iterating over index m, f I is a multivariate Gaussian density as a product of Gaussian density. The integral can always be analytically solved with the solution varying on the nature of the set J m . This finally proves the claim.

I + 0 */ f ← R |J| f dx J ; Algorithm 1: Marginal factorization of any set I ⊆ V as f I m = R |Jm | f v m max w∈pa(v m max ) c v m max ,w|pa(v m max ;w) (F v m max |pa(v m max ;w) , F w|pa(v m max ;w) )dx J m = R |Jm| f v m max c v m max -1,v m max (F v m max -1 , F v m max ) k-2 i=0 c m+v min +i,v m max |v m max -1,...,
We proceed by illustrating our findings through the example of the Brownian motion.

Example 5.1 (Brownian motion). In this example we illustrate the framework developed above through the example of the Brownian motion denoted as B = {B t , t ≥ 0}. The Brownian motion is a first-order Markov process usually characterised by the following:

• P(B 0 = 0) = 1 a.s.

• B has independent Gaussian increments, with B s+t -B s ∼ N(0, t)

• B has continuous path Moreover, it is known to follow a multivariate Gaussian distribution with mean 0 and autocorrelation ρ(B t i , B t j ) = t i t j , for t j > t i . Applying Theorem 4.1 and the corresponding procedure, we are able to give the following NPBN representation B = (G, P) where

• G = (V, E) with (step 1. of the procedure at the conclusion of section 4) V = {B t i : i ∈ N * } and (step 2.) E = {(i, i + 1) : i ∈ {0, ..., n -1}} (see Fig. 4 for dependence structure)

• P = (P B , C E , R E )
, where P X = {∀i, B t i ∼ N(0, t i )} is the set of all marginal distributions of B (step 3.), C E (step 4.) denotes the set of time-copula density given by [START_REF] Darsow | Copulas and markov processes[END_REF])

c B t i ,t j (u, v) = t j t j -t i ϕ ( √ t j Φ -1 (v) - √ t i Φ -1 (u))/ √ t j -t i ϕ(Φ -1 (v)) for t j > t i ( 20 
)
where Φ denotes the distribution function of a standard normal random variable and ϕ is the density function of a standard normal random variable. R E (step 5.) denotes the set of rank correlations associated to each of the edges. We therefore observe that the copula is non stationary for pair-wise time steps as both t i and t j are parameters influencing the distribution of c B t i ,t j . This fact is not obvious from the stochastic process formulation. Note that the copula (20) could be more specifically written as

c B t i ,t i+1 (u, v) = t i+1 t 1 ϕ ( √ t i+1 Φ -1 (v) - √ t i Φ -1 (u))/ √ t 1 ϕ(Φ -1 (v)) (21) 
since the NPBN representation reduces to only consider sequential time steps in the case of first order Markov processes. Plots of the Brownian copula densities and their corresponding contours may be found in Fig. 3. The non-stationarity can easily be observed through both the densities and their corresponding contours. The distributions resemble in many ways that of the Gaussian copula with different correlation values. For the rank correlation set R E and since the Brownian motion is a Gaussian first order Markov process, ranks of autocorrelation can be given as [START_REF] Kurowicka | Uncertainty Analysis with High Dimensional Dependence Modelling[END_REF] r(B t i , B t i+1 ) = 6 π arcsin 1 2 ρ(B t i , B t i+1 )

Fig. 4 provides a graphical visualization of Brownian motion as dynamic NPBN.

Conclusion

We proved in this paper that a k-th order Markov process has a dynamic NPBN representation. Guidance is given on how to obtain the various dependence metrics that are sufficient and necessary. We additionally derive the conditions required to perform conditioning which can be analytically done for the Gaussian case.

One of the advantages consists in having a clear vision on the dependence dynamics expressed through the time copula and rank correlation. Compared to classic stochastic process based modelling, this may shed the light on non-stationarity concerning dependence. It thus enhances the description/characterization of dependencies. More precisely, for Levy processes whose increments are independent and stationary, the associated time-copula may thus be non-stationary as is shown taking the example of the Brownian motion.

The applicability of the Markov process representation may find interest in various fields ranging from finance, where Markov processes such as the geometric Brownian motion is key for stock pricing, to deterioration modelling, speech recognition, etc. Basically, these are the areas into which Markovian features have been successfully tested and validated. In this regard, one may investigate whether the corresponding time-copula possesses an analytical inverse. In fact, validating the Markovian property may be done through classic statistical tests, e.g. Fisher's. However, validation may not be sufficient for the whole model, especially concerning dependence aspects. Copula-based models require the copula inversion as means for dependence validation through sampling. 
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 1 Theorem 4.3[START_REF] Bauer | Pair-copula Bayesian networks[END_REF]). Let I ⊆ V, I -v = I \ {v} and v max the maximal vertex in I by the well ordering of the BN. Moreover, define S v max := {u ∈ pa(v max )|{u} ⊥ I -v max } and

Lemma 5. 2 .

 2 Let the notation be in as in Lemma 5.1. Let K = v max -(v min + k) and partition I + as = {m + v min , ..., m + v min + k} with v min and v max the minimal and maximal vertices in I, respectively. Likewise, let J = K m≥0 J m with J m = I + m \ I m and I m = I + m ∩ I. Then

Figure 2 :

 2 Figure 2: Sets illustration at iteration m

Figure 3 :

 3 Figure 3: Brownian copula density (left) and corresponding contour (right) for two different time steps.
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