
HAL Id: hal-01521767
https://hal.science/hal-01521767

Submitted on 12 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimenting with Matryoshka Co-Simulation:
Building Parallel and Hierarchical FMUs

Virginie Galtier, Michel Ianotto, Mathieu Caujolle, Rémi Corniglion,
Jean-Philippe Tavella, José Évora Gómez, José Juan Hernández Cabrera,

Vincent Reinbold, Enrique Kremers

To cite this version:
Virginie Galtier, Michel Ianotto, Mathieu Caujolle, Rémi Corniglion, Jean-Philippe Tavella, et al..
Experimenting with Matryoshka Co-Simulation: Building Parallel and Hierarchical FMUs. 12th In-
ternational Modelica Conference, May 2017, Prague, Czech Republic. �hal-01521767�

https://hal.science/hal-01521767
https://hal.archives-ouvertes.fr


Experimenting with Matryoshka Co-Simulation: Building Parallel
and Hierarchical FMUs

Virginie Galtier1 Michel Ianotto1 Mathieu Caujolle2 Rémi Corniglion2 Jean-Philippe Tavella2

José Évora Gómez3 José Juan Hernández Cabrera3 Vincent Reinbold4 Enrique Kremers5

1CentraleSupélec, France, {first.last}@centralesupelec.fr
2EDF R&D, France, first.last@edf.fr

3SIANI, Spain, jose.evora@siani.es, josejuanhernandez@siani.es
4University of Leuven, Belgium, vincent.reinbold@kuleuven.be
5EIFER, Germany, enrique.kremers@eifer.uni-karlsruhe.de

Abstract
The development of complex multi-domain and multi-
physic systems, such as Smart Electric Grids, have
given rise to new challenges in the simulation domain.
These challenges concern the capability to couple multi-
ple domain-specific simulators, and the FMI standard is
an answer to this. But they also concern the scalability
and the accuracy of the simulation within an heterogenous
system. We propose and implement here the concept of a
Matryoshka FMU, i.e. a first of its kind FMU compliant
with the version 2.0 of the FMI standard. It encapsulates
DACCOSIM – our distributed and parallel master architec-
ture – and the FMUs it controls. The Matryoshka auto-
matically adapts its internal time steps to ensure the re-
quired accuracy while it is controlled by an external FMU-
compliant simulator. We present the JavaFMI tools and
the DACCOSIM middleware used in the automatic building
process of such Matryoshka FMUs. This approach is then
applied on a real-life Distributed Energy System scenario.
Regarding the Modelica system simulated in Dymola, im-
provements up to 250% in terms of computational perfor-
mance are achieved while preserving the simulation accu-
racy and enhancing its integration capability.
Keywords: co-simulation tool, multi-threaded execution,
master algorithm, FMU, FMI standard

1 Introduction
Complex systems can be characterized by a great num-
ber of heterogeneous entities in interaction. The Smart
Grids provide a typical example: over a large territory
a multitude of devices produce, transport, store and con-
sume electricity, while some are being monitored and con-
trolled in order to best adjust the dynamic configuration of
the electric network to the current and forecasted weather
conditions and client needs. Co-simulation is essential to
design and study such complex systems.

In this context, the FMI (Functional Mockup Inter-
face) standard (Blochwitz and Otter, 2011) allows users
to share and combine their models across simulation tools
by wrapping them with a native solver in a package, called

an FMU for Co-Simulation, that is composed of an XML
model description and a compiled C code. But the orches-
tration of the execution of the multiple FMUs forming the
co-simulation of a complex system is up to the user. DAC-
COSIM, as an FMU-based co-simulation platform able to
define and simulate complex calculation graphs, proposes
an answer to this matter.

Furthermore, solvers usually used to simulate multi-
physics systems are single-threaded. They may thus en-
counter scaling problems when simulating larger systems.
This is the same for those included in FMUs. DACCOSIM
provides a master code orchestrating the execution of
FMUs in parallel, synchronizing their data exchanges and
adjusting the internal step size to ensure accuracy.

Our objective is to get the best of both worlds by wrap-
ping a DACCOSIM co-simulation in an FMU. We refer to
this englobing FMU as a "Matryoshka" FMU.

This article is organized as follow: Section 2 provides
a quick overview of DACCOSIM features and inner archi-
tecture. Section 3 lists the benefits of encapsulating DAC-
COSIM within an FMU. Section 4 presents JavaFMI, a tool
which greatly facilitates the construction of FMUs from
Java code. Section 5 explains how a Matryoshka FMU is
built with and by DACCOSIM. A real-life Distributed En-
ergy System is then considered and the results obtained
in terms of accuracy and computation efficiency are pre-
sented in Section 6. Finally Section 7 points out a few
directions we would like to explore in the future.

2 DACCOSIM, a Powerful FMI for
Co-Simulation Platform

DACCOSIM (Galtier et al., 2015) is a Java co-simulation
middleware able to define and simulate complex calcula-
tion graphs consisting of multiple FMUs compliant with
the FMI 2.0 standard for Co-Simulation. It relies on
JavaFMI (see Section 4) and is available1 under AGPL for
both Windows and Linux operating systems, whether 32-
bit or 64-bit.

1https://daccosim.foundry.supelec.fr

https://daccosim.foundry.supelec.fr


It consists of two complementary parts:
• A user-friendly Graphical User Interface (GUI)

that facilitates the definition of multi-domain studies
(Figure 1). It enables to easily design the calculation
graph of the simulation case, i.e. the FMUs involved
and the variables exchanged in-between. It also al-
lows the user to set the resources used for the sim-
ulation case (local multi-threaded machine or HPC
cluster) as well as its setup (simulation duration, co-
initialization method, time step control strategy, tol-
erance allowed to internal solver and variables...).
Results can be displayed a posteriori or in real-time
during the simulation. In addition, a Domain Specific
Language allows the user to write scripts to define,
configure and run parametric studies on large co-
simulation cases involving hundreds of FMUs and
thousands of variable exchanges.

Figure 1. Screenshot of DACCOSIM GUI for a system of 14
FMUs with 110 variables exchanged

• A parallel and distributed execution architecture
which manages the initialization and the execution of
the involved FMUs. To maximize performance and
scalability, DACCOSIM runs the FMUs involved in
the co-simulation in parallel, using multiple threads
on a node, and using multiple nodes when a clus-
ter is available. Each FMU is executed by a wrap-
per directly connected to other wrappers to import
and export variable values at each communication
step. To provide the best trade-off between preci-
sion and computational speed, DACCOSIM integrates
fixed and adaptive time step control strategies to dy-
namically adjust the simulation step size of all FMUs
to the estimated error. In order to perform this co-
ordinated step-size adjustment, DACCOSIM relies on
a hierarchy of "masters", one on each computation
node, controlling the set of FMU wrappers executing
on this node. This architecture (Figure 2) is used dur-
ing both co-initialization and co-simulation stages.

The transition from the calculation graph designed with
DACCOSIM GUI to its execution with DACCOSIM calcu-
lation engine relies on Acceleo2: the graph is translated

2https://www.eclipse.org/acceleo/

Figure 2. DACCOSIM distributed architecture

into one or more DACCOSIM masters depending on the re-
sources considered. These masters launch the simulation
and run concurrently till the end of the simulation case.

If it is above all a robust and scalable co-simulation
middleware able to simulate large and complex use cases,
DACCOSIM is also an experimental playground for the
FMI standard where innovative features are tested, such
as the ahead implementation of proposed FMI primi-
tives (Tavella et al., 2016), or the Matryoshka FMU ap-
proach presented in this paper.

3 The Benefits of Encapsulating DAC-
COSIM within an FMU

DACCOSIM itself is a powerful FMI for co-simulation
middleware able to perform fully parallel and distributed
co-initialisation and co-simulation tasks. But as a stan-
dalone tool, its scope remains limited:
• Only FMUs compliant with the FMI 2.0 for CS stan-

dard are supported. Consequently simulators such
as NS-2 (a communication networks simulator), or
HLA federates with no FMI interface cannot be in-
cluded into its co-simulation graph.
• It cannot be integrated within domain-specific tools

able to import FMUs, tools which become more and
more widespread nowadays.

Designing a specific control API for DACCOSIM would
help to meet these needs, but encapsulating it all into a
Matryoshka FMU fulfills even more of them:
• Such an FMU can be imported into any FMI com-

pliant simulation tool or platform such as Dymola or
MECSYCO (Vaubourg et al., 2015). This opens new
perspectives since some of these tools might as well
handle non-FMI components with which DACCOSIM
is not able to directly interact.
• Taking advantage of DACCOSIM efficient, multi-

threaded, step-size control solution helps simulat-
ing faster larger models within traditional mono-
threaded simulation tools. It makes particular sense
for domains where few parallel solvers are available.
• Initialization of complex graphs is taken care of

within the Matryoshka thanks to DACCOSIM gener-
alized co-initialization algorithm.
• A complex simulation graph can be reused directly

https://www.eclipse.org/acceleo/


without having to re-write anything and with no risk
of disclosing industrial and intellectual property.
• The co-simulation process can be finely tuned: when

a solver typically uses only one accuracy objective
for the whole model, DACCOSIM allows the user to
define different tolerance values for every output and
internal variable of each FMU.

4 JavaFMI Tools to Generate and Ex-
ecute FMUs

JavaFMI is a software project devoted to provide a tool-
box that allows to import and export Functional Mock-up
Units (FMU) to/from Java in conformance with the FMI-
CS 1.0 and 2.0 standards. This project is developed by
SIANI3 university institute and its license is LGPL. Main
contributors of this project are EDF Lab, EIFER, and Cen-
traleSupélec. This project is composed of two main tools:
a wrapper and a builder.

4.1 FMI Wrapper
The FMI wrapper allows to import FMUs into a Java
application supporting the creation of Master Algorithms
(Evora et al.). It provides two types of interface: simula-
tion (simplified interface) and access (full interface).

The simulation class (FmiSimulation) provides a very
simplified access to the FMU. This way, the user of the
wrapper can load FMUs without having a deep knowl-
edge of the FMI standard. Its methods are init, doStep,
terminate, read and write variable, getSimulationTime, is-
Terminated and reset.

The access class allows invoking all available meth-
ods of the standard depending on the version that is being
used. This way, the simulation class can be wrapped by
the access class allowing for an advanced usage. Methods
like get, set and free state can be invoked among others.
Basically, all the primitives specified in the FMI-CS stan-
dard can be found as methods in this class.

4.2 FMI Builder
The FMI builder allows to create an FMU based on a
Java application or any program that can be controlled
by a simple Java code. That is, any Java simulation can
be exported to an FMU. This tool provides an automated
solution to create an FMU covering the development of the
dynamic libraries, the generation of a model description
file and the packaging of the needed resources.

The builder provides a framework to convert a Java sim-
ulation into an FMU. It is required to extend the FmiSimu-
lation class where, at least, the following methods should
be implemented:
• define. It returns a model that contains the informa-

tion to be rendered in the modelDescription.xml
• init. It is called in the instantiation process of the

FMU. It should register all input and output variables

3http://www.siani.es

Figure 3. Communication between the JavaFMI wrapper and
the FMU JAR through the libraries (dll, so)

with their corresponding getter and/or setter meth-
ods so that the framework can later get and set the
FMU variables during the initialization and simula-
tion stages.
• doStep. It advances the simulation according to the

given step size.
• reset. It resets the simulation to its initial state.
• terminate. If needed, it should be filled with a ter-

mination code.
Once these methods are implemented, the FmiSimula-

tion class is packaged into a JAR (Java ARchive) file and
processed by the builder so that an FMU is created. The
builder creates an FMU file containing:
• Dynamic libraries (dll and so) in the binaries folder.
• Model description.
• JAR file tuned to the model in the resources folder.
• Additional FMU resources in the resources folder if

any are defined by the user.
The resulting FMU is compliant with the version 2.0

of the FMI standard which makes it applicable within any
FMI compliant tool. Basic primitives like init, doStep,
terminate, etc. are available as well as advanced ones like
get, set and free state. For these advanced methods, the
FMI builder has a default implementation that can be over-
ridden in case a custom implementation is needed.

At runtime, the FMU dynamic libraries are pro-
grammed so that an instance of a Java Virtual Machine
(JVM) is created in order to load the FMU JAR file. Once
this happens, all functions invoked by the user of the li-
brary are directly bridged to the Java application by using
pipes. Associated data flows are explained in Figure 3.

When using JavaFMI wrapper to load the FMU, this
data flow can be shortened: if the JavaFMI wrapper
detects that the FMU has been built with the JavaFMI
builder, it takes the JAR located in the resources folder,
loads it in the JVM in which the wrapper is, and com-
municates directly with the FMU methods through Java
(Figure 4). This yields a significant improvement in the
communication speed.

The JavaFMI project also contributes to make the FMI
standard evolve. New co-simulation concepts (Tavella
et al., 2016) are being trialed and validated by implement-
ing newly defined primitives linking compliant FMU-
generating tools to master algorithms.

http://www.siani.es


Figure 4. Direct communication between the JavaFMI wrapper
and the FMU JAR created by the builder

5 Matryoshka FMU Building Process
In this section we first describe the steps taken by a
DACCOSIM user to build a Matryoshka FMU for his co-
simulation test case. Next we expose the behind the scene
mechanisms, i.e. how DACCOSIM 2017 was augmented to
support the construction of a Matryoshka FMU and which
operations it performs during the building process. Last
we present the result of the building process.

5.1 The User’s Perspective: How to Build a
Matryoshka FMU from DACCOSIM

Exporting a Matryoshka FMU is quite simple for DAC-
COSIM users. Only a few additional steps are required
after having designed the co-simulation graph.

During this initial stage, the user sets the simulation
configuration as he would do for any co-simulation test
case. These settings determine the internal behavior of the
Matryoshka, with in particular:
• the co-initialization mode (none, sequential output

propagation, Newton or a mix of both),
• the step size control method (constant step size

or the adaptative Euler, Richardson or Adams-
Bashforth methods) and its step size characteristics
(initial, minimum and maximum step size),
• the event detection method (bisectional approach

(Camus et al., 2016) or minimum step-size).

The user’s only task is then to define the inputs and out-
puts of the Matryoshka FMU and link them to the vari-
ables of its internal FMUs:

1. The user uses a specific interface (Figure 5) to cre-
ate the external variables of the graph and set for
each its name, causality (input or output), type (real,
integer, boolean, string, enumeration), variability
(constant, discrete or continuous) and initialization
mode (exact, approximated or calculated). Adding a
description of the variables is also possible.

2. He defines default initial values for each external
input variable.

3. He adds external connectors, connects them to the
FMUs own connectors in the graph and associates
their variables as depicted in Figure 6.

4. Finally he generates the Matryoshka FMU by
clicking the toolbar export button of the GUI.

Figure 5. DACCOSIM interface enabling external IO definition

Figure 6. DACCOSIM graph with external connectors

5.2 Behind the Scene: the Steps Towards the
Matryoshka FMU

We describe in the following subsections the sequence of
actions that are automatically performed by DACCOSIM
and result in the Matryoshka FMU generation when click-
ing the "Generate DACCOSIM Matryoshka FMU" button
of DACCOSIM GUI toolbar.

5.2.1 Creating DACCOSIM master external API

DACCOSIM 2017 was augmented to be controlled from the
outside when executed on a local machine. The result is a
DACCOSIMGlobalMaster class that is tailored to a par-
ticular co-simulation configuration, and can be instan-
tiated from another Java program. The obtained master
class retains its internal mechanism specificities (multi-
threaded architecture, adaptive step size control...) while
adapting to the constraints imposed by the control pro-
gram (external step size, input values...): if the internal
step size leads to exceed the external step bound, the inter-
nal step size is truncated to meet this limit. It is afterward
restored to its non-truncated value at the beginning of the
following external step. Only DACCOSIM cluster features,
i.e. its distributed architecture, are for now not exploited
in the context of the Matryoshka FMU.

The master class is generated with Acceleo. It inte-



grates a set of basic functions enabling external interac-
tions with the master, among which:
• instantiating DACCOSIM global master;
• setting the start and stop times of the simulation;
• setting and getting the value of the external vari-

ables of the Matryoshka. Inner variables are not ac-
cessible for now;
• changing the state of the master, i.e. initialization

or simulation mode;
• performing the co-initialization of the internal

graph considering imposed input variable values;
• performing a co-simulation step whose size is im-

posed by the control program;
• terminating the co-initialization and/or co-

simulation process.

5.2.2 Specifying Matryoshka interface to JavaFMI
All these functions are called by a Java interface code ex-
tending the FMISimulation class defined in the JavaFMI
tools. This interface is used to perform the mapping be-
tween the primitives defined by the FMI standard and
DACCOSIM master’s own interaction functions. It is au-
tomatically generated with Acceleo. The modelDescrip-
tion.xml file of the Matryoshka FMU is later generated
based on the information specified in this interface class,
and especially the list and characteristics of the external
input and output variables of the DACCOSIM co-simulation
graph.

One characteristic of the Matryoshka that has to be cal-
culated prior to the interface generation is the dependency
of the external output variables regarding its external in-
put variables. This information is important when per-
forming the co-initialization of a co-simulation scheme
involving the Matryoshka to ensure that the variables are
initialized in the correct order.

The calculation of the Matryoshka output dependencies
is automated by DACCOSIM. It first computes the oriented
acyclical causality graph of the Matryoshka co-simulation
scheme (Figure 7). The graph is then reversibly parsed
from the external outputs (blue dots) until its reaches the
graph seeds that include the external inputs (large yellow
dots). Optionally, this process can be disabled to let the
user define the dependencies manually.

5.2.3 JavaFMI interface compilation with Ant
The two Java files (Master and Interface) are put into Java
packages and compiled into a JAR using Ant. The Ant
command file is tuned to each use-case and generated with
Acceleo. The resulting JAR is an essential input compo-
nent for the FMU builder.

5.2.4 Building the FMU using JavaFMI builder
The Matryoshka FMU is finally created by using JavaFMI
builder (see Section 4). The following components are
assembled as the super FMU resources:
• the previously constituted Jar file;
• the resources required by DACCOSIM master, i.e.

the inner FMUs, the csv files defining the variables

to log and the variables exchanged, a modelDescrip-
tion file generated by DACCOSIM (different from Ma-
tryoshka’s own modelDescription file generated by
the builder, even though they’re quite similar);

• the library files required by DACCOSIM calcula-
tion engine. If most are platform independent, a few
such as 0MQ require OS specific components. This
results in an OS specific Matryoshka that can be used
either on Windows 64 bit or Linux 64 bit systems.

A simple call to the FMU builder command line point-
ing to these resources is then sufficient to automatically
create the Matryoshka FMU.

5.3 What is a Matryoshka FMU like
The result is an FMU embedding DACCOSIM with the fol-
lowing capabilities:
• Can manage variable simulation time step.
• Can be instantiated several times.
• Cannot get and set FMU state, serialize its state or

provide directional derivatives.
Generated Matryoshka FMUs have been successfully
tested with the FMU checker, as well as imported and run
in FMI 2.0 compliant tools (Dymola, DACCOSIM...).

6 Application to an Industrial Simula-
tion Use Case

6.1 Presentation of the District Energy System
Use Case

A District Energy System (DES) consists of components
that enable the delivery of energy services in a district.
This includes all possible carriers, most frequently elec-
tricy, heating, cooling and gas networks. Research inter-
ests mainly focus on the modelling of electrical and heat
grids on a neighbourhood scale to optimize the topology
and sizing of the electrical network, as well as to design
the energy management system (Baggi et al., 2014; Zucker
et al., 2016; Wetter et al., 2015).

6.1.1 Problematics

One of the main issues of such models is their lack of
scalability, i.e. the inability to study a growing number of
buildings connected to real size distribution networks in an
appropriate amount of time: long time-scale simulation of
a DES can thus easily reach limits in terms of memory and
simulation time when using one generic solver since most
of them are mono-threaded. As a result, the simulation of
large and complex DES usually leads to simplifications ei-
ther on the building side or on the network side. The alter-
native is to distribute the simulation by decomposing the
problem into smaller interconnected sub-problems. DAC-
COSIM is then a suitable candidate tool.

6.1.2 Model Description

We consider a fixed district model written in Model-
ica (Baetens et al., 2015) involving 12 grid-connected
Smart Buildings in a heterogeneous district (Figure 8).



Figure 7. Complete causality graph (on the left) and its acyclic view (on the right) of a simple co-simulation graph.

For each building, we consider 3 thermal zones and one
heating-pump (HP) connected to a 3-phases linear feeder.
Thermal, electrical, ventilation, hot-water demand and
occupancy profiles are heterogeneous and derive from a
stochastic model (Baetens and Saelens, 2015). We em-
ploy complex quasi-stationary equations of the grid in or-
der to study the influence of the load demand on the max-
imal/minimal tension of the grid (Protopapadaki et al.,
2015). The impact of the MV network is also considered:
it is modeled by a voltage source following real unbal-
anced LV busbar measurements. No hot water network is
considered here.

Figure 8. Illustration of the District Energy System use case

This basic scenario is already complex enough to ex-
hibit scalability issues when using a standard solver. For
illustration, it takes about 1 full day for 2 weeks of simu-
lated time on our standard PC with Dymola 2016.

To distribute this use-case, the global model must be
divided into multiple FMUs. The use of component-
oriented modeling languages like Modelica usually makes
the cutting decisions easy. Moreover, DES usually offer a
lot of similarities, thus, one could consider creating com-
munications between clusters of buildings, buildings or,
even deeper, between heating systems, thermal envelope,
and the network. In this section, we consider each build-
ing as one FMU, and the electrical network as another
one, in order to simplify the understanding of the results.
A smart handling of occupancy profiles has been imple-
mented in the building models: the identity key, noted

idOcc ∈ {1, ..,12}, is related to resources profiles, i.e.
electrical energy and hot water demands, occupancy and
reference temperatures. This allows to keep the FMU gen-
eral so that only a single profile needs to be loaded. The
frequency of the network propagated to each of its compo-
nents is also represented as an FMU, as is the LV voltage
information imposed on the busbar.

This results in a system composed of 15 FMUs. All of
them except for the LV voltage FMU are included within
the Matryoshka FMU (Figure 9). This split allows to make
the Matryoshka sensitive to its electrotechnical environ-
ment, i.e. to the MV network behavior. This would also
allow to easily connect several DES Matryoshka FMUs to
a MV network and see how they interact.

Figure 9. Screenshot of DACCOSIM showing the Matryoshka of
the 12 Smart Buildings as a system of 14 FMUs with its external
inputs and outputs

6.2 Description of the Experiments
The pure Modelica model simulated under Dymola is used
as the reference for all the simulations performed in this
article. This allows us to assess the performance of the
other solutions in both their accuracy and computational
time. The Matryoshka FMU is compared to this reference.
This FMU is built by DACCOSIM integrating the electrical



network and its 12 Smart Buildings as FMUs. Each inner
FMU is generated using Dymola 2016.

Similar tests are performed in DACCOSIM and Dymola
environments: considering a constant step size, a voltage
is imposed to the DES system FMUs. This input comes
from a Modelica block in Dymola and from its FMU coun-
terpart in DACCOSIM.

The comparisons are carried out for a simulated time
from one to five days. Realistic demand and occupancy
data as well as weather data are used, therefore creating
a variability in the calculations between each simulated
day. The accuracy of several variables is relevant regard-
ing the validation of the design of the electric grid with
Smart Buildings, among them:
• the inner temperature of the buildings;
• the norm of the voltage and the current;
• the correct capture of the extrema of these quantities.
The Dymola model was simulated with tolerances of

10−4, 10−5 and 10−6. Output points are saved every 60 s.
The Matryoshka is set up with a relative tolerance on each
FMU internal solver of 10−4, as well as a relative toler-
ance on the outputs of the FMUs of 10−3 for tempera-
ture and voltage, and 10−2 for currents. Euler algorithm is
used inside the Matryoshka to manage the step size, with
a minimum step size of 1 s and a maximum of 40 s. The
Matryoshka is then simulated along the voltage data FMU
with a constant step size of 60 s. The results obtained for
these four configurations for a one and five days of con-
tinuous simulation are shown in Table 1. It is clear that
the results of the Matryoshka co-simulations are closer to
the ones of the Dymola model with a tolerance of 10−6

than to the other Dymola setups. Thus in the following,
the performance of the Matryoshka will be compared with
the Dymola model with a tolerance of 10−6 on longer sim-
ulations.

All the simulations are performed on a laptop computer
with 4 physical cores and 8 logical threads with a maxi-
mum speed of 2.50 GHz (Intel i7-4710MQ) and 8 Gb of
RAM running under Windows 8.1 64 bit.

6.3 Results

6.3.1 Matryoshka Accuracy

Providing sufficient accuracy is a key-aspect of a co-
simulation. Splitting a model such a DES into smaller
subparts exported and then interconnected as FMUs cre-
ates propagation delays: they depend on the largest num-
ber of linked FMUs separating the start from the end of the
co-simulation graph and the sum of the varying time step
sizes observed for each propagation sequence. It is thus
important to use time step adaptive strategies to shorten
the time steps when model dynamics are important and
enlarge them when they stabilize.

Using Euler adaptive approach in the Matryoshka, we
obtained the cumulated distribution displayed in Fig-
ure 10. It illustrates the repartition of the absolute error of
the Matryoshka model to the pure Modelica model chosen

as reference, respectively for voltage, current and temper-
ature norms for the five days simulation case. 95.0 % and
99.8 % of the measurement points have an absolute er-
ror lower than 10−1 for respectively current and voltage.
This is to be compared with the current Smart Meter ca-
pabilities: on voltage an accuracy of 0.5 % of the nominal
voltage, i.e. about 1.15 V , is expected.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Absolute error

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

Voltage (V)

Current (A)

Temperature (K)

Figure 10. Cumulated distribution of the absolute error on volt-
age, current and temperature in one building zone: Matryoshka
compared to pure Modelica simulation in the 5 days case

It is especially important to correctly capture the mini-
mum and maximum values of both grid voltages and cur-
rents in order to properly design the grid. The extrema
of the Matryoshka simulation should be close to the ones
computed with the pure Modelica model so that we can
use DACCOSIM results with as much trust as Dymola ones.
Table 2 shows the minimum, mean and maximum error
over the 12 buildings on the maximum values of current
and voltage. The error is kept low with maximum errors
of 5 mA, 0.7 mV and 1.6 mV.

With such error levels, using a Matryoshka in a co-
simulation is relevant for distribution grid design. The
representation of the use case dynamics as well as its accu-
racy are sufficient for a correct simulation of the network
and its usages.

6.3.2 Matryoshka Computational Performance
The computation time of the pure Modelica model simu-
lated under Dymola should not be lower than the one of
the FMU co-simulation under DACCOSIM to make it rele-
vant to use Matryoshka FMUs.

The results of the execution time measurement can be
seen on Figure 11. The speed up starts around 1.5 for one
day, grows and stabilizes itself around 3.5. This perfor-
mance is quite interesting when doing simulation on long
time scales. The changes of the speed up might be due
to the variable calculation load induced by the different
occupancy and weather profiles considered for every day.

Using a Matryoshka co-simulation also enables to tune
the tolerance on the relevant variables when doing simu-
lations for design purposes. The user can thus have the
accuracy he needs in a shorter time.



Table 1. Performances of the different configurations for one and five days simulations

Model
Mean RMSE over the 12 buildings

Computation time (s) On current (A) On voltage (V)

1 Day 5 Days 1 Day 5 Days 1 Day 5 Days

Dymola (10−4 tolerance) 191 2633 1.34 8.69×10−1 1.17×10−1 7.10×10−2

Dymola (10−5 tolerance) 169 2329 3.25×10−1 2.52×10−1 3.13×10−2 2.04×10−2

Dymola (10−6 tolerance) 139 2375 reference reference reference reference
Matryoshka 79 666 7.99×10−2 1.39×10−1 7.08×10−3 1.18×10−2

Table 2. Errors on extrema aggregated on the 12 buildings

Error type Absolute Error

Max. error on max. voltage 6.97×10−1 mV
Max. error on min. voltage 1.62 mV
Max. error on max. current 5.04 mA

Figure 11. Computation time of the pure Modelica and FMU
simulations with speed up

7 Conclusions and Future Work
The Matryoshka FMU we have presented in this paper
and successfully implemented on a real-life test case is a
first of its kind that is compliant with the latest version
of the FMI 2.0 standard and built with an open-source so-
lution DACCOSIM. The FMIBench commercial tool can
also build hierarchical FMUs but supports fully only the
version 1.0 of the FMI standard and we have no knowl-
edge about the co-initialization and co-simulation features
implemented within the embedded master.

By taking advantage of the FMI standard capabilities,
a Matryoshka FMU can be easily integrated within any
FMI-CS compliant simulator on any Windows or Linux
64 bits system. Such FMU could even be easily deployed
on a node of a HPC-cluster environment. The use of DAC-
COSIM parallel master architecture allows to achieve both
computational efficiency and accuracy thanks to its in-
ternal adaptive time step mechanisms and its capability to
finely tune the tolerance on its variables. The JavaFMI

builder makes its generation automatic: once the simu-
lated use-case is set, a single click in the DACCOSIM user
interface generates such an FMU.

With DACCOSIM Matryoshka FMUs, complex real-life
systems can thus be easily simulated, finely tuned, and im-
proved in their computation efficiency while allowing an
easy implementation within any FMI-CS compliant simu-
lation environment.

Work is currently being carried out to further improve
their capabilities. Some can be performed with the current
FMI standard, while others require new attributes :
• When the user chooses the target platform and archi-

tecture (Linux, Windows or both) for the Matryoshka
FMU we will check that the choice is conform with
the platform(s) targeted by the inner FMUs.
• We are working to allow the Matryoshka FMU to

save and restore its state (if all its inner FMUs have
this capability). So, the Matryoshka could be in-
cluded into any co-simulation which might require
FMUs to rollback.
• We are investigating a way to build a Matryoshka

which distributes its simulation on multiple cluster
nodes. We also wish to include new information
about the number of inner FMUs in its modelDe-
scription.xml file. This would provide useful infor-
mation about the number of created threads in order
to automate its placement on HPC cluster nodes.

8 Acknowledgment
Authors thank Region Grand Est and RISEGrid institute
for their support to this research. The modeling of the
electrical network and the smart buildings was conducted
within the EFRO-SALK project, which receives the sup-
port of the European Union, the European Regional De-
velopment Fund, Flanders Innovation & Entrepreneurship
and the Province of Limburg.

References
R. Baetens and D. Saelens. Modelling uncertainty in dis-

trict energy simulations by stochastic residential occupant
behaviour. Journal of Building Performance Simulation,
(September), 2015.



R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen,
and D. Saelens. OPENIDEAS - An Open Framework for
Integrated District Energy Simulations. In Proceedings of
Building Simulation 2015, 2015.

S. Baggi, D. Rivola, V. Medici, G. Corbellini, D. Strepparava,
and R. Rudel. Modeling and Simimulation of a residential
Neighborhood with Photovoltaic System Coupled to Energy
Storage Systems. In 29th European Photovoltaic Solar En-
ergy Conference and Exhibition, 2014.

T. Blochwitz and M. Otter. The Functional Mockup Interface
for Tool independent Exchange of Simulation Models. 8th
International Modelica Conference, 2011.

B. Camus, V. Galtier, and M. Caujolle. Hybrid Co-simulation of
FMUs using DEV and DESS in MECSYCO. In Symposium
on Theory of Modeling and Simulation, 2016.

J. Evora, J. J. Hernandez, and O. Roncal. JavaFmi. URL
https://bitbucket.org/siani/javafmi/.

V. Galtier, S. Vialle, C. Dad, J-P. Tavella, J-P. Lam-Yee-Mui,
and G. Plessis. FMI-Based Distributed Multi-Simulation with
DACCOSIM. In Symposium on Theory of Modeling and Sim-
ulation - TMS’15, 2015.

C. Protopapadaki, R. Baetens, and D. Saelens. Exploring the im-
pact of heat pump-based dwelling design on the low-voltage
distribution grid. In 14th Conference of International Build-
ing Performance Simulation Association, 2015.

J-Ph. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G. Plessis,
M. Schumann, A. Cuccuru, and S. Revol. Toward an Accu-
rate and Fast Hybrid Multi-Simulation with the FMI-CS Stan-
dard. IEEE ETFA Track 9 - Information and Communication
Technology in Energy Systems, 2016.

J. Vaubourg, Y. Presse, B. Camus, C. Bourjot, L. Ciarletta,
V. Chevrier, J-P. Tavella, and H. Morais. Multi-agent Multi-
Model Simulation of Smart Grids in the MS4SG Project. In
PAAMS’15, 2015.

M. Wetter, M. Bonvini, and T. Nouidui. Equation-based lan-
guages - A new paradigm for building energy modeling, sim-
ulation and optimization. Energy and Buildings, 2015.

G. Zucker, F. Judex, M. Blöchle, M. Köstl, E. Widl, S. Hauer,
A. Bres, and J. Zeilinger. A new method for optimizing oper-
ation of large neighborhoods of buildings using thermal sim-
ulation. Energy and Buildings, 2016.

https://bitbucket.org/siani/javafmi/

	Introduction
	DACCOSIM, a Powerful FMI for Co-Simulation Platform
	The Benefits of Encapsulating daccosim within an FMU
	JavaFMI Tools to Generate and Execute FMUs
	FMI Wrapper
	FMI Builder

	Matryoshka FMU Building Process
	The User's Perspective: How to Build a Matryoshka FMU from daccosim
	Behind the Scene: the Steps Towards the Matryoshka FMU
	Creating daccosim master external API
	Specifying Matryoshka interface to JavaFMI 
	JavaFMI interface compilation with Ant
	Building the FMU using JavaFMI builder

	What is a Matryoshka FMU like

	Application to an Industrial Simulation Use Case
	Presentation of the District Energy System Use Case
	Problematics
	Model Description

	Description of the Experiments
	Results
	Matryoshka Accuracy
	Matryoshka Computational Performance


	Conclusions and Future Work
	Acknowledgment

