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Toward design optimization
of a Pelton turbine runner

Christian Vessaz · Löıc
Andolfatto · François
Avellan · Christophe
Tournier

Abstract The objective of the present paper is to pro-
pose a strategy to optimize the performance of a Pelton
runner based on a parametric model of the bucket ge-
ometry, massive particle based numerical simulations

and advanced optimization strategies to reduce the di-
mension of the design problem. The parametric model
of the Pelton bucket is based on four bicubic Bézier

patches and the number of free parameters is reduced
to 21. The numerical simulations are performed using
the finite volume particle method, which benefits from
a conservative, consistent, arbitrary Lagrangian Eule-

rian formulation. The resulting design problem is of
High-dimension with Expensive Black-box (HEB) per-
formance function. In order to tackle the HEB problem,

a preliminary exploration is performed using 2’000 sam-
pled runners geometry provided by a Halton sequence.
A cubic multivariate adaptive regression spline surro-
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Fig. 1 Pelton runner and detail of a bucket.

gate model is built according to the simulated perfor-
mance of these runners. Moreover, an original clustering
approach is proposed to decompose the design problem
into four sub-problems of smaller dimensions that can
be addressed with more conventional optimization tech-
niques.

Keywords Pelton turbine · Bucket shape parameteri-
zation · Design optimization · High-dimension · Finite
volume particle method

1 Introduction

Over the past decades, the production of renewable en-
ergy has been constantly growing. This expansion is

very likely to accelerate considering many countries re-
inforced their renewable energy policies. This growth
includes the hydro power production at a similar pace
as the other renewable energy sources.

In this context, the exploitation of hydro power po-
tential becomes one vector of this expansion towards
more renewable. The Pelton turbine is the most popular

machine type for the exploitation of high head and low
discharge power plants. Since the early water wheel con-
cept featured with several double half-cylindrical buck-
ets patented by Lester Pelton in 1880 Pelton (1880),
the geometry of Pelton runners illustrated in Fig. 1 has
been considerably improved. Most of the progress made
take their roots in practical experience, know-how and
extensive experimental tests.

In the new context where harvesting small hydro po-
tentials can become economically viable, there is a need
to provide solutions to reduce the design cycle time and
the design cost for Pelton runners. Such objectives com-
monly relies on the use of numerical simulation tools
and optimization techniques to solve the runner design
problem.

The design problem addressed in this paper can be
informally described as finding the runner geometry

providing the best performance. The implementation
of a design methodology to solve it therefore relies on
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three underlying main pillars Falcidieno et al (2014).

The runner geometry can be defined by a set of design

parameters instantiating a parametric model. The per-

formance of a runners can be evaluated according to

a performance indicator, generally computed through

numerical simulations. Finally, finding the design pa-

rameters leading to the best runner with respect to this

performance indicator relies on the implementation of

an appropriate optimization strategy.

The work presented in this paper aims at highlight-

ing and circumventing the hurdles toward the optimal

design of Pelton runners thanks to numerical simula-

tion. The literature review of Section 2 reveals the ob-

stacles related to he high-dimension of the problem and

the computational expensiveness of the numerical simu-

lation together with the consequences on the associated

optimization problem.

A geometric model is proposed and presented in Sec-

tion 3. It is based on 4 bicubic Bézier patches modeling

the inner surface of the bucket and on a definition of the

outer surface thanks to a thickness map. A major effort

is made to keep enough degrees of freedom to avoid sub-

optimal geometries while reducing the number of free

parameters to zP = 21.

The performance of the runners is evaluated accord-

ing to the simulated torque under specified operating

conditions. The FVPM simulation setup providing the

simulated torque is detailed in Section 4. It allows a
coarse resolution for fast simulations in the exploration

phase conducted in the following of the paper as well

as a fine resolution well suited for the actual solving of

the optimization sub-problems resulting from this ex-

ploration.

Finally, Section 5 details the initial exploration of

the design space. The emphasis is put on the strat-

egy proposed to reduce the dimension of the optimiza-

tion problem. It relies on the combination of a design

parameter importance ranking together with an orig-

inal clustering approach. Thanks to this exploration

strategy, the initial problem that would not have been

achievable with finite computing resources is decom-

posed into 4 sub problems of lower dimension that can

be realistically addressed with conventional optimiza-

tion techniques. The resolution of these smaller opti-

mization problems is not presented to avoid impeding

the paper with technical aspects of low methodological

value to the scientific community.

2 Literature review

2.1 Geometrical modeling

There are very few works in literature about the 3-D

modeling of Pelton turbine buckets. Generally, the mod-

els consist in a geometric parameterization based on

distances and angles which correspond to hydraulic en-

gineering parameters. However, the development of per-

forming products relies more and more on Computer-

Aided Engineering (CAE) and thus on parametric mod-

els Sobieszczanski-Sobieski and Haftka (1997). In the

case of products with complex shape as for the Pelton

runners, Bézier, B-spline or Nurbs patches are usually

implemented. The critical problem lies in the number of

design parameters that must be large enough to provide

sufficient shape diversity but small enough to allow an

efficient exploration of the design space.

The approach proposed by Anagnostopoulos and Pa-

pantonis (2012) consists in defining a 2-D boundary

curve of the bucket and a deepest point in order to

build intermediate frames and consequently the lateral

surface by interpolation. The main design parameters

are the length and width dimensions of the 2-D bound-

ary, the coordinates of the deepest point and its depth.

The intermediate frames dimensions are defined with

scaling factors, each intermediate frames introducing

3 additional variables. Once the lateral surface of the

bucket is generated, the cutout is constructed at the

intersection of the bucket surface with a toroidal beam

modeling the water jet and defined by two design vari-

ables representing its axis location and radius. Accord-

ing to the authors, the construction of the entire inner

surface of the bucket can be controlled by 19 geometric

variables, which is quite small regarding its complexity.

The drawback of this method is that the splitter tilt

angle cannot be modified as well as the cutout geom-

etry. This approach has been reused by Solemslie and

Dahlhaug (2012) to build the NUBRS description of

the Pelton bucket for their reference Pelton turbine de-

sign.

Michálková and Bastl (2015) propose a geometrical

description based on uniform bicubic B-splines surfaces

composed of 7 x 4 patches to model the inner surface

of the bucket. The novelty consists in trying to satisfy

prescribed angle distribution along the boundary curve

of the bucket which is useful to control the tangential

velocities at the bucket outlet. However, as the exact

solution exists in very special cases, an approximate

solution is proposed. The drawback of this approach is

the use of 7 x 4 bicubic patches which are determined

by 84 3-D control points which potentially represents

252 parameters. Although reductions are possible, that
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still represents a significant number of parameters to

carry out the geometrical optimization.

2.2 Numerical simulation

The deviation of a high-speed water jet by the rotating

Pelton buckets is a challenging fluid mechanics problem,

which involves complex geometries, moving boundaries,

free surface flows and high-pressure variations. The de-

sign approach combining numerical simulation and ex-

perimental model testing, as described by Mack et al

(2014), can yet not be applied in the early stages of the

design process addressed in this paper. The simulation

of a Pelton runner can be investigated using either Eule-

rian grid-based or Lagrangian particle based numerical

methods.

Mack and Moser (2002) and Jošt et al (2010) high-

lighted the grid influence on the efficiency prediction

as well as the needs of significant computing resources

to compute accurately a Pelton runner using the two-

phase homogenous model. Xiao et al (2012) performed a

Volume Of Fluid (VOF) simulation of a rotating Pelton

runner. The computed efficiency is a bit lower than the

experiments and the dependance on the grid resolution

is also highlighted.

Marongiu et al (2010) demonstrated that particle-

based methods are well suited to compute the flow in

a Pelton runner. However, particle-based methods re-

quire significant computational ressources. Židonis and

Aggidis (2015) present a comparison of different Eule-

rian and Lagrangian solvers applied to the simulations

of rotating Pelton buckets.

Anagnostopoulos and Papantonis (2012) and Xiao

et al (2007) proposed a fast Lagrangian computation

to design Pelton runners. However, this method is only

based on the inlet and outlet velocity vectors of the

particles, which provides an estimation of the integrated

pressure. Neither the whole pressure field nor the exact

water sheet location can be accurately computed.

In 2015, Vessaz et al (2015) investigated the use

of Finite Volume Particle Method (FVPM) to simu-

late the flow in five rotating Pelton buckets. FVPM

is a particle-based solver introduced by Hietel et al

(2000) in 2000. In 2009, Nestor et al (2009) extended the

method to incompressible flows. This method features

an Arbitrary Lagrangian-Eulerian (ALE) formulation,

which means that the computing nodes can either move

with the material velocity or a user-prescribed velocity.

This method is able to satisfy free surface and no-slip

wall boundary conditions precisely. FVPM combines

attractive features of Smoothed Particle Hydrodynam-

ics (SPH) and conventional grid-based Finite Volume

Method (FVM). It also features the ability to include

additional physics, such as silt laden flow erosion Jahanbakhsh

et al (2016). Therefore, it appears as an appropriate so-

lution for numerical estimations of the performance of

Pelton runners in the presented study.

2.3 Optimization techniques

According to the statements from subsection 2.1, the

design of a Pelton runner is likely to be high-dimensional.

The numerical simulation techniques only allows to have

an implicit – or black-box – evaluation of the perfor-

mance of a runner at a noticeable computing cost Vessaz

et al (2015).

Straightforward implementations of usual optimiza-

tion techniques are generally unsuccessful to solve such

High-dimension Expensive Black-box (HEB) problems Shan

and Wang (2010). The expensiveness of the problem can

– until a certain extent – be addressed by committing

computing power accordingly. In their survey, Shan and

Wang (2010) stated that a key in the HEB context is to

implement a strategy to tackle the high-dimensionality.

No specific physical reason came out to help decom-

posing the Pelton design problem into several indepen-

dent sub-problems of lower dimensions. Then, the most

common approach to handle the high-dimensionality is

to work on the design space reduction by two means:

– reducing the dimension by removing some design

parameters or by transforming a set of correlated

variables into a new smaller set of uncorrelated vari-

ables with an acceptable loss on the performance

prediction;

– reducing the range of some design variables to a

relevant portion of the initial design space.

One popular approach to tackle high-dimensionality

is to perform a Principal Components Analysis (PCA)

to identify the most important combination of design

parameters Shan and Wang (2010).

When such properties are not encountered, the im-

portance of the design parameters can still be evalu-

ated through a sensitivity analysis. Usual techniques

are also limited because of the high-dimension Sudret

(2008) and because of the expensiveness of the perfor-

mance function Caniou (2012). In the case of HEB, one

straightforward way to rank the importance of the de-

sign parameters consists in building a surrogate model

f∗ of the performance function f Caniou (2012) with

a reduced computing cost. The surrogate model is not

used to predict the performance at unexplored points

but it serves to run the sensitivity analysis without in-

creasing the overall computing budget. This approach
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Fig. 2 General dimensions of the bucket.

proved efficient for the problem addressed in this work.

It serves as a basis for the method proposed in Section 5

to define sub design spaces in which usual optimization

techniques are more likely to be applied successfully.

3 Bucket geometrical modeling

3.1 General approach

The proposed parametric model of a Pelton bucket is

built considering 7 parameters giving the general di-

mensions such as length, width and depth as repre-

sented in Fig. 2. The intersection of the water jet axis

with the outer edge plane of the bucket is named O

and set as the origin of the bucket coordinate system.

As the bucket is assumed to be symmetric with respect

to the (X,Y ) plane, only the half bucket with positive

coordinates along the Z axis will be described.

Then, a set of physical points with specific proper-

ties detailed in subsection 3.2 are used to split the inner

surface into four bicubic Bézier patches. These patches

are defined in subsection 3.3.

The Pelton bucket performance is known to be en-

hanced when the outlet angles β1 decrease. This as-

sertion is limited by the risk of heeling illustrated in

Fig. 3: up to a certain angle, the water jet impinges on

the outer surface of the next bucket with an associated

loss of energy. To account for this heeling phenomenon,

the outer surface of the bucket is defined thanks to a

thickness map, as explained in subsection 3.4.

1β

Y

Z

Fig. 3 Illustration of the heeling phenomenon.

T

Bt

Sm

SeOe

Om
Ce

Cb
First patch

Second patch

Third patch

Fourth patch

Fig. 4 Physical points considered to describe the inner sur-
face.

3.2 Definition of physical points

A set of physical points with specific properties of lo-

cation or tangent depicted in Fig. 4 are defined on the

inner surface:

– T is the tip of the bucket, located at (C2,−yt, 0);

– Ce is the other extremity of the cutout, with the

coordinate (A2, 0, E/2);

– Cb is the bottom point of the cutout edge, where

the edge tangent is normal to the Y axis, with the

coordinate (xCb,−yCb, zCb);
– Bt is the bottom of the inner surface where the sur-

face normal is oriented along Y , with the coordinate

(xBt,−F,B/4);

– Om is the extreme point of the outlet edge along

the Z direction, with the coordinate (xBt, 0, B/2);

– Sm is the intermediate point of the inlet edge, with

the coordinate (xBt, ySm, 0);

– Se is the extreme point of the inlet edge, with the

coordinate (−C3, ySe, 0);

– Oe is the extreme point of the outlet edge along the

X direction, with the coordinate (−A1, 0, B/4).

The inlet orientation angle αSm is defined between

the inlet edge and the X direction, as depicted in Fig. 5.
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𝛼𝛼𝑆𝑆𝑆𝑆

Fig. 5 Definition of the inlet orientation angle αSm.

Then the coordinates of the physical points Sm and Se

along the Y direction can be expressed by eqs. (1) and

(2).

ySm = C2 · tanαSm − yT (1)

ySe = C · tanαSm − yT (2)

The definition of the physical point finally requires

the four additional parameters on top of the general

dimensions previously defined: αSm, yT , xCb, yCb, zCb.

The fifth parameter xBt is fixed to 0.

3.3 Definition of the inner surface

Four bicubic Bézier patches are defined on the physical

points. A C1 continuity between the four surfaces is

ensured by imposing a symmetry of the four control

points at each vertex shared by several surfaces.

The control points of the first patch are built ac-

cording to the scheme described in Fig. 6(a). The inlet

angle β1 defines the angle between the inlet surface and

the (X,Y ) plane. The cutout tip angle αT defines the

orientation of the cutout edge. The cutout inlet angle

β1,Cb defines the angle between the cutout inlet surface

and the (Y, Z) plane. The cutout rotation angle αCb
defines the local rotation of the cutout edge around Y .

The λk are fixed ratio of the general dimensions from

Fig. 2 used for the four patches.

The C1 continuity between the first and the second

patch directly defines 8 of the 16 control points of the

second patch, as shown in Fig. 6(b). The other part of

the inlet surface between Sm and Se is oriented with

the same β1 angle with respect to the (X,Y ) plane. The

Cb

T
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𝛼𝐶𝑏

𝛽1,𝐶𝑏

𝛼𝑇

𝛽1

Sm

𝛽1𝑋𝑌

𝑍
𝜆𝑎

𝜆𝑎

𝜆𝑏

𝜆𝑏

𝜆𝑐𝜆𝑑

𝜆𝑒

𝜆𝑓

Bt

Sm

Se
Oe

𝑋

𝑌

𝑍

𝛽 1 𝛽1
𝛼𝑆𝑒

Inherited from 

the first patch

𝜆𝑔

𝜆ℎ 𝜆𝑎

𝜆𝑏

Oe

𝑋

𝑌

𝑍

𝛽 1

Om

Bt

Inherited from 

the second patch

Or

𝛽 1

𝜆𝑖

𝜆𝑗

𝜆𝑗

Bt

Om

Cb

Ce

Inherited from 

the third patch

Inherited from 

the first patch

𝑋
𝑌

𝑍

𝛼𝐶𝑒

𝐿𝑦,𝐶𝑒

(a)

(b)

(c)

(d)

Fig. 6 Control points defining the four bicubic Bézier
patches.
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Fig. 7 Definition of the fourth vertex of the third Bézier sur-
face with respect to physical points.

outlet surface in Oe is oriented with an angle β1 around

Z. The angle αSe is arbitrarily set to 45◦ in order to

create a smooth edge between Se and Oe. This edge

is unlikely to have an influence on the hydrodynamic

behavior of the bucket as it usually do not receive water

Vessaz (2015).

For the third patch, 8 out of the 16 control points

are derived from the second patch to ensure continuity,

as depicted in Fig. 6(c). Only three of its vertex are

physical points (Oe, Om and Bt). The fourth vertex

named Or and the associated edge orientation are built

according to the definition given in Fig. 7. It requires

three scalar parameters χOr, φOr and ψOr fixed to 0.75,

0.5 and 0.075 respectively. The outlet surface is oriented

with the angle β1.

Only the three control points around Ce remain free

for the fourth patch. The other inherited control points
are pictured in Fig. 6(d). The outlet edge is oriented

with an angle αCe around Y in Ce and the cutout edge

in Ce is oriented directly along Y . The position of the

other control points are defined by the two distances

Ly,Ce and Lxz,Ce.

Finally, the inner surface requires 8 variables – or

free parameters – and 13 fixed ratios of the general di-

mensions to be completely defined.

3.4 Definition of the outer surface

The outer surface is built by offsetting the patches of

the inner surface along their local normal vectors with

a given thickness. Puv represents a point of one patch

of the inner surface with the parameters (u, v). The

normal at this point is written nuv. Given a thickness

function T defined on [0, 1]2 that returns a thickness for

each (u, v) parameters, the point P ′uv of the associated

patch of the outer surface is given by:

P ′uv = Puv + T (u, v) · nuv (3)

For each patch of the bucket inner wall, a thickness

map is defined by a set of m × n control thickness tij .

The thickness function is of the form defined in (4) with

Bij , the Bernstein polynomials, basis functions of the

Bézier patches.

T :

∣∣∣∣ [0, 1]2 −→ R
u, v 7−→

∑m
i=0

∑n
j=0Bim(u) ·Bjn(v) · tij

(4)

Three values t1, t2 and t3 are used to define the

thickness maps associated to the four inner surfaces.

In this study, the thickness are kept constant equals to

3 mm, 8 mm and 6 mm respectively. The sets of control

thickness are graphically represented in Fig. 8. When

generating the entire bucket by symmetry, the sampled

points with negative coordinates along Z will be re-

moved.

3.5 Closing the bucket volume

The inner surfaces and outer surfaces edges are collec-

tions of isoparametric curves. A pair of curve Ci and

Co with parameter written p defined on adjacent edges

are considered to define the joining surface S between

them as given in eq. (5) to yield half of a bucket.

S :

∣∣∣∣ [0, 1]2 −→ R
p, α 7−→ α · Ci(p) + (1− α) · Co(p)

(5)

A symmetry with respect to the (X,Y ) plane is applied

to provide the entire bucket depicted in Fig. 4.

3.6 Implementation of the model for numerical

simulation

The proposed model defines a Pelton bucket as a col-

lection of parametric surfaces S(u, v). Despite the effort

made to reduce the number of free parameters, geo-

metrical model of a bucket depend on the 19 design

parameters listed in Table 1. Locating the bucket in

the runner coordinate system also requires 2 additional

parameters Y0 and X0. Given a sampling strategy for

the parameters u and v for each surface adapted to the

simulation requirement, a discrete representation of the

bucket can be generated for numerical simulations.
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Table 1 Inventory of the parameters describing the Pelton
bucket geometry.

Category Parameters

General dimensions A1, A2, B, C2, C3, E, F
Physical points αSm, yT , xCb, yCb, zCb

Inner surface αT , αCe, β1, β1,Cb, β1, Ly,Ce, Lxz,Ce

Bucket location Y0, X0

4 Numerical simulations

4.1 Finite volume particle method

In FVPM, the Sheppard interpolating or shape func-

tion ψ is used to discretize the governing equations.

The Sheppard function is zero-order consistent and is

defined as:

ψi (x) =
Wi (x)

σ (x)
(6)

where Wi (x) = Wi (x− xi, h) is the kernel function

and σ (x) =
∑
jWj (x) is the kernel summation. The

spatial resolution of the interpolation is given by the

smoothing length h. In the present study, a rectangu-

lar top-hat kernel is used to compute the interaction

vectors, which reads:

Wi (x) =

{
1 ‖x− xi‖∞ ≤ h,
0 ‖x− xi‖∞ > h.

(7)

The control volumes are replaced by particles and

the exchange occurs through the interfaces defined by

overlapping regions. For each pair of overlapping par-

ticles, two interaction vectors are defined. Their differ-

ence ∆ij is analogous to the area vector in FVM and

is defined as:

∆ij = Γij − Γji (8)

which depends on the interaction vector between par-

ticles i and j:

Γij =

∫
Ω

ψi∇Wj

σ
dV =

∫
Ω

Wi∇Wj

σ2
dV. (9)

Due to the complexity of shape functions, their in-

tegrations are usually approximated using quadrature

rules over a large number of integration points. In 2011,

Quinlan and Nestor (2011) developed a new FVPM in

which the integrals are computed quickly and exactly

for 2-D simulations. They simplified the shape functions

to circular top-hat kernels and achieved a reasonable

compromise between computational cost and accuracy.

Recently, Jahanbakhsh et al (2014) introduced rectan-

gular top-hat kernels to compute quickly and exactly

the integrals in 3-D.

A 2-D example of particles interactions with rectan-

gular support is given in Fig. 9(a). The top-hat kernel

is less smooth than a bell-shaped kernel as shown by

the contours of the Sheppard shape function given in

Fig. 9(b). However, Quinlan and Nestor (2011) demon-

strated that top-hat kernel allows a fast and exact com-

putation of the interaction vector in 2-D with a circular

support. In 3-D, Jahanbakhsh et al (2014) showed that

the use of top-hat kernel with a rectangular support re-

duces significantly the cost of the integral computations

in eq. (9). Therefore, the latter is simplified as:

Γij = −
m∑
l

(
∆Sl

σ+
l σ
−
l

)
(10)

where m is the number of partitioned rectangles, ∆S

represents the surface vector of the partitions, σ− and

σ+ are the summation kernel inside and outside the sur-

faces respectively. An outline of the 2-D computation of

eq. (10) is given in Fig. 9(c), where the rectangular par-

titions are simplified as lines segments. In this example,

4 segments are required to compute the summation of

eq. (10) for particles i and j respectively.

The water flow is assumed inviscid and weakly com-

pressible. The flow motion is governed by the mass and

linear momentum conservation equations:

dρ

dt
= −ρ∇ ·C and

d (ρC)

dt
= ∇ · σ + ρg (11)

where ρ is the density, C is the velocity vector, g is

the gravity vector and σ = −pI+s is the stress tensor,
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which includes p the static pressure and s the deviatoric

stress contribution. In the case of an inviscid flow, the

deviatoric stress contribution is equal to zero. However,

in the present study, an artificial viscosity is introduced

to damp the numerical oscillations Vessaz (2015). The

static pressure is computed from the barotropic equa-

tion of state:

p =
ρ◦a

2

7

((
ρ

ρ◦

)7

− 1

)
(12)

where ρ◦ is the reference density and a is the sound

speed. According to the weakly compressible assump-

tion, the sound speed is set to 10 ·Cmax, Cmax being the

discharge velocity of the water jet. This assumption is

based on the weakly compressible approach of Mon-

aghan (2005) to ensure that density variations remain

below one percent and the Mach number is limited to

0.1 all along the numerical simulation, which is usual for

particle-based models derived from SPH formulation.

Therefore, the weakly compressible approach allows to

increase the time step value compared to a pure com-

pressible simulation by decreasing the sound speed in

the CFL condition. The time integration is performed

using a second-order explicit Runge-Kuta scheme and

the time step is computed by:

∆t = 0.6 ·min

(
h

a+ ‖Ci‖

)
. (13)

In order to stabilize the numerical simulations, a

correction term is applied to the mass flux following Jahanbakhsh

(2014) and the AUSM+ scheme of Liou (1996) is used.

Moreover, a particle velocity correction is computed at

each time step to ensure a uniform distribution of par-

ticles in the flow and avoid particles clustering Vessaz

(2015).

To impose the solid boundary condition, one layer

of wall boundary particles is located on the interface.

The wall boundary particles have the property of the

fluid particles, i.e. their pressure and stress are com-

puted from governing equations of the fluid. However,

their velocities are imposed equal to the wall velocity

to ensure that the wall boundary particles remain at-

tached to the solid interface. Consequently, the force

applied on the boundary is given by:

fB,i =
∑
j∈fluid

(−pijI + sij) ·∆ij . (14)

4.2 Input and initial setup

In the present study, the values of the following param-

eters are arbitrarily set in order to have a well defined

operating point for the exploration process. First, the

water jet parameters are imposed as follow: the orien-

tation of the jet is in the −X direction and its inlet

is located at X = 0.185 m, Y = -0.15 m and Z = 0.0

m. The discharge velocity of the water jet is Cmax =

30.0 m s−1 with a diameter D2 = 0.03 m. Second, the

number of buckets of the Pelton runner is set to 20 and

the rotational speed is imposed at 955 rpm.

In order to decrease the computing time, only 2

buckets are used to represent the Pelton runner. The

total torque is deduced from the torque evolution in the

first bucket. However, this assumption does not capture

the heeling phenomenon. In this preliminary study, this

phenomenon is avoided by setting a minimal β1 value,

which is large enough, and checking that the healing

phenomenon does not occur for the optimized geome-

tries. In further studies, three buckets will be used and

the total torque will be deduced from the second bucket.

Consequently, only 0.013 seconds are simulated, which

corresponds to a rotation angle of 75◦, and is sufficient

to compute the torque evolution in the first bucket. The

initial setup of the simulation is presented in Fig. 10,

which includes:

– the geometry of the bucket;
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D2 = 0.03 m

X
Y

θ=90°

Y0

Cmax = 30 m s-1

X0

0.5°

360°/20

-0.15 m

θ0

Fig. 10 Outline of the initial setup for the numerical simu-
lations.

– two additional parameters X0 and Y0 which set the

bucket location according to the X and Y Cartesian

coordinate respectively;

– the initial rotation θ0 which is deduced from the

bucket tip in order to obtain an angle of 0.5◦ be-

tween its location and its first impact through the

water jet;

– and an initially developed portion of the water jet.

The numerical simulations are performed with the

FVPM solver SPHEROS developed by Jahanbakhsh

et al (2012). An example of the SPHEROS results is

given in Fig. 11. The particle-based representation uses

the instantaneous wall pressure field to render the buck-

ets particles. The visualization of the results is per-

formed using the rendering software ParaView Ayachit

(2015).

4.3 Torque computation

During the simulation, the torque is computed for each

bucket and at each time step according to:

T =
∑
i∈wall

Ri × fB,i (15)

where Ri is the radius between the runner axis and

the particle position Xi. The evolution of the torque in

each bucket as well as the total torque applying on the

two buckets are given in Fig. 12 for the finest particles

resolution investigated, i.e. D2/Xref = 50.

In order to set the objective of the optimization pro-

cess, the mean torque applied on the runner has to be

evaluated from the torque evolution for bucket 1. There-

fore, the torque evolution for bucket 1 is resampled ac-

cording to a given ∆θ = 0.025◦ increment. Then, the

torque applied on buckets 2 to 20 are deduced by shift-

ing the torque evolution of bucket 1. Finally, the total

Fig. 11 FVPM simulation of two rotating buckets: particle-
based representation (up) and free surface reconstruction of
the water sheet (down).

torque is evaluated by summing the torque evolution of

the 20 buckets. An example of the runner torque evo-

lution is given in Fig. 13 for the particles resolution

D2/Xref = 50. The mean value, as well as the standard

deviation, are computed to obtain global variables for

the optimization process.

The convergence of the results according to the spa-

tial discretization is shown in Fig. 14. Indeed, the FVPM

ensures the convergence of the results thanks to its con-

servative and consistent formulation Vessaz et al (2015).

This convergence is also highlighted by the mean runner

torque in Table 2.

However, increasing the spatial resolution also in-

creases drastically the computing time required for the

simulations, which is highlighted in Table 2 for the five

particles resolutions investigated. For the following op-

timization process, a coarse resolution D2/Xref = 10

is selected in order to evaluate many different bucket

geometries in a reasonable computing time. Choosing

a consistent design space, i.e the explored design space

generates buckets shaped geometries, the simulations
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Table 2 Influence of the spatial discretization on the mean
runner torque, standard deviation and computing time.

D2/Xref mean(T ) std(T ) Computing time
[−] [N] [N] [hour]

10 60.31 8.73 0.5
20 64.38 3.44 4.5
30 66.64 2.32 21.2
40 68.32 2.37 61.2
50 69.62 2.29 164.7

50 60 70 80 90 100 110 120
−10

0

10

20

30

40

50

60

70

80

90

θ

T[N.m]

 

 
Total torque
Bucket 1
Bucket 2

[°]

Fig. 12 Phase history of the torque for each bucket (col-
ors) and total torque (black) for a spatial discretization of
D2/Xref = 50.

uncertainty is assumed to be identical for all the simu-

lations because the physics of the flow remain the same.

The drawback of using a coarse resolution is the in-

crease of numerical noise as highlighted by the standard

deviation in Table 2. In the present paper we focus on

the exploration of the design space in order to reduce

the dimension of the problem. However, a finer resolu-

tion with reduced noise and uncertainty has to be used

in further studies to actually solve the reduced opti-

mization problem.

5 Design space exploration

5.1 Design space definition

The design parameters listed in Table 1 are gathered in

a design parameter vector x of dimension zP = 21. The

Table 3 shows the lower bound xi,min and the upper

bound xi,max of the explored range for the associated

0 50 100 150 200 250 300 350
62

64

66

68

70

72

74

76

78

80

θ

[°]

T[N.m]

 

 
Reconstructed torque
Mean torque
Standard deviation

Fig. 13 Phase history of the runner torque evaluated from
bucket 1.
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−10.0

0.0

10.0
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40.0

50.0

60.0

θ

[°]

T[N.m]

 

 
D2 / Xref = 10
D2 / Xref = 30
D2 / Xref = 50

Fig. 14 Influence of the spatial discretization on the phase
history of torque for bucket 1.

geometrical parameter. The design space Ω is defined

by eq. (16).

Ω =

zP∏
i=1

[xi,min, xi,max] (16)

The explored range has been arbitrarily defined.

This process is made easy thanks to the physical mean-

ing associated with the parameters. Nevertheless, the

consistency of this design space has been checked by

sampling Ntest = 500 random input vectors and vi-

sualizing the associated runners without noticing any

unrealistic one.

The performance T (x) representing the mean torque

applied on the runner defined by the parameter vector
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Table 3 Definition of the design space Ω.

Parameters Unit xi,min xi,max

A1 [mm] 30.0 60.0
A2 [mm] 20.0 60.0
B [mm] 70.0 110.0
C2 [mm] 35.0 60.0
C3 [mm] 15.0 45.0
E [mm] 30.0 50.0
F [mm] 15.0 35.0
yT [mm] −10.0 5.0
xCb [mm] 25.0 50.0
yCb [mm] −20.0 −10.0
zCb [mm] 10.0 25.0
Ly,Ce [mm] 2.5 7.5
Lxz,Ce [mm] 12.5 17.5
Y0 [mm] 5.0 25.0
X0 [mm] 120.0 160.0
αT [deg] 25.0 35.0
αSm [deg] 0.0 15.0
β1 [deg] 5.0 15.0
β1,Cb

[deg] 50.0 70.0
β1 [deg] 2.5 7.5
αCe [deg] −2.0 18.0

x over one rotation is evaluated through FVPM simu-

lations with the setup described in section 4.

The initial exploration of the design space was con-

ducted with a Halton sequence containing Nsp = 2000

design points. The main advantage of using a Halton

sequence for the exploration lies in the ability to dy-

namically increase the size of the exploration sample if

needed. Every new explored point of the design space

will improve the uniformity of the sample Halton (1964).

Iooss et al (2009) reported the efficiency of such low dis-

crepancy sequences for the construction and the valida-

tion of surrogate models in high-dimension while pur-

suing similar objectives of global and uniform covering

of the entire design space for exploration.

It required 50 hours of computation distributed on

20 nodes with 2 Ivy Bridge Intel Xeon E5-2650 v2 pro-

cessors with 8 cores each. The average performance

of the investigated population reaches 47.5 N.m. The

best point provided 60.3 N.m while the worst leaded

19.6 N.m.

5.2 Dimension reduction

The exploration sample showed the high-non linearity

of the performance function. No correlated effect of the

design parameters was found either. The dimension re-

duction performed therefore only relies on sensitivity

analysis.

A cubic Multivariate Adaptive Regression Spline

model (MARS) Friedman (1991) with 108 non-constant

basis functions has been built with the 2000 explored

points. The MARS model has been selected for its abil-

ity to outperform other surrogate modeling techniques,

such as neural networks, polynomial chaos expansion,

support vector regression or Kriging, when the input

dimension is higher than a dozen Andolfatto (2013). In

the present case, the input dimension is 21.

As for polynomial chaos expansion, the MARS sur-

rogate modeling framework is also well suited to eval-

uate the importance of each design parameter on the

performance function using only the initial exploration

sample. On one hand, the model consists in a sum of

piece-wise cubic spline basis functions. It is therefore

possible to estimate the loss of quality of a model con-

taining all the basis functions but the ones involving one

design parameters. Friedman proposed to measure the

importance of a design parameter through the differ-

ence of the Generalized Cross Validation error (GCV)

between the full identified model and a model without

basis functions involving this design parameter Fried-

man (1991). The GCV error between the mean torque
T and its surrogate model T

∗
is computed according to

eq. (17), where zM is the number of parameters of the

MARS model.

GCV =
1

Nsp

Nsp∑
j=1

(
T (jx)− T ∗(jx)

)2

(
1− zM

Nsp

)2 (17)

Removing basis functions involving one design parame-

ter decreases the number of parameters zM of the model

but increases the difference between the actual values T

and the modeled values T
∗
. Therefore, a high increase

of the GCV when a design parameter is removed implies

a high importance of this design parameter.

On the other hand, the analytic expression of the

model allows to perform directly an ANalysis Of VAri-

ance (ANOVA). The impact of each design parameter

on the performance over the design space is estimated

according to the cumulative standard deviation σ of the

basis functions involving this parameter. It can be inter-

preted in a manner similar to a standardized regression

coefficient in a linear model Friedman (1991).

With this strategy, the surrogate model is never

used to predict the performance at unexplored points.

The prediction error is therefore not a direct matter of

concern. Yet, the quality of the surrogate model must

still be assessed to ensure that all the trends of the

performance function are well captured. It can be mea-

sured according to the coefficient of determination R2

defined in eq. (18). The strategy is only applicable if
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R2 is close enough to one.

R2 = 1−

Nsp∑
j=1

(
T (jx)− T ∗(jx)

)2

Nsp∑
j=1

(
T (jx)− T (jx)

)2

(18)

with:

T (jx) =
1

Nsp

Nsp∑
j=1

T (jx) (19)

It the present case, the coefficient of determination R2

reached a value of 0.9773, which has been considered

sufficient.

Table 4 presents the increases of generalized cross

validation error ∆GCV and the cumulative standard

deviation σ related to each design parameters. The pa-

rameters are sorted in decreasing importance and the

ranks RGCV and Rσ of each parameter are also pre-

sented in Table 4. The two importance indicators pro-

vide almost the same ranking between parameters. The

five parameters which have the most influence are re-

lated to the runner diameter, cutout shape and bucket

depth. The seven last parameters have a negligible in-

fluence on the performance function. The associated di-

mensions of the design space can therefore be left unex-

plored in further studies. These parameters are related

to the physical point Ce, which is not an active surface

for the torque generation. The inlet and outlet angles,

β1 and β1, feature also a negligible influence due to the

well chosen range of exploration, i.e. as small as manu-

facturable and to avoid the heeling phenomenon.

5.3 Range reduction thanks to clustering

The range reduction aims at identifying shrunk area of

the design space in which solving an optimization prob-

lem will require less efforts. Many methods have been

reported in the literature Shan and Wang (2010), but

most of them require a dynamic sampling of the original

design space. In the present case, a method based on

the already explored design points is proposed to avoid

supplementary computation. It consists in the identifi-

cation of areas of high performance within the design

space. To do so, the proposed algorithm yields clus-

ters of runners with similar geometries and high per-

formance. The design points in each cluster are further

analyzed to define a sub design spaces of reduced di-

mension and reduced range in which an optimization

problem can be solved.

Table 4 Relative importance of the design parameters es-
timated on the MARS model of the performance function,
measured thanks to the Generalized Cross Validation error
GCV and the cumulative standard deviation σ.

Parameter ∆GCV RGCV σ Rσ

X0 332.06 1 21.87 1
C2 24.26 2 5.66 3
xCb 22.77 3 6.14 2
yCb 20.41 4 3.48 8
F 18.20 5 4.23 4
zCb 16.86 6 4.14 5
yT 16.33 7 3.97 7
E 14.63 8 4.01 6
A2 10.76 9 2.86 9
B 10.44 10 1.87 11
αSm 8.74 11 1.91 10
Y0 2.80 12 0.55 12
C3 1.51 13 0.29 13
β1,Cb 1.37 14 0.19 14
A1 0.00 15 0.00 15
αCe 0.00 15 0.00 15
αT 0.00 15 0.00 15
β1 0.00 15 0.00 15
β1 0.00 15 0.00 15
Ly,Ce 0.00 15 0.00 15
Lxz,Ce 0.00 15 0.00 15

For the proposed approach, only the N best runners

and their associated design points
{
jx
}
j∈1,...,N

are con-

sidered. A distance matrix D is computed. Each term

of the matrix is defined according to eq. (20).

djk =
∥∥jxr − kxr

∥∥
2

(20)

where the standardized design point jxr is the image of
jx by the linear application that maps the design space

Ω onto [0, 1]21. The matrix is symmetric with zeros on

the diagonal. An initial graph with N nodes represent-

ing the N runners is drawn without initial arc. The

set of arcs in the graph is denoted P. Then, the clos-

est runners j and k satisfying eq. (21) are sequentially

searched and connected in the graph until each runner

has at least one arc.

(j, k) = arg min
j<k

(j,k)/∈P

djk (21)

This process forms clusters of connected runners with

similar geometries.

With N = 10, the average distance between point is

1.612. The clustering graph with the smallest distance

between runners is presented in Fig. 15. It yields four

clusters. The associated buckets are depicted in figures

16 to 19.
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Fig. 15 Clustering graph representing the N = 10 best run-
ners identified by their index in the explored sample.

To define a new reduced design space associated to

each cluster, the range ∆r,i of the reduced coordinates

xr,i associated with each design parameter i is com-

puted. If the range falls below an arbitrary threshold

∆min, meaning that the associated design parameter is

almost constant within the cluster, the associated di-

mension no longer requires to be explored. Otherwise,

the associated dimension must still be explored in the

vicinity of the domain occupied by the design points of

the cluster.

The design parameters with a negligible impact on

the performance function identified in the previous sub-

section can be fixed at the mean value within the clus-

ter.

The Table 5 shows the four sub design spaces built

with ∆min fixed at 5%. Four design problems of lower

dimensions – from 7 to 11 instead of the initial 21 – and

with smaller range can be formulated based upon these

results.

6 Conclusion

The novel contribution of this paper lies in proposing a

framework addressing the major difficulties toward the

design optimization of a Pelton runner. It is chained

along three main links.

First, the proposed parametric model of a Pelton

bucket consists of four bicubic Bézier patches with C1

continuity. It requires only 21 parameters while keep-

ing enough degrees of freedom to conduct the geomet-

rical optimization. It also features straightforward dis-

cretization capabilities to be automatically linked to the

numerical simulation solver.

Then, the FVPM simulation is a state-of-the-art

convenient and accurate tool to capture the deviation

Bucket 94

Bucket 96

Bucket 760

59.4N.mT 

58.8N.mT 

58.4N.mT 

Fig. 16 Buckets from the runners of the cluster 1.

59.0N.mT 

58.4N.mT 

Bucket 265

Bucket 266

Fig. 17 Buckets from the runners of the cluster 2.

of a water jets by rotating Pelton buckets. The total

runner torque is evaluated from the torque evolution in

a single bucket to reduce the computing time. However,

a coarse resolution has to be selected for the numerical

simulations in order to evaluate many different bucket

geometries in a reasonable computing time for the ex-

ploration and dimension reduction purpose pursued in

the last part of the paper. But the same simulation

setup with a fine resolution can be applied for solv-

ing the reduced optimization sub-problems as in Vessaz

et al (2013).

Addressing the geometrical modeling and the eval-

uation of the runner’s performance through numerical

simulation leads to a High-dimension Expensive Black-

box problem. Such problems can not be addressed di-

rectly with usual optimization technique. Therefore, the

last aspect of the presented work focuses on reducing

the dimension of the problem and the range of the ex-
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Table 5 Sub design spaces associated to each cluster defined by fixed value or range of each design parameter.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Parameter min max min max min max min max

X0 132.1 137.1 146.1 142.6 145.3 138.4
C2 52.4 59.6 36.9 40.5 35.9 49.3 60.0
xCb 39.8 30.2 39.9 46.5 31.3 33.3
yCb −16.8 −14.3 −15.0 −11.5 −12.4
F 27.1 31.0 29.0 30.2 16.1 18.5 29.0 32.5
zCb 13.2 20.6 13.0 13.4 18.2 22.6
yT 39.8 −9.4 −8.6 −9.1 −6.9 −8.6 −6.3
E 37.0 41.5 40.1 41.6 47.0 42.5 47.1
A2 43.9 52.8 31.9 54.1 32.8 42.6 34.9 48.2
B 77.4 93.4 82.9 90.9 83.1 94.7 82.4 106.4
αSm 39.8 3.0 4.0 5.4 0.0 1.6
Y0 11.8 19.4 20.1 6.9 7.4
C3 21.3 41.5 21.0 23.7 38.0 41.5 35.3
β1,Cb 50.4 54.0 63.5 55.8 57.9 59.0
αT 26.6 31.1 28.7 29.6
β1 7.6 11.1 9.5 7.6
β1 4.5 7.4 3.4 5.3
αCe 11.2 −1.4 12.9 4.4
Ly,Ce 6.1 5.1 3.9 2.7
Lxz,Ce 15.2 14.4 15.3 12.9
A1 51.2 46.9 42.6 43.1

Reduced dimension 11 7 10 8

58.7N.mT 

60.3N.mT 

59.6N.mT 

Bucket 1713

Bucket 1711

Bucket 1710

Fig. 18 Buckets from the runners of the cluster 3.

plored parameters. The initial design space is explored

in order to identify the design parameters with the high-

est impact on the performance and the areas of the de-

sign space with the highest performance. The original

clustering approach presented yields a set of optimiza-

tion problems of lower dimensions with design spaces

covering lower ranges that can therefore be addressed

with conventional optimization techniques. This clus-

59.1N.mT 

Bucket 1140

59.0N.mT 

Bucket 1427

Fig. 19 Buckets from the runners of the cluster 4.

tering approach provides the last link of the proposed

chain toward the design optimization of a Pelton run-

ner. For the presented test case, four sub design spaces

of dimension 7 to 11 are obtained, each of them leading

to an optimization problem noticeably easier to solve

than the initial one.

The next steps consists in actually solving these re-

sulting optimization problems. As the performance of

the runners in the sub design spaces are likely to vary

less than in the initial space, it may be necessary to re-

fine the particles resolution in order to increase the reli-

ability of the simulated torque, even if it will induce an

increase of the computing time. The proposed geometri-

cal model based on an analytic description of the runner

also allows the easy introduction of constraints related
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to manufacturing. Furthermore, the FVPM simulation

framework is suitable for integrating other physical phe-

nomenon such as mechanical fatigue due to cyclic loads

on the buckets or erosion due to silt laden flows.
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