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Insensitizing controls for a semilinear parabolic

equation: a numerical approach

Franck Boyer ∗ Vı́ctor Hernández-Santamaŕıa †‡ Luz de Teresa §

November 17, 2017

Abstract

In this paper, we study the insensitizing control problem in the discrete setting of finite-differences.
We prove the existence of a control that insensitizes the norm of the observed solution of a 1-D semi
discrete parabolic equation. We derive a (relaxed) observability estimate that yields a controllability
result for the cascade system arising in the insensitizing control formulation. Moreover, we deal with the
problem of computing numerical approximations of insensitizing controls for the heat equation by using
the Hilbert Uniqueness Method (HUM). We present various numerical illustrations.
Keywords: Insensitizing controls, semi discrete Carleman estimates, observability, controllability, HUM.
MSC2010: 35K15; 65M06; 93C20

1 Introduction

1.1 The insensitizing control problem

Let Ω ⊂ Rn, n ≥ 1, be a bounded and open set with boundary ∂Ω ∈ C2. Let T > 0 and ω be an open
and non empty subset of Ω. We consider the following parabolic equation

∂ty −∆y + f(y) = 1ωv + ξ in Q = Ω× (0, T ),

y = 0 on Σ = ∂Ω× (0, T ),

y(0) = y0 + τw0 in Ω,

(1.1)

where f is a globally Lipschitz-continuous function, ξ and y0 are given in L2(Q) and L2(Ω), respectively.
In (1.1), y = y(x, t) is the state and v = v(x, t) is a control function supported in ω. We may mention
the dependence of y on the data by writing y[y0, ξ, v, w0, τ ] if necessary.

The data of equation (1.1) are incomplete in the following sense:

• w0 ∈ L2(Ω) is unknown and |w0|L2(Ω) = 1,

• τ ∈ R is unknown and small enough.

Let Ψ be a differentiable functional defined on the set of solutions to (1.1). We say that the control v
insensitizes Ψ(y) for the initial data y0 and the source term ξ if

∂Ψ(y[y0, ξ, v, w0, τ ])

∂τ

∣∣∣∣
τ=0

= 0, ∀w0 ∈ L2(Ω). (1.2)
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When (1.2) holds the functional Ψ is locally insensitive to the perturbations of the initial data. There
are several possible choices of Ψ depending on the considered applications. In this paper, we will only
consider the most standard choice of Ψ which is to consider the square of the L2-norm of the state y in
some observation subset O ⊂ Ω, namely,

Ψ(y) :=
1

2

∫ T

0

∫
O
y2dxdt. (1.3)

It is by now well known that, for this particular functional, the insensitivity condition (1.2) is equivalent
to a null-control problem for a coupled system of parabolic PDEs. This equivalence is given in the
following result.

Proposition 1.1 Let us consider the following cascade system of semilinear parabolic equations
∂ty −∆y + f(y) = 1ωv + ξ in Q,

y = 0 on Σ,

y(0) = y0 in Ω,

(1.4)


−∂tq −∆q + f ′(y)q = 1Oy in Q,

q = 0 on Σ,

q(T ) = 0 in Ω.

(1.5)

Then, a control v satisfies the insensitivity condition (1.2) for the functional (1.3) and the problem (1.1),
if and only if the associated solution of (1.4)-(1.5) satisfies

q(0) = 0. (1.6)

Observe that (1.6) is precisely a null controllability property for the cascade system (1.4)-(1.5).
However, this situation is more complex than a standard control problem. In fact, two main difficulties
arise. On the one hand, the control v acts indirectly on the equation satisfied by q by means of the
localized coupling term 1Oy. On the other hand, note that (1.4) is forward in time while (1.5) is
backward in time. The irreversibility of the heat equation imposes additional difficulties that do not
appear in more classical cascade systems in which both equations evolve along the same direction of time
(see [17]).

This problem, originally addressed by Lions [23], has been thoroughly studied in different contexts.
In [2], the authors relaxed condition (1.2) as follows: given ε > 0, the control v is said to ε-insensitize Ψ
if ∣∣∣∣ ∂Ψ(y[y0, ξ, v, w0, τ ])

∂τ

∣∣∣∣
τ=0

∣∣∣∣ ≤ ε|w0|L2(Ω), ∀w0 ∈ L2(Ω).

As in the previous proposition, we can show that the ε-insensitivity property is equivalent to the condition
|q(0)|L2(Ω) ≤ ε for the solution of (1.5). Hence, this problem corresponds to an approximate control-
lability problem for the coupled system (1.4)-(1.5), instead of a null-control problem. In this context,
the authors proved the existence of such controls in the presence of both unknown initial and boundary
data, when O ∩ ω 6= ∅. In [25], two main results are given. On the one hand, the author proved that
we cannot expect the existence of insensitizing controls for every y0 ∈ L2(Ω) when Ω\ω 6= ∅, even in the
linear case where f = 0. On the other hand, for y0 = 0 and a suitable hypothesis on the source term ξ,
the author proved the existence of insensitizing controls such that (1.2) holds as soon as O∩ω 6= ∅. The
main step of the proof is to consider the linearized system

∂ty −∆y + ay = 1ωv + ξ in Q,

−∂tq −∆q + bq = 1Oy in Q,

y = q = 0 on Σ,

y(0) = 0 in Ω,

q(T ) = 0 in Ω,

2



with a, b ∈ L∞(Q) and the associated adjoint system

−∂tz −∆z + az = 1Op in Q,

∂tp−∆p+ bp = 0 in Q,

p = z = 0 on Σ,

p(0) = p0 in Ω,

z(T ) = 0 in Ω,

for which the following observability inequality is proved, for some M > 0,∫∫
Q

e−
M
t |z|2 ≤ Cobs‖z‖2L2(ω×(0,T )). (1.7)

With this estimate, a controllability result is obtained for the linearized system, and a precise analysis
of the dependence of Cobs and M with respect to a and b permits to conclude in the nonlinear case by
a fixed point argument. Note that, since z satisfies an equation in which p acts as a source term, one
cannot use usual energy estimates for z to obtain, from (1.7), a bound on ‖z(0)‖L2 by the observation
term ‖z‖L2(ω×(0,T )). This is the main reason why this analysis is restricted to the case y0 = 0.

This result was generalized in [3] and [4] to nonlinearities with certain superlinear growth and non-
linear terms depending on the state y and its gradient. Regarding the class of initial data y0 that can
be insensitized, the work of de Teresa and Zuazua [26] gives different results of positive and negative
nature. More recently, there are many works within the context of insensitizing controls for other func-
tionals rather than (1.3) and equations of different nature. For instance, in [19], the author considers a
functional involving the gradient of the state for a linear heat system and in [18] treats the case of the
curl of the solution for a Stokes system. In [10] and [20], the authors studied the insensitizing controls
of the Navier-Stokes equation and the Boussinesq system.

1.2 Statement of the problem

In this article, we are interested in studying the insensitizing control problem from another perspec-
tive. The main goal of this paper is to present numerical methods as well as associated theoretical and
numerical results concerning the computation of insensitizing controls for semilinear parabolic problems.

The outline of the paper is as follows. First, we build a semi discrete approximation of the PDE
under study and by means of semi discrete Carleman estimates taken from [6] we deduce a “relaxed”
observability inequality for the linearized equation, which is uniform with respect to the discretization
parameter (see Section 2). This allows us to establish the existence of suitable insensitizing semi discrete
controls within this framework for the initial nonlinear problem we are interested in (see Section 3).
We then propose in Section 4 a fully discrete version of this approach that will be the heart of our
computational code. To perform the actual computation of the controls we will use the penalized Hilbert
Uniqueness Method (HUM) approach (as discussed for instance in [5]) and we present numerical results
in Section 5.

In order to simplify the presentation, we will only consider here the 1D case but it is worth mentioning
that the techniques and results given below still hold in any dimension as soon as we restrict ourselves
to finite difference schemes on Cartesian grids (see [7]).

From now on, we consider the following 1-D semi discrete system
∂ty

M +AMyM + f(yM) = 1ωv
M + ξM in RM × (0, T ),

y∂M = 0 in (0, T ),

yM(0) = yM
0 + τwM

0 .

(1.8)

where f is a C1 globally Lipschitz-continuous function, with f(0) = 0. Here AM is the discrete approx-
imation of A := −∂2

x on a mesh M whose step size is denoted by hM, ∂M denotes the boundary cells
of the mesh and RM is the space of discrete (in space) functions defined on M. These notions will be
precisely introduced in the Section 1.3. As described in the introduction, we are interested in proving
the existence of uniformly bounded semi discrete controls that insensitize the functional

Ψ(yM) :=
1

2

∫ T

0

∫
O
|yM|2dxdt, (1.9)
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where yM is the solution to (1.8). Following the ideas of the continuous case, it can be proved that the
insensitizing control problem for (1.8) is equivalent to finding bounded families of semi discrete controls
(vM)M such that the solution (yM, qM) of the coupled problem

∂ty
M +AMyM + f(yM) = 1ωv

M + ξM in RM × (0, T ),

−∂tqM +AMqM + f ′(yM)qM = 1Oy
M in RM × (0, T ),

y∂M = q∂M = 0 in (0, T ),

yM(0) = yM
0 , qM(T ) = 0,

(1.10)

satisfies the condition
qM(0) = 0.

To accomplish this, we follow the strategy outlined in [25], but taking into account the particularities
associated with the semi discrete nature of the problem. In fact, in a first step, we will study controllability
properties of the linearized version of (1.10). Then, a fixed point argument allow us to obtain the
controllability result for the nonlinear system.

1.3 Discrete settings and notation

Following [6] and [9], we establish the framework of the discrete setting to clarify the exposition of
the results. In particular, the notation introduced on those articles, allows to carry out most of the
computations in a very intuitive manner and enable us to emulate as close as possible the continuous
insensitizing problem as addressed for instance in [4], [25].

As mentioned above, we restrict in this paper our analysis to semi discrete systems in one dimension
space even though the proposed strategy can be adapted to multi dimensional Cartesian discretizations
(see [7]).

Let us set Ω = (0, L) and consider the elliptic operatorA = −∂2
x with homogeneous Dirichlet boundary

conditions. We introduce finite differences approximations of the operator A. Let 0 = x0 < x1 < . . . <
xN < xN+1 = L. We refer to this discretization as to the primal mesh M := {xi : i = 1, . . . , N}. We
define |M| := N and the boundary points are denoted by ∂M = {x0, xN+1} = {0, L}.

We set hi+ 1
2

= xi+1 − xi and xi+ 1
2

= (xi+1 + xi)/2, i = 0, . . . , N . The step size is denoted by

hM = maxi hi+ 1
2
.

We introduce the dual mesh M := {xi+ 1
2

: i = 0, . . . , N} and we set hi = (hi+ 1
2

+ hi− 1
2
)/2 =

xi+ i
2
− xi− 1

2
, i = 1, . . . , N .

We denote by RM and RM the sets of discrete functions defined on M and M, respectively. If u ∈ RM

(resp. RM), we denote by ui (resp. ui+ 1
2
) its value corresponding to xi (resp. xi+ 1

2
). For u ∈ RM we

define

uM =

N∑
i=1

1[x
i− 1

2
,x
i+ 1

2
]ui ∈ L∞(Ω).

Since no confusion is possible, by abuse of notation, we shall often write u instead of uM. Additionally,
for u ∈ RM we define ∫

Ω

u :=

∫
Ω

uM(x)dx =

N∑
i=1

hiui.

For some u ∈ RM, we shall need to associate boundary conditions u∂M = {u0, uN+1}. The set of such
extended discrete functions is denoted by RM∪∂M. Homogeneous Dirichlet boundary conditions then
consist in the choice u0 = uN+1 = 0, in short u∂M = 0 or even u|∂Ω = 0.

For u ∈ RM we define

uM =

N∑
i=0

1[xi,xi+1]ui+ 1
2
∈ L∞(Ω).

As above, for u ∈ RM, we set ∫
Ω

u :=

∫
Ω

uM(x)dx =

N∑
i=0

hi+ 1
2
ui+ 1

2
.
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In the same manner, we define the following L2-inner product on RM (resp. RM)

(u, v)L2(Ω) =

∫
Ω

u v =

∫
Ω

uM(x)vM(x)dx.(
resp. (u, v)L2(Ω) =

∫
Ω

u v =

∫
Ω

uM(x)vM(x)dx.

)
The associated norms will be denoted by |u|L2(Ω). We use similar definitions and notations for functions
restricted to the domains O and ω.

For semi discrete functions u(t) in RM (or RM) for all t ∈ (0, T ), we define the following L2-norm

‖u‖L2(Q) =

(∫ T

0

∫
Ω

|u(t)|2dt
)1/2

.

Endowing the space of semi discrete functions L2(0, T ;RM) (resp. L2(0, T ;RM)) with this norm yields a
Hilbert space.

Analogously, we shall define the space L∞(0, T ;RM) (resp. L∞(0, T ;RM)) by means of the norm

‖u‖L∞(Q) = ess sup
t∈(0,T )

(
sup

i∈{1,...,N}
|ui(t)|

)
.

Similarly, we shall use such norms for spaces of semi discrete functions defined on (or restricted to) the
domains ω × (0, T ) or O × (0, T ).

In order to manipulate the discrete functions, we define the following translation operators for indices:

(τ+u)i+ 1
2

:= ui+1, (τ−u)i+ 1
2

:= ui, i = 0, . . . , N.

A first-order difference operator Di and an averaging operator Ai are then given by

(Du)i+ 1
2

:=
1

hi+ 1
2

(τ+u− τ−u)i+ 1
2
,

(Au)i+ 1
2

= ũi+ 1
2

:=
1

2
(τ+u+ τ−u)i+ 1

2
.

(1.11)

Both map RM∪∂M into RM.
Likewise, we define on the dual mesh translation operators τ± as follows

(τ+u)i := ui+ 1
2
, (τ−u)i := ui− 1

2
, i = 1, . . . , N.

Then, a difference operator D and an averaging operator A (both mapping RM into RM) are given by

(Du)i :=
1

hi
(τ+u− τ−u)i

(Au)i = ui :=
1

2
(τ+u+ τ−u)i

(1.12)

Note that there is no need for boundary conditions here.
A continuous function ψ defined on Ω can be sampled on the primal mesh, that is, ψM = {ψ(xi) :

i = 1, . . . , N}, which we identify to

ψM =

N∑
i=1

1[x
i− 1

2
,x
i+ 1

2
]ψi, ψi = ψi(xi), i = 1, . . . , N.

We also set

ψ∂M = {ψ(x0), ψ(xN+1)} = {ψ(0), ψ(L)},

ψM∪∂M = {ψ(xi) : i = 0, . . . , N + 1}.
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The function ψ can also be sampled on the dual mesh, i.e., ψM = {ψ(xi+ 1
2
) : i = 0, . . . , N}, which we

identify to

ψM =

N∑
i=0

1[xi,xi+1]ψi+ 1
2
, ψi+ 1

2
= ψ(xi+ 1

2
), i = 0, . . . , N.

In the sequel, we will use the same symbol ψ for both the continuous function and its sampling on
the primal or dual mesh. Indeed, from the context, one will be able to deduce the appropriate sampling.
For example, with u defined on the primal mesh M, in an expression like D(ρDu) where ρ : Ω̄→ R is a
given function, it is clear that the function ρ is sampled on the dual mesh M since Du is defined on this
mesh and the operator D acts on functions defined on this mesh as well.

Remark 1.2 In the sequel, we shall only use uniform meshes to simplify the notation. In this case,
hi = hM and hi+ 1

2
= hM, ∀i. Thus, we can write xi = ihM and xi+ 1

2
= (i + 1

2
)hM. However, the

analysis for more general (still somehow regular) meshes is possible, see [7] for a detailed discussion.

Hereinafter, in order to ease the reading of the computations, we will omit the superscript M to refer
to discrete variables, and the mesh step hM will simply be denoted by h.

With the notation we have introduced, a suitable finite-difference approximation of the elliptic oper-
ator Ay = −∂2

xy with homogeneous Dirichlet boundary conditions is AMy = −D(Dy) for y ∈ RM∪∂M

satisfying y∂M = 0, so that

(AMy)i = − 1

h2
(yi+1 − 2yi + yi−1) , i = 1, . . . , N.

Note that all our results below can be extended to the case of a non-constant diffusion coefficient x 7→ γ(x)
by considering the operator AM = −D(γD·). In order to concentrate on the particular difficulties related
to the coupling between the forward and backward semi discrete parabolic equations in our problem, we
will not consider this generalization in the sequel.

We shall need the following uniform discrete Poincaré inequality (which is valid even for non uniform
meshes)

|y|2L2(Ω) ≤ C(AMy, y)L2(Ω), ∀y ∈ RM∪∂M, y = 0 on ∂M, (1.13)

the right-hand side being the square of the discrete H1
0 -norm of y in the present framework.

We finally introduce the time-dependent weight eM(t) = exp(Mt−1) and define the Hilbert space

L2(eM) =

{
ξ ∈ L2(0, T ;RM) :

∫∫
Q

eM|ξ|2 <∞
}
, (1.14)

endowed with its natural norm.

Remark 1.3 Any ξ ∈ L2(0, T ;RM) compactly supported in (0, T ]×Ω necessarily belongs to L2(eM) for
any value of M.

1.4 Statement of the main results

Using a series of tools developed in [6, 7, 9], we are able to prove (see Theorem 2.1) an observability
inequality of the form ∫∫

Q

e−
M
t |z|2 ≤ Cobs

(
‖z‖2L2(ω×(0,T )) + e−

C
h |p0|2L2(Ω)

)
, (1.15)

valid for every solution of the adjoint linear system
−∂tz +AMz + az = 1Op in RM × (0, T ),

∂tp+AMp+ bp = 0 in RM × (0, T ),

z = p = 0 on ∂M× (0, T ),

z(T ) = 0, p(0) = p0,

with a constant C > 0 that only depends on T , ω, O and on the L∞(0, T ;RM) norms of a and b.
Note that there is an additional term in the right-hand side of the inequality (1.15) as compared

with the similar estimate in the continuous setting (1.7) (see also [25, Eq. (8)]). In fact, because of

6



the presence of this term we refer to it as a relaxed observability inequality. Indeed, as discussed in [6],
[9], in some cases this term cannot be avoided. This is for instance connected to an obstruction of the
null controllability of the semi discrete heat equation, as pointed out by a counter-example in dimension
2 due to O. Kavian, see for instance [27]. The study of relaxed observability estimates for discretized
parabolic equations was initiated in [22]. We refer to [5] for a review.

Actually, with the inequality (1.15) we are able to prove that there exists v ∈ L2(0, T ;RM) with
‖v‖L2(ω×(0,T )) ≤ C, for some positive constant C not depending on M, such that

|q(0)|L2(Ω) ≤ C
√
φ(h)‖ξ‖L2(eM),

where L2(eM) is the weighted space (1.14) and h 7→ φ(h) is a function of the discretization parameter
such that

lim inf
h→0

φ(h)

e−C/h
> 0. (1.16)

This means that we do not exactly achieve null controllability at the discrete level. Nevertheless, we are
able to reach small targets q(0) whose size goes to zero as the mesh size h → 0, at a prescribed rate√
φ(h), with controls that remain uniformly bounded with respect to h. We refer to Section 5 where the

choice of h 7→ φ(h) is discussed and illustrated in practice.
Thus we speak of φ(h)-insensitizing controls, which should not be confused with the notion of ε-

insensitivity (as discussed in [2], [21]): here, the size of the neighborhood reached by the solution at time
T is not fixed, but is a function of the discretization step, which is freely chosen as soon as (1.16) holds.

We now state our main insensitivity result whose proof is given in Section 3.

Theorem 1.4 Let f ∈ C1(R) be globally Lipschitz with f(0) = 0. Assume that ω ∩ O 6= ∅. Then, there
exists a positive constant M depending on Ω, ω, O and T such that for any mesh M with h sufficiently
small, for yM

0 = 0 and for any ξ ∈ L2(eM) and any function φ verifying (1.16), one can find a semi
discrete control function v ∈ L2(0, T ;RM) uniformly bounded as

‖v‖L2(Q) ≤ Cobs‖ξ‖L2(eM),

with Cobs given in (2.3), and such that the functional given by (1.9) is φ(h)-insensitized.

Remark 1.5 Some remarks are in order:

• Roughly speaking, the condition yM
0 = 0 is due to the fact that the first equation in (1.10) is

forward in time and the second one is backward in time. Most of the results regarding insensitizing
controls assume this condition. We refer the reader to [26] for a compendium on the possible initial
conditions that can be insensitized. As suggested on that work, the answer is not obvious.

• Note that the case f(0) 6= 0 is not allowed since it would be equivalent to adding a constant to the
source term ξ, but this is not compatible with the condition ξ ∈ L2(eM).

• The assumption ω ∩ O 6= ∅ is essential to prove an observability inequality (see Eq. (2.2) below),
which is the main ingredient in the proof of Theorem 1.4. In the continuous and linear case, there
are some results on the controllability of non-scalar parabolic systems when ω ∩ O = ∅. In [1], the
authors proved several null controllability results for a 1-D coupled parabolic system in which both
equations are forward in time. In that work, some new interesting phenomena appear, such as the
minimal time for controllability or the geometrical dependence of the sets ω and O.

• Also, in [21] the authors prove that in the continuous insensitizing problem for the pure heat equa-
tion, the assumption on ω ∩O may be omitted as soon as we restrict ourselves to an ε-insensitizing
result. The exact insensitivity problem in the general linear/semilinear case remains today as an
open problem, both in the continuous and semi discrete case.

• Additionally, we may ask to find a control v to ensure simultaneous φ(h)-null and φ(h)-insensitizing
controls, that is, to impose that the solution (y, q) to (1.10) satisfies

|y(T )|L2(Ω) + |q(0)|L2(Ω) ≤ C
√
φ(h)

(∫∫
Q

e
M′

t(T−t) |ξ|2
)1/2

.

for a constantM′ possibly different fromM. As in the continuous problem, this is possible by using
the same kind of discrete Carleman estimates that we will use below. Observe however that we need
to impose an extra condition on ξ at time t = T . See Section 5.2 for some numerical results in this
direction.
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2 The semi discrete relaxed observability inequality

In this section we prove an observability inequality that is the semi discrete counterpart of the presented
in [25] or [4]. This result will be the main tool in the proof of Theorem 1.4. As mentioned above, the
φ(h)-insensitivity problem is equivalent to find a uniformly bounded control v such that

|q(0)|L2(Ω) ≤ C
√
φ(h)‖ξ‖L2(eM),

where (y, q) is the solution to (1.10). It is well known that controllability properties for system (1.10)
are related to the observability of the linear adjoint system, in this case, given by

−∂tz +AMz + az = 1Op in RM × (0, T ),

∂tp+AMp+ bp = 0 in RM × (0, T ),

z = p = 0 on ∂M× (0, T ),

z(T ) = 0, p(0) = p0.

(2.1)

Thus, the main result in this section is the following:

Theorem 2.1 Assume that ω∩O 6= ∅. Then, there exist positive constants h0, C0, C1 and C2 such that
for all T > 0 and all potential functions a and b, under the condition h ≤ min(h0, h1) with

h1 = C0

(
1 + 1

T
+ (‖a‖2/3∞ + ‖b‖2/3∞ )

)−1

,

for every p0 ∈ RM, the corresponding solution (z, p) to (2.1) satisfies∫∫
Q

exp(−M
t

)|z|2dxdt ≤ C2
obs

(
‖z‖2L2(ω×(0,T )) + e

−C1
h |p0|2L2(Ω)

)
, (2.2)

where
Cobs = exp

[
C2

(
1 + 1

T
+ ‖a‖2/3∞ + ‖b‖2/3∞ + T (1 + ‖a‖∞ + ‖b‖∞)

)]
, (2.3)

and
M = C2

[
1 + T + T (‖a‖2/3∞ + ‖b‖2/3∞ )

]
. (2.4)

The main tool to prove this theorem is a uniform Carleman estimate for semi discrete parabolic
operators. This strategy was originally developed in [9]. The goal is to mimic at the discrete level
various techniques from the analysis of PDE control problems.

To this end, it is necessary to introduce an auxiliary function ψ fulfilling the following assumption.

Assumption 2.2 Let B0 be a nonempty open set of Ω. Let Ω̃ be a smooth open and connected neigh-

borhood of Ω in Rn. The function x 7→ ψ(x) is in Cp(Ω̃,R), p sufficiently large, and satisfies for some
c > 0

ψ > 0 in Ω̃, |∇ψ| ≥ c in Ω̃\B0,

and ∂nxψ(x) ≤ −c < 0, for x ∈ V∂Ω,

where V∂Ω is a sufficiently small neighborhood of ∂Ω in Ω̃, in which the outward unit normal nx is
extended from ∂Ω.

The construction of such function in general smooth domains is classical. Interested readers can see
[14, 9] for additional remarks on this function. In our present 1D case, one can simply take a point
x0 ∈ B0 and consider ψ(x) = C − (x− x0)2 for C > 0 large enough.

Now, let K > ‖ψ‖∞ and set

ϕ(x) = eλψ(x) − eλK < 0,

r(t, x) = es(t)ϕ(x), ρ(t, x) = (r(t, x))−1
(2.5)

with

s(t) = τθ(t), τ > 0,

θ(t) =
1

(t+ δT )(T + δT − t)
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for 0 < δ < 1/2. The parameter δ is introduced to avoid singularities at time t = 0 and t = T and will
be chosen in the course of the proof of the Carleman estimate to be somehow proportional to the mesh
size h. Further comments are provided in [9].

We recall below the Carleman estimate for semi discrete parabolic operators of the form PM
± =

∂t ±AM. We use the following notation, for any u ∈ C 1([0, T ];RM∪∂M), to abridge the estimates:

Jτ (u) :=τ−1
(
‖θ−1/2eτθϕD(Du)‖2L2(Q) + ‖θ−1/2eτθϕ∂tu‖2L2(Q)

)
+ τ

(
‖θ1/2eτθϕDu‖2L2(Q) + ‖θ1/2eτθϕDu‖2L2(Q)

)
+ τ3‖θ3/2eτθϕu‖2L2(Q)

(2.6)

Theorem 2.3 Let B0 be a nonempty open set of Ω and a function ψ satisfying Assumption 2.2. We
define ϕ according to (2.5).

Let B be another open subset of Ω such that B0 ⊂⊂ B. For the parameter λ ≥ 1 sufficiently large,
there exist C, τ0 ≥ 1, h0 > 0, ε0 > 0, depending on B, B0 and λ such that

Jτ (u) ≤C
(
‖eτθϕPM

± u‖2L2(Q) + τ3‖θ3/2eτθϕu‖2L2(B×(0,T ))

)
+ Ch−2

(∣∣∣eτθϕu|t=0

∣∣∣2
L2(Ω)

+
∣∣∣eτθϕu|t=T ∣∣∣2

L2(Ω)

)
,

for all τ ≥ τ0(T + T 2), 0 < h ≤ h0, 0 < δ ≤ 1/2, τh(δT 2)−1 ≤ ε0, and u ∈ C 1([0, T ];RM∪∂M) satisfying
u∂M(t) = 0 for any t ∈ [0, T ].

Remark 2.4 Unlike [9], note that we have added τ−1‖θ−1/2eτθϕD(Du)‖2L2(Q) in the term Jτ (u) of the

left-hand side of the Carleman inequality. This simply follows from the fact that D(Du) = PM
± u ± ∂tu

and
τ−1‖θ−1/2eτθϕD(Du)‖2L2(Q) ≤ 2τ−1‖θ−1/2eτθϕPM

± u‖2L2(Q) + 2τ−1‖θ−1/2eτθϕ∂tu‖2L2(Q).

Now we are in position to prove the observability inequality. To manipulate the operators such as D, D
and also to provide estimates for the successive application of such operators on the weight functions, we
have summarized the main discrete calculus rules in Appendix A. We state only the most useful results
to accomplish the proof of Theorem 2.1. For a rigorous discussion on these features we refer the reader
to [6], [9].
Proof of Theorem 2.1. The structure of the proof is similar to [25] and [4]. We have divided the
proof in four steps. We keep track of the dependences of the constants. We start by considering a non
empty B0 ⊂⊂ ω ∩ O and the associated weight functions as in the previous theorem.

Step 1. We set B2 = ω ∩ O. Let us consider now an open set B1 such that B0 ⊂⊂ B1 ⊂⊂ B2. We
begin by applying Theorem 2.3 to the solution p of (2.1) with PM

+ p = −bp and B = B1, to get

Jτ (p) ≤ C
(
‖eτθϕ bp‖2L2(Q) + τ3‖θ3/2eτθϕ p‖2L2(B1×(0,T ))

)
+ Ch−2

(∣∣∣eτθϕp|t=0

∣∣∣2
L2(Ω)

+
∣∣∣eτθϕp|t=T ∣∣∣2

L2(Ω)

)
,

for all τ ≥ τ0(T + T 2), 0 < h ≤ h0 and τh(δT 2)−1 ≤ ε0. As 1 ≤ CθT 2, the term with the coefficient b
can be eliminated

Jτ (p) ≤ Cτ3‖θ3/2eτθϕ p‖2L2(B1×(0,T )) + Ch−2

(∣∣∣eτθϕp|t=0

∣∣∣2
L2(Ω)

+
∣∣∣eτθϕp|t=T ∣∣∣2

L2(Ω)

)
(2.7)

for τ1 ≥ τ0 sufficiently large and τ ≥ τ1(T + T 2 + T 2‖b‖2/3∞ ).
Next, we apply Theorem 2.3 to the solution z to (2.1) with B = B1 and PM

− = az − 1Op, hence

Jτ (z) ≤ C
(
‖eτθϕ az‖2L2(Q) + ‖eτθϕp‖2L2(O×(0,T )) + τ3‖θ3/2eτθϕ z‖2L2(B1×(0,T ))

)
+ Ch−2

∣∣∣eτθϕz|t=0

∣∣∣2
L2(Ω)

,

where we have used the fact that z(T ) = 0. Reasoning as before, it is not difficult to see that the term
containing the coefficient a can also be absorbed as follows

Jτ (z) ≤ C
(
‖eτθϕp‖2L2(O×(0,T )) + τ3‖θ3/2eτθϕ z‖2L2(B1×(0,T ))

)
+ Ch−2

∣∣∣eτθϕz|t=0

∣∣∣2
L2(Ω)

, (2.8)
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for τ ≥ τ2(T + T 2 + T 2‖a‖2/3∞ ). Then, combining (2.7) and (2.8), we readily obtain

Jτ (z) + Jτ (p) ≤ C
(
τ3‖θ3/2eτθϕz‖2L2(B1×(0,T )) + τ3‖θ3/2eτθϕp‖2L2(B1×(0,T ))

)
+ Ch−2

(∣∣∣eτθϕp|t=0

∣∣∣2
L2(Ω)

+
∣∣∣eτθϕp|t=T ∣∣∣2

L2(Ω)
+
∣∣∣eτθϕz|t=0

∣∣∣2
L2(Ω)

)
, (2.9)

for all τ3 sufficiently large and

τ ≥ τ3(T + T 2 + T 2(‖a‖2/3∞ + ‖b‖2/3∞ )). (2.10)

Step 2. We proceed to obtain an inequality which bounds the observation term in B1 containing
p, by an observation term with respect to z in the larger domain B2. For this, we consider a function
η ∈ C∞(Ω) such that

0 ≤ η ≤ 1 in Ω, η = 1 in B1, supp η ⊂ B2 ⊂ ω ∩ O. (2.11)

By the properties of the discretization, we observe that we can ensure that the following bounds holds
uniformly with respect to h

D(Dη)

η1/2
∈ L∞(Ω) and

Dη

η1/2
∈ L∞(Ω). (2.12)

Let τ be as in (2.10). We multiply the equation satisfied by z in (2.1) by ηs3r2p. Then, we have∫∫
B1×(0,T )

s3r2|p|2 ≤
∫∫
O×(0,T )

ηs3r2|p|2

=

∫∫
Q

(a− b)zηs3r2p+

∫∫
Q

(−∂tz +AMz + bz)ηs3r2p

=

4∑
i=1

In, (2.13)

where we recall that s = τθ and r = esϕ.
Let us estimate each In, 1 ≤ n ≤ 3. We keep the term I4 as it will be useful later. Hereinafter, C will

denote a generic positive constant which may change from line to line. First, using Hölder and Young
inequalities we have

I1 =

∫∫
Q

(a− b)zηs3r2p

≤ γ0

∫∫
Q

ηs3r2|p|2 +
1

4γ0

(
‖a‖2∞ + ‖b‖2∞

) ∫∫
Q

ηs3r2|z|2,
(2.14)

for any γ0 > 0. On the other hand, integrating with respect to t we obtain that

I2 = −
∫∫

Q

∂tzηs
3r2p

= −
∫

Ω

zηs3r2p
∣∣∣T
0

+

∫∫
Q

zη∂t(s
3r2p)

=

∫
Ω

z(0)ηs3(0)r2(0)p(0) +

∫∫
Q

zη∂t(s
3r2)p+

∫∫
Q

zηs3r2∂tp

:= I21 + I22 + I23,

(2.15)

where we have used the fact that z(T ) = 0.

Remark 2.5 Unlike the continous case, note that r(0) 6= 0, so we have the additional term I21.
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First, we estimate I21 as follows

I21 =

∫
Ω

z(0)τ3

(
1

(δT )(T + δT )

)3

e
2τϕ(x)

(δT )(T+δT ) p(0)

≤
∫

Ω

|z(0)| τ
3

δ3T 6
e
− Cτ
δT2 |p(0)|.

Therefore

|I21| ≤
1

2

τ2

δ2T 4

∫
Ω

|z(0)|2e−
Cτ
δT2 +

1

2

τ4

δ4T 8

∫
Ω

|p(0)|2e−
Cτ
δT2 ,

where we have applied Young and Hölder inequalities. From the conditions of Theorem 2.3, we have
τh
δT2 ≤ ε0, then

|I21| ≤ Ch−2

∫
Ω

|z(0)|2e−
Cτ
δT2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2 . (2.16)

Now, we estimate I22. We compute ∂t(θ
3r2) = (∂tθ

3)r2 + θ3(∂tr
2) and since τ ≥ CT , we have∣∣∂t(θ3r2)

∣∣ ≤ 3θ4Tr2 + 2θ5r2τT |ϕ(x)|

≤ Cθ4τr2 + Cθ5τ2r2.

With the estimate above, we deduce

|I22| ≤ τ3

∫∫
Q

η|z||∂t(θ3r2)||p|

≤ Cτ3

∫∫
η|z|(θ4τr2 + θ5τ2r2)|p|

= C

∫∫
Q

η|z|(s4r2 + s5r2)|p|.

Applying Hölder and Young inequalities, we get

|I22| ≤ γ0

∫∫
Q

s3r2η|p|2 +
C

γ0

∫∫
Q

s7r2η|z|2. (2.17)

We keep the term I23 as it will be useful later.
In order to estimate I3, we integrate by parts using the discrete integration formula (Proposition A.4)

I3 =

∫∫
Q

(AMz)ηs3r2p = −
∫∫

Q

D(Dz)ηs3r2p

= −
∫∫

Q

s3zD(D(ηr2p)).

We compute with (A.4)

D
(
D(ηr2p)

)
= ηr2D(Dp) +D(D(ηr2))p+ 2D(ηr2)Dp+

h2

2
(D(Dp))(D(D(ηr2)))

Thus,

I3 = −
∫∫

Q

s3z

(
ηr2D(Dp) +D(D(ηr2))p+

h2

2
(D(Dp))(D(D(ηr2)))

)
− 2

∫∫
Q

s3zD(ηr2)Dp

=: I31 + I32.

We proceed to estimate I31. By using (A.4), (A.1) and (A.3) we obtain

D
(
D(ηr2)

)
= ηD(Dr2) + r2D(Dη) + 2DηDr2 +

h2

2
(D(Dr2))(D(Dη)),

D
(
Dr2) = 2rD(Dr) + 2(Dr)2 +

h2

2
(D(Dr))2,

Dr2 = 2rDr + h2Dr(DDr),
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so that after a straightforward computation

D
(
D(ηr2)

)
= r2D(Dη) + 2ηrD(Dr) + 2ηDr

2
+
h2

2
ηD(Dr)

2

+ h2rD(Dη)D(Dr) + h2D(Dη)Dr
2

+
h4

4
D(Dη)D(Dr)

2

+ 4rDηDr + 2h2DηD(Dr)Dr

=: Ĩ1(r).

Thus, we can group together all the terms of I31 as follows

I31 = −
∫∫

Q

s3zηr2D(Dp)−
∫∫

Q

s3zpĨ1(r)− h2

2

∫∫
Q

s3zD(Dp)Ĩ1(r)

=: I
(1)
31 + I

(2)
31 + I

(3)
31 . (2.18)

We will keep the first term of the above expression. In order to estimate the second one, we take
into account the result of Proposition A.6, the properties (2.12) and the relation between τ , h and δ that
gives, for any t ∈ (0, T ),

s(t)h ≤ τθ(t)h ≤ 2
τh

δT 2
≤ 2ε0.

Therefore, we obtain that
|Ĩ1(r)| ≤ Cr2√η + Cηr2s2 + Cr2√ηs, (2.19)

where C only depends on λ (which is fixed) and ε0. Since η is supported in B2, we can use the Cauchy-
Schwarz and Young inequalities together with (2.19) so that, for any γ0 > 0 and γ1 > 0, we get

|I(2)
31 | ≤ γ0

∫∫
Q

s3r2η|p|2 +
C

γ0

∫∫
B2×(0,T )

s7r2|z|2, (2.20)

|I(3)
31 | ≤ γ1

∫∫
Q

s−1r2η|D(Dp)|2 +
C

γ1

∫∫
B2×(0,T )

s11r2|z|2. (2.21)

Arguing as in the previous steps, we compute

2D(ηr2) = 2

(
ηDr2 + r2Dη +

h2

2
D(Dη)Dr2 +

h2

2
DηD(Dr2)

)
= 2

(
2ηrDr + h2ηD(Dr)Dr + r2Dη + h2D(Dη)rDr

+
h4

2
D(Dη)D(Dr)Dr + h2Dη rD(Dr) +

h4

4
DηD(Dr)

2

+ h2DηDr
2
)

=: Ĩ2(r),

and we obtain, for some C > 0 depending only on ε0 and λ that

|Ĩ2(r)| ≤ Cηr2s+ C
√
ηr2.

Replacing the above expression in I32 we obtain

I32 = −
∫∫

Q

s3zDp Ĩ2(r),

and we finally get that

|I32| ≤ γ2

∫∫
Q

sr2η|Dp|2 +
C

γ2

∫∫
B2×(0,T )

s7r2|z|2, (2.22)
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for any γ2 > 0. Notice that the sum of the terms I4, I23 and I
(1)
31 (see eq. (2.13), (2.15) and (2.18))

exactly cancels thanks to the equation satisfied by p, that is

I4 + I23 + I
(1)
31 =

∫∫
Q

zηs3r2 (∂tp−D(Dp) + bp
)

= 0.

By means of equations (2.16) and (2.17) we get

|I2| ≤ γ0

∫∫
Q

s3r2η|p|2 + Ch−2

∫
Ω

|z(0)|2e−
Cτ
δT2

+
C

γ0

∫∫
Q

s7r2η|z|2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2 .

(2.23)

We put together (2.20), (2.21) and (2.22), obtaining

|I(2)
31 + I

(3)
31 + I32| ≤ γ0

∫∫
Q

s3r2η|p|2 + γ1

∫∫
Q

s−1r2η|D(Dp)|2 + γ2

∫∫
Q

sr2η|Dp|2

+ C

(
1

γ0
+

1

γ1
+

1

γ2

)∫∫
B2×(0,T )

s11r2|z|2.
(2.24)

Taking estimates (2.14), (2.23) and (2.24) in equation (2.13) and using (2.11), we obtain∫∫
B1×(0,T )

s3r2|p|2 ≤3γ0

∫∫
Q

s3r2|p|2 + γ1

∫∫
Q

s−1r2|D(Dp)|2 + γ2

∫∫
Q

sr2|Dp|2

+ C

(
1

γ0
+

1

γ1
+

1

γ2

)∫∫
B2×(0,T )

r2 [s3 (‖a‖2∞ + ‖b‖2∞
)
|z|2 + s11|z|2

]
+ Ch−2

∫
Ω

|z(0)|2e−
Cτ
δT2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2 .

Thus, replacing the above expression in (2.9) and taking γi small enough, we select τ as in (2.10) to
obtain

Jτ (z) + Jτ (p) ≤ C
∫∫

B2×(0,T )

s11r2|z|2 + Ch−2

∫
Ω

|z(0)|2e−
Cτ
δT2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2

+ Ch−2

(∣∣∣eτθϕp|t=0

∣∣∣2
L2(Ω)

+
∣∣∣eτθϕp|t=T ∣∣∣2

L2(Ω)
+
∣∣∣eτθϕz|t=0

∣∣∣2
L2(Ω)

)
.

Returning to the original notation, we rewrite the above inequality as

Jτ (z) + Jτ (p) ≤ C
∫∫

B2×(0,T )

e2θτϕτ11θ11|z|2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2 + Ch−2

∫
Ω

|z(0)|2e−
Cτ
δT2

+ Ch−2

(∣∣∣eτθϕp|t=0

∣∣∣2
L2(Ω)

+
∣∣∣eτθϕp|t=T ∣∣∣2

L2(Ω)
+
∣∣∣eτθϕz|t=0

∣∣∣2
L2(Ω)

)
,

(2.25)

valid for every

τ ≥ τ3
(
T + T 2 + T 2(‖a‖2/3∞ + ‖b‖2/3∞ )

)
with τ3 large enough.

Step 3. Here, we use standard energy estimates for the heat equation to bound the last four terms in
inequality (2.25).

As θ(T ) = θ(0) = (T 2(1 + δ)δ)−1, we have eτθϕ|t=0 = eτθϕ|t=T ≤ eC
τ
δT2 supx∈Ω̄ ϕ and we compute

Jτ (z) + Jτ (p) ≤ C
∫∫

B2×(0,T )

e2θτϕτ11θ11|z|2 + Ch−2

∫
Ω

|z(0)|2e−
Cτ
δT2

+ Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2 + Ch−2

∫
Ω

|p(T )|2e−
Cτ
δT2 ,

(2.26)
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as supx∈Ω̄ ϕ < 0. From energy estimates for p solution to the second equation in system (2.1), for
t1, t2 ∈ [0, T ] with t1 < t2, we have

|p(t2)|2L2(Ω) ≤ e
2‖b‖∞(t2−t1)|p(t1)|2L2(Ω). (2.27)

In particular, we obtain ∫
Ω

|p(T )|2e−
Cτ
δT2 ≤ C

∫
Ω

|p(0)|2e−
Cτ
δT2 . (2.28)

On the other hand, from energy estimates for z solution to the first equation in (2.1), we get for t ∈ [0, T ]

|z(t)|2L2(Ω) ≤
∫ T

t

e2(1+‖a‖∞)(s−t)|p(s)|2L2(O)ds,

whence ∫
Ω

|z(0)|2 ≤ C
∫∫
O×(0,T )

|p|2.

Using (2.27) it is not difficult to see that∫
Ω

|z(0)|2e−
Cτ
δT2 ≤ C

∫
Ω

|p(0)|2e−
Cτ
δT2 . (2.29)

Replacing accordingly (2.28) and (2.29) in inequality (2.26) we obtain

Jτ (z) + Jτ (p) ≤ C
∫∫

B2×(0,T )

e2θτϕτ11θ11|z|2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2 . (2.30)

Step 4. In the last part of the proof, we use energy estimates and inequality (2.30) to obtain a modified
Carleman inequality with weight functions not decaying at t = T . This is possible since we have the
condition z(T ) = 0.

Let us first fix
τ = τ3

(
T + T 2 + T 2(‖a‖2/3∞ + ‖b‖2/3∞ )

)
, (2.31)

and let us consider

l(t) =

{
(t+ δT )(T + δT − t) for 0 ≤ t ≤ T/2,
(T/2 + δT )2 for T/2 ≤ t ≤ T,

and the following associated function

σ(t) =
1

l(t)
.

By construction, θ(t) = σ(t) for t ∈ [0, T/2], so that by using (2.6) and (2.30), we have∫ T/2

0

∫
Ω

e2τσϕσ3|z|2 +

∫ T/2

0

∫
Ω

e2τσϕσ3|p|2 =

∫ T/2

0

∫
Ω

e2τθϕθ3|z|2 +

∫ T/2

0

∫
Ω

e2τθϕθ3|p|2

≤Jτ (z) + Jτ (p)

≤C
∫∫

B2×(0,T )

e2τθϕτ11θ11|z|2

+ Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2 .

(2.32)

Now, consider a function ν ∈ C1([0, T ]) such that

ν = 0 in [0, T/4], ν = 1 in [T/2, T ], |ν′| ≤ C/T.

We set z̃(t) = e−‖a‖∞(T−t)ν(t)z and p̃ = e−‖b‖∞tν(t)p and we observe that they solve the following
equations

−∂tz̃ +AMz̃ + (a+ ‖a‖∞)z̃ = 1Oe
‖b‖∞t−‖a‖∞(T−t)p̃+ ν′(t)e−‖a‖∞(T−t)z in RM × (0, T ),

∂tp̃+AMp̃+ (b+ ‖b‖∞)p̃ = ν′(t)e−‖b‖∞tp in RM × (0, T ),

z̃ = p̃ = 0 on ∂M× (0, T ),

z̃(T ) = 0, p̃(0) = 0.
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Since b+ ‖b‖∞ ≥ 0, the energy estimate for p̃ leads to

1

2
|p(T )|2L2(Ω) +

∫ T

0

(AMp̃, p̃)L2(Ω) dt ≤
C

T

∫ T
2

T
4

|(p, p̃)L2(Ω)| dt.

and by the discrete Poincaré inequality (1.13) we deduce that

‖p̃‖L2(Ω×(0,T )) ≤
C

T
‖p‖L2(Ω×(T/4,T/2)). (2.33)

The energy estimate for z̃ reads

1

2
|z̃(0)|2L2(Ω) +

∫ T

0

(AMz̃, z̃)L2(Ω) dt ≤ e
‖b‖∞T

∫ T

0

|(p̃, z̃)L2(Ω)| dt+
C

T

∫ T
2

T
4

|(z, z̃)L2(Ω)| dt,

which leads to

‖z̃‖L2(Ω×(0,T )) ≤ e
‖b‖∞T ‖p̃‖L2(Ω×(0,T )) +

C

T
‖z‖L2(Ω×(T/4,T/2)). (2.34)

Combining (2.33) and (2.34) and bearing in mind the definitions of z̃, p̃ and the properties of ν we
get

‖z‖L2(Ω×(T/2,T )) ≤
C

T
e(‖a‖∞+‖b‖∞)T (‖z‖L2(Ω×(T/4,T/2)) + ‖p‖L2(Ω×(T/4,T/2))

)
.

Since σ is constant and smaller than 4/T 2 on (T/2, T ) and ϕ < 0 we can introduce the weight function
on the left-hand side of the above inequality to obtain for some CT > 0 depending only on T ,∫ T

T/2

∫
Ω

e2τσϕσ3|z|2 ≤ CT e2(‖a‖∞+‖b‖∞)T (‖z‖2L2(Ω×(T/4,T/2)) + ‖p‖2L2(Ω×(T/4,T/2))

)
.

Observe that the function σ satisfies c1/T
2 ≤ σ ≤ c2/T

2 in [T/4, T/2], for some universal constants
c1, c2 > 0. Setting c0 := − infΩ ϕ > 0, we can introduce the weight functions in the right-hand side terms
as follows ∫ T

T/2

∫
Ω

e2τσϕσ3|z|2 ≤ CT e2(‖a‖∞+‖b‖∞)T e
2c2c0

τ
T2

∫ T/2

T/4

∫
Ω

e2τσϕσ3(|z|2 + |p|2),

and then use (2.32) to obtain that∫ T

T/2

∫
Ω

e2τσϕσ3|z|2 ≤ CT e2(‖a‖∞+‖b‖∞)T+ 1
T e

2c2c0
τ
T2

(∫∫
B2×(0,T )

e2τθϕτ11σ11|z|2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2

)
.

It can be readily verified by means of the definition of σ that

Ce−
8c0τ
Tt ≤ Ce−2c0τγ ≤ e2τσϕσ3,

where

γ =

{
1/(t(T − t)) 0 ≤ t ≤ T/2,
4/T 2 T/2 ≤ t ≤ T.

This, together with the fact that σ ≥ (T + δT 2)−1 yields∫ T

0

∫
Ω

e−
8c0τ
Tt |z|2 ≤ CT 6e2(‖a‖∞+‖b‖∞)T+ 1

T e
2c0c2

τ
T2

(∫∫
B2×(0,T )

e2τθϕτ11σ11|z|2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2

)
.

Setting now c̄0 := − supΩ ϕ > 0, we have

e2τθϕτ11θ11 ≤ e−2c̄0τθτ11θ11 ≤ C

c̄11
0

,

for some universal C > 0. It follows that∫∫
Q

e−
8c0τ
Tt |z|2 ≤ CeC

(
(1+‖a‖∞+‖b‖∞)T+ 1

T
+ τ
T2

)(∫∫
B2×(0,T )

|z|2 + Ch−4

∫
Ω

|p(0)|2e−
Cτ
δT2

)
. (2.35)
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To conclude the proof, we recall the conditions from Theorem 2.3:

τh

δT 2
≤ ε0 and h ≤ h0.

They need to be fullfilled along with δ ≤ δ1, and we recall that τ was defined in (2.31). We thus define
h1 as

h1 :=
ε0

τ4
δ1

(
1 +

1

T
+ ‖a‖2/3∞ + ‖b‖2/3∞

)−1

.

Then we choose h ≤ min{h0, h1} and δ = hδ1/h1 ≤ δ1. With these choices, we can ensure the equality
τh
δT2 = ε0 and moreover, from (2.35) we have∫∫

Q

e−
8c0τ
Tt |z|2 ≤ eC

′
(
(1+‖a‖∞+‖b‖∞)T+ τ

T2

)(∫∫
B2×(0,T )

|z|2 +

∫
Ω

|p(0)|2e−
C′′ε0
h

)
.

Finally, using the formula (2.31) for τ and recalling that B2 ⊂ ω, our claim is proved.

3 Proof of Theorem 1.4

We devote this section to prove the existence of controls insensitizing the L2-norm of the observation of
the solution of (1.10). The proof follows the same spirit as other well-known results for controllability of
nonlinear systems (see [12], [13], [25], . . . ). We start with the existence of φ(h)-insensitizing controls for a
linearized version of (1.10), that is, for given a ∈ L∞(0, T ;RM), b ∈ L∞(0, T ;RM) and ξ ∈ L2(0, T ;RM),
we consider the linear system

∂ty +AMy + ay = 1ωv + ξ in RM × (0, T ),

−∂tq +AMq + bq = 1Oy in RM × (0, T ),

y = q = 0 on ∂M× (0, T ),

y(0) = 0, q(T ) = 0,

(3.1)

and the corresponding adjoint system (2.1).
The following result holds:

Proposition 3.1 Let us consider T > 0 and M a mesh satisfying h ≤ min{h0, h1} with h0, h1 as given
in Theorem 2.1. Let M be defined as in (2.4).

There exists a continuous linear map L(T ;a,b) : L2(eM)→ L2(0, T ;RM) such that for all source term
ξ ∈ L2(0, T ;RM) satisfying

‖ξ‖L2(eM) <∞, (3.2)

the semi discrete control v given by v = L(T ;a,b)(ξ) is such that the solution to (3.1) satisfies

|q(0)|L2(Ω) ≤ Cobse
−C
h ‖ξ‖L2(eM),

and
‖v‖L2(Q) ≤ Cobs‖ξ‖L2(eM),

with Cobs as given in Theorem 2.1.

Proof. Consider the adjoint system (2.1). The relaxed observability inequality of Theorem 2.1 gives∫∫
Q

exp(−M
t

)|z|2dxdt ≤ C2
obs

(
‖z‖2L2(ω×(0,T )) + φ(h) |p0|2L2(Ω)

)
, (3.3)

with φ(h) = e−C1/h. We introduce the functional

J(p0) =
1

2

∫∫
ω×(0,T )

|z|2 +

∫∫
Q

zξ +
φ(h)

2
|p0|2L2(Ω). (3.4)

The functional J is continuous, strictly convex and coercive on a finite dimensional space, thus it admits
a unique minimizer that we denote as popt0 . We denote by (zopt, popt) the associated solution of the
adjoint problem (2.1) with this initial data.
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We compute the Euler-Lagrange equation for this minimization problem, namely∫∫
ω×(0,T )

zoptz +

∫∫
Q

ξz + φ(h)〈popt0 , p0〉L2(Ω) = 0, ∀p0 ∈ RM, (3.5)

where (z, p) is the solution associated with the data p0. We set the control v = L(T ;a,b)(ξ) = 1ωz
opt and

consider the solution (y, q) to the controlled problem
∂ty +AMy + ay = 1ωz

opt + ξ, in RM × (0, T ),

−∂tq +AMy + bq = 1Oy, in RM × (0, T ),

y = q = 0, on ∂M× (0, T ),

y(0) = 0, q(T ) = 0.

Multiplying the above equation by (z, p) and integrating by parts we obtain

(q(0), p0)L2(Ω) =

∫∫
ω×(0,T )

zoptz +

∫∫
Q

ξz,

for any p0 ∈ RM. Substituting this expression in (3.5) we deduce that

q(0) = −φ(h)popt0 . (3.6)

On the other hand, we take p0 = popt0 in (3.5), to get

‖zopt‖2L2(ω×(0,T )) + φ(h)|popt0 |
2
L2(Ω) = −

∫∫
Q

ξzopt.

Since ξ satisfies (3.2), we introduce the weight function in the right-hand side of the above inequality,
thus

‖zopt‖2L2(ω×(0,T )) + φ(h)|popt0 |
2
L2(Ω) ≤

(∫∫
Q

e
M
t |ξ|2

)1/2(∫∫
Q

e
−M
t |zopt|2

)1/2

.

With the observability inequality (3.3) we have

‖zopt‖2L2(ω×(0,T )) + φ(h)|popt0 |
2
L2(Ω) ≤ C

2
obs

∫∫
Q

e
M
t |ξ|2.

This yields

‖v‖L2(ω×(0,T )) = ‖zopt‖L2(ω×(0,T )) ≤ Cobs
(∫∫

Q

e
M
t |ξ|2

)1/2

and √
φ(h)|popt0 |L2(Ω) ≤ Cobs

(∫∫
Q

e
M
t |ξ|2

)1/2

. (3.7)

Hence, the linear map

L(T ;a,b) : L2(eM)→ L2(ω × (0, T )),

ξ 7→ v,

is well defined and continuous. Finally, with (3.6) and (3.7) we get

|q(0)|L2(Ω) ≤ Cobse
−C/h

(∫∫
Q

e
M
t |ξ|2

)1/2

,

which concludes the proof.
Proof of Theorem 1.4. Let us define

g(s) :=

{
f(s)
s

if s 6= 0,

f ′(0) if s = 0.
(3.8)
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The assumption on f guarantees that g and f ′ are both continuous and bounded functions. We set
Z = L2(0, T ;RM). For ζ ∈ Z we consider the semi discrete linear controlled system

∂ty +AMy + g(ζ)y = 1ωv + ξ in RM × (0, T ),

−∂tq +AMq + f ′(ζ)q = 1Oy in RM × (0, T ),

y = q = 0 on ∂M× (0, T ),

y(0) = 0, q(T ) = 0.

(3.9)

We set aζ = g(ζ) and bζ = f ′(ζ), so that we have

‖aζ‖∞ + ‖bζ‖∞ ≤ K := 2‖f ′‖∞, ∀ζ ∈ Z. (3.10)

Then, we apply Proposition 3.1, with h chosen sufficiently small, i.e. h ≤ min(h0, h1) with

h1 = C
(

1 + 1
T

+K2/3
)−1

,

and denote by vζ = L(T ;aζ ,bζ)(ξ) and (yζ , qζ) the associated control function and controlled solution. We
have

|qζ(0)|L2(Ω) ≤ Ce
−C1/h‖ξ‖L2(eM), ‖vζ‖L2(Q) ≤ C‖ξ‖L2(eM). (3.11)

where C1 > 0 and C = exp
[
C
(

1 + 1
T

+K2/3 + T (1 +K)
)]

are uniform with respect to ζ and to the

discretization parameter h. We have thus built a map

Λ : Z → Z,
ζ 7→ yζ ,

where yζ is the solution to (3.9) associated to aζ = g(ζ) and bζ = f ′(ζ), with vζ as in (3.11).
By classical energy estimates for the semi discrete parabolic equations we obtain

‖yζ‖L2(Q) ≤ e
C(1+T+T (‖aζ‖∞+‖bζ‖∞)) (‖ξ‖L2(Q) + ‖1ωvζ‖L2(Q)

)
≤ CeC(1+T+T (‖aζ‖∞+‖bζ‖∞)) (‖ξ‖L2(eM) + ‖1ωvζ‖L2(Q)

)
,

and taking into account (3.10) and (3.11), we deduce that the image of Λ is bounded, which implies in
particular that there exists a closed convex and bounded set in Z which is fixed by Λ. Following the
methods of [2] and [12], it can be verified that Λ is continuous and compact from Z into itself, by the
Ascoli theorem. Therefore, applying Schauder’s fixed point theorem, we obtain that there exists y ∈ Z
such that Λ(y) = y. Setting v = L(T ;ay,by)(ξ) we obtain

∂ty +AMy + f(y) = 1ωv + ξ in RM × (0, T ),

−∂tq +AMq + f ′(y)q = 1Oy in RM × (0, T ),

y = q = 0 on ∂M× (0, T ),

y(0) = 0, q(T ) = 0,

which concludes the proof as we have found a control v that drives the solution of the semilinear semi
discrete parabolic system to a final state q(0) satisfying the estimates (3.11).

4 The fully discrete insensitizing control problem

As noted in Proposition 1.1, the insensitizing problem is equivalent to a null control problem for a cascade
system of equations. In the present section we consider a fully discrete (time and space) version of our
problem. We shall compute the suitable fully discrete version of the cascade system which is equivalent to
the insensitizing property as well as its associated adjoint system. By using the penalized HUM approach,
we can characterize and build the optimal control satisfying a convenient minimization problem that will
furnish computable controls satisfying the expected properties.
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4.1 Fully discrete null-controllability formulation

We consider a standard fully discrete scheme for our semilinear parabolic equation with unknown data.
More precisely, for any mesh M and any integer M > 0 given, we set δt = T/M and we introduce the
following semi-implicit Euler scheme with respect to the time variable

yn+1 − yn

δt
+AMyn+1 + f(yn) = 1ωv

n+1 + ξn+1, ∀n ∈ J0,M − 1K,

y0 = y0 + τw0,
(4.1)

where vδt is an element of the fully discrete function space defined by

L2
δt(0, T ;RM) := {vδt = (vn)1≤n≤M , vn ∈ RM, ∀n ∈ J1,MK},

and endowed with the norm

‖vδt‖L2
δt

(0,T ;RM) :=

(
M∑
n=1

δt|vn|2L2(Ω)

)1/2

.

Note that we consider an explicit discretization for the nonlinear term in (4.1) to ensure that we can
compute the solution of the system by simply solving a set of linear equations at each time iteration
with the same underling matrix I + δtAM. Therefore, a direct solver can be efficiently used. Since the
nonlinear function f is assumed to be globally Lipschitz continuous, this discretization is stable as soon
as we assume the following condition

δtLip(f) < 1. (4.2)

Consider now the fully discrete version of the functional (1.9) defined by

Ψ(yδt) :=
1

2

M∑
n=1

δt

∫
O
|yn|2, ∀yδt ∈ L2

δt(0, T ;RM). (4.3)

Then, our desire is to insensitize the functional (4.3) computed on the solutions of (4.1) with respect to
perturbations of the initial data. This means that we find vδt such that

∂Ψ(yδt[y0, ξδt, vδt, w0, τ ])

∂τ

∣∣∣
τ=0

= 0, ∀w0 ∈ RM, (4.4)

where yδt[y0, ξδt, vδt, w0, τ ] is the solution of (4.1).
Similarly to the semi discrete and continuous cases, we have the following characterization for an

insensitizing control.

Proposition 4.1 We assume that the time step satisfies the stability condition (4.2). We consider the
following cascade system of fully discrete semilinear parabolic equations

yn+1 − yn

δt
+AMyn+1 + f(yn) = 1ωv

n+1 + ξn+1, ∀n ∈ J0,M − 1K,

y0 = y0,
(4.5)


qn − qn+1

δt
+AMqn + f ′(yn)qn+1 = 1Oy

n, ∀n ∈ J1,MK,

qM+1 = 0.
(4.6)

Then, the insensitizing condition (4.4) is equivalent to

q1 = 0.

Proof. With the definition (4.3), the derivative of Ψ (yδt[y0, ξδt, vδt, w0, τ ]) with respect to τ evaluated
at τ = 0 shows that (4.4) is precisely equivalent to the equality

M∑
n=1

δt

∫
O
ynwn = 0, (4.7)
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for every w0 ∈ RM, where (yn)n ∈ L2
δt(0, T ;RM) is the solution of (4.1) corresponding to τ = 0 and

(wn)n ∈ L2
δt(0, T ;RM) is the derivative of the solution of (4.1) at τ = 0. More precisely, (yn)1≤n≤M

solves 
yn+1 − yn

δt
+AMyn+1 + f(yn) = 1ωv

n+1 + ξn+1, n ∈ J0,M − 1K,

y0 = y0,

and (wn)1≤n≤M solves
wn+1 − wn

δt
+AMwn+1 + f ′(yn)wn = 0, n ∈ J0,M − 1K,

w0 = w0.
(4.8)

We multiply (4.8) by a sequence (qn+1)0≤n≤M−1 in L2
δt(0, T ;RM), that is,

M−1∑
n=0

δt
(
wn+1−wn

δt
+AMwn+1 + f ′(yn)wn, qn+1

)
L2(Ω)

= 0.

After rearranging some terms and from the fact that AM is a symmetric operator we obtain

−
(
w0, q1 − δtf ′(y0)q1)

L2(Ω)
+

M−1∑
n=1

δt
(
wn, q

n−qn+1

δt
+ f ′(yn)qn+1

)
L2(Ω)

+
(
wM , qM

)
L2(Ω)

+

M∑
n=1

δt
(
wn,AMqn

)
L2(Ω)

= 0.

Adding and subtracting the term
(
wM , qM − qM+1 + δtf ′(yM )qM+1

)
L2(Ω)

in the above expression we
get

−
(
w0, q1 − δtf ′(y0)q1)

L2(Ω)
+

M∑
n=1

δt

(
wn,

qn − qn+1

δt
+AMqn + f ′(yn)qn+1

)
L2(Ω)

+
(
wM , qM+1 − δtf ′(yM )qM+1

)
L2(Ω)

= 0.

It follows that, if the sequence (qn)n solves the adjoint problem (4.6), we obtain that

M∑
n=1

δt (wn, yn)L2(O) =
(
w0, q1 − δtf ′(y0)q1)

L2(Ω)
.

Hence (4.7) is equivalent to ask

(w0, q
1 − δtf ′(y0)q1)L2(Ω) = 0 ∀w0 ∈ RM,

and by using the condition (4.2), this is equivalent to

q1 = 0.

The proof is complete.

Remark 4.2 We would like to emphasize the fact that the fully discrete equation satisfied by (qn)n as
well as the insensitizing condition q1 = 0 cannot be chosen at the user convenience and replaced by
any consistent time discrete version of (1.5). Indeed, the precise form of those equations depend on the
discretization chosen for the state equation and for the fully discrete functional Ψ.

As an example, following similar computations as the ones in the previous proposition one can prove
that if we replace (4.3) by

Ψ(yδt) :=
1

2

M∑
n=1

δt

∫
O

∣∣∣∣yn + yn−1

2

∣∣∣∣2 , ∀yδt ∈ L2
δt(0, T ;RM),
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and keeping the state equation (4.1), then the insensitizing condition becomes

q0 = 0,

where (qn)0≤n≤M satisfies
qn − qn+1

δt
+AMqn + f ′(yn)qn+1 = 1O

yn−1 + 2yn + yn+1

4
, ∀n ∈ J0,MK,

qM+1 = 0,

with the convention y−1 = −y0 and yM+1 = −yM .

As for the semi discrete model, we do not expect to be able to solve the previous problem but rather
a relaxed version of it, that is to find a fully discrete control such that the solution of (4.5)-(4.6) satisfies

|q1|L2(Ω) ≤ C
√
φ(h), and ‖vδt‖L2(0,T ;RM) ≤ C, (4.9)

for a suitably chosen function h 7→ φ(h) and some C depending only on uniform bounds for the source
term (and/or the initial data) in some appropriate norms, but not on the discretization parameters h
and δt.

4.2 Linearized problem

In order to solve the nonlinear null-control problem (or its relaxed version, that is satisfying (4.9)) we
will use a fixed point procedure. To this end we first need to consider the linearized problem defined as
follows. We suppose given a set of discrete functions (an)0≤n≤M−1 ∈ (RM)M and (bn)1≤n≤M ∈ (RM)M

and we conventionally set b0 = 0. We will deal with the following linearized controlled cascade system
yn+1 − yn

δt
+AMyn+1 + anyn = 1ωv

n+1 + ξn+1, ∀n ∈ J0,M − 1K,

y0 = y0,
(4.10)


qn − qn+1

δt
+AMqn + bnqn+1 = 1Oy

n, ∀n ∈ J1,MK,

qM+1 = 0.
(4.11)

We would like to build a control vδt to ensure that q1 = 0, or at least that q1 solves some estimate similar
to (4.9).

With the above notation and following the methodology of the penalized HUM (see for instance
[15, 16, 5]), we introduce for some penalization parameter ε > 0 (to be determined later) the following
primal fully discrete functional

Fε,h,δt(vδt) :=
1

2

M∑
n=1

δt|vn|2L2(Ω) +
1

2ε
|q1|2L2(Ω), ∀vδt ∈ L

2
δt(0, T ;RM),

that we wish to minimize onto the whole fully discrete control space L2
δt(0, T ;RM) and where q1 is

taken from the solution of (4.10)-(4.11) associated with the control vδt. Note that, since q1 is an affine
function of vδt, it is straightforward to prove that this functional has a unique minimizer without any
assumption on the various parameters of the problem. This is one of the main interest of the penalized
HUM approach: the optimal penalized control always exist and is unique and studying the controllability
properties of the system simply amounts to analyzing the behavior of this control with respect to the
penalization parameter ε, in connection with the discretization parameters.

Let us first identify the dual functional for the above optimization problem.

Proposition 4.3 For any ε > 0, and any p0 ∈ RM, we define the functional

Jε,h,δt(p0) :=
1

2

M∑
n=1

δt|1ωzn|2L2(Ω) +
ε

2
|p0|2L2(Ω) +

M∑
n=1

δt (ξn, zn)L2(Ω) +
(
y0 − δta0y0, z

1)
L2(Ω)

, (4.12)
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where the sequence (zn, pn)n is the solution to the following adjoint problem
zn − zn+1

δt
+AMzn + anzn+1 = 1Op

n, n ∈ J1,MK,

zM+1 = 0,
(4.13)


pn+1 − pn

δt
+AMpn+1 + bnpn = 0, n ∈ J0,M − 1K,

p0 = p0.
(4.14)

The functionals Fε,h,δt and Jε,h,δt are dual one from each other in the sense that their respective mini-
mizers vε,h,δt ∈ L2

δt(0, T ;RM) and p0,ε,h,δt ∈ RM satisfy

inf
L2
δt

(0,T ;RM)
Fε,h,δt = Fε,h,δt(vε,h,δt) = −Jε,h,δt(p0,ε,h,δt) = − inf

RM
Jε,h,δt,

and
vε,h,δt = (1ωz

n
ε,h,δt)1≤n≤M , (4.15)

where (znε,h,δt)n is the solution to (4.13)-(4.14) with initial data p0 = p0,ε,h,δt.
Moreover, the value of the target q1 associated with the penalized HUM control vε,h,δt is given by

q1 = −εp0,ε,h,δt.

Remark 4.4 Even though our theoretical results proved in the previous sections only concern the case
where y0 = 0 (see Remark 1.5), we have considered here the general case where y0 6= 0 in (4.5) in order
to perform numerical computations also in that case. That is the reason why y0 appears in the definition
of the dual functional. As a consequence, we will be able to illustrate numerically different results already
known about the class of initial data that can be insensitized. Note that when y0 = 0, the functional
(4.12) is in fact the fully discrete version of (3.4)

Proof. For any vδt, ξδt ∈ L2
δt(0, T ;RM), and any y0 ∈ RM, we denote by L(vδt, ξδt, y0) the value q1 of

the corresponding solution of (4.10)-(4.11). We can write

Fε,h,δt(vδt) =
1

2
‖vδt‖2L2

δt
(0,T ;RM) +

1

2ε
|L(vδt, ξδt, y0)|2L2(Ω)

=
1

2
‖vδt‖2L2

δt
(0,T ;RM) +

1

2ε
|L(vδt, 0, 0) + L(0, ξδt, y0)|2L2(Ω),

where we used the linearity of the operator L in the last equality.
The Fenchel-Rockafellar duality theorem (see [11]) gives that

inf
vδt∈L2

δt
(0,T ;RM)

Fε,h,δt(vδt) = − inf
p0∈RM

Jε,h,δt(p0),

where

Jε,h,δt(p0) :=
1

2
‖L(·, 0, 0)∗p0‖2L2

δt
(0,T ;RM) +

ε

2
|p0|2L2(Ω) + (p0, L(0, ξδt, y0))L2(Ω). (4.16)

It remains to check that this formula is equivalent to (4.12) which amounts in particular to compute the
adjoint of L(·, 0, 0). To this end, for any p0 we denote by (pn)n and (zn)n the solutions of (4.13)-(4.14)
and by (yn)n and (qn)n the solutions of (4.10)-(4.11) associated with the control vδt the source term ξδt
and the initial data y0.

• Step 1 : We multiply by pn the equation satisfied by qn, we use that qM+1 = 0, and then the
equation satisfied by (pn)n to obtain

M∑
n=1

δt(yn, pn)L2(O) =

M∑
n=1

δt

(
pn,

qn − qn+1

δt
+Aqn + bnqn+1

)
L2(Ω)

=

M∑
n=1

δt

(
qn,

pn − pn−1

δt
+Apn + bn−1pn−1

)
L2(Ω)

+ (p0, q1)L2(Ω)

= (p0, q
1)L2(Ω).
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• Step 2 : We multiply by yn the equation satisfied by zn. Then we use the fact that zM+1 = 0, and
finally the equation satisfied by (yn)n to obtain

M∑
n=1

δt(yn, pn)L2(O) =

M∑
n=1

δt

(
yn,

zn − zn+1

δt
+Azn + anzn+1

)
L2(Ω)

=

M∑
n=1

δt

(
zn,

yn − yn−1

δt
+Ayn + an−1yn−1

)
L2(Ω)

+ (z1, y0 − δta0y0)L2(Ω)

=

M∑
n=1

δt(zn, vn)L2(ω) +

M∑
n=1

δt(zn, ξn)L2(Ω) + (z1, y0 − δta0y0)L2(Ω).

Comparing the two formulas above, we conclude that

(L(vδt, ξδt, y0), p0)L2(Ω) =

M∑
n=1

δt(zn, vn)L2(ω) +

M∑
n=1

δt(zn, ξn)L2(Ω) + (z1, y0 − δta0y0)L2(Ω).

In particular, this proves that
L(·, 0, 0)∗ = (1ωz

n)1≤n≤M ,

and that

(L(0, ξδt, y0), p0)L2(Ω) =

M∑
n=1

δt(zn, ξn)L2(Ω) + (z1, y0 − δta0y0)L2(Ω).

Subtituting those expressions in (4.16) concludes the proof of the claim.
Moreover, the Euler-Lagrange equation satisfied by the minimizer p0,ε,h,δt of the quadratic functional

Jε,h,δt can be written as follows

L(L(., 0, 0)∗p0,ε,h,δt, 0, 0) + εp0,ε,h,δt + L(0, ξδt, y0) = 0, (4.17)

which gives with (4.15)
L(vε,h,δt, ξδt, y0) = −εp0,ε,hδt.

The proof is complete.
In general, it is well known that we cannot expect, for a given bounded family of initial data and

source terms, that the fully discrete penalized controls are uniformly bounded when the discretization
parameters h, δt and the penalization parameter tend to zero independently, see for instance [5].

Due to the additional term in the relaxed observability estimate, we can however expect to obtain
uniform bounds if one consider a penalization parameter ε = φ(h) that tends to 0 in connection with
the mesh size not too fast compared to some exponential and if the time step δt satisfy some very weak
condition δt ≤ ζ(h) where ζ typically tends to zero logarithmically when h→ 0 (see [8]).

We do not provide a detailed analysis of the fully discrete case in this paper (we postpone this study
to future work) but we can already make the following remarks.

• Assume that, for some bounded family (depending on M and δt) of initial data y0 and/or source
term ξ, we have the following fully discrete observability estimate

M∑
n=1

δt(ξn, zn)L2(Ω) + (y0 − δta0y0, z
1)L2(Ω) ≤ C

(
M∑
n=1

δt|1ωzn|2L2(Ω) + φ(h)|p0|2L2(Ω)

) 1
2

, (4.18)

for any solution (z, p) of (4.13)-(4.14), and any δt ≤ ψ(h).

Then, Proposition 4.3 shows that the fully discrete control vφ(h),h,ζ(h) given in (4.15) with ε = φ(h)
and δt = ζ(h) remains bounded as h→ 0 and that the associated value of the target q1 satisfies

|q1|L2(Ω) ≤ C
√
ε = C

√
φ(h).

This proves the φ(h)-insensitizing property.
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• The estimate (4.18) depends on the particular source term and initial data which is considered.
One way to obtain more generic results is to prove observability inequality accounting only on the
adjoint states (z, p) and not on a particular choice of the data. For instance, in view of our results
on the semi discrete case of Section 2, we may hope to be able to prove that

M∑
n=1

δt exp(−M/(nδt))|zn|2L2(Ω) ≤ C
2
obs

(
M∑
n=1

δt|1ωzn|2L2(Ω) + e
−C1
h |p0|2L2(Ω)

)
, (4.19)

for any solution (z, p) of (4.13)-(4.14), and any δt ≤ ζ(h).

Observe that, using the Cauchy-Schwarz inequality, (4.19) implies (4.18) as soon as we consider
y0 = 0 (this is somehow natural in this problem as we have already explained) and a family of
discrete source terms ξ ∈ L2

δt(0, T ;RM) that are bounded in L2(eM). We refer to [8] for the proof
of inequalities similar to (4.19) in the framework of the null-control problem. However the proofs
given in this reference rely on the discrete Lebeau-Robbiano strategy which is not useful for dealing
with insensitizing control problems. Proving (4.19) is thus still an open problem.

4.3 Computational method

We devote this section to address the actual computation of the fully discrete insensitizing controls for
the linearized problem. As noted in Proposition 4.3, such controls are the minimizers of Fε,h,δt but
may be also be computed by minimizing the dual functionals Jε,h,δt. Since the dual functionals are
defined on the finite dimensional space RM, instead of the larger space L2

δt(0, T ;RM), it is somehow more
convenient to apply optimization algorithms to the dual functional. For a given set of parameters ε, h, δt
and data (an)n, (b

n)n, ξδt, y0, our problem is to solve the linear equation (4.17). Since it is a symmetric
positive definite problem, we usually solve it by a conjugate gradient algorithm in RM that needs, at
each iteration, the computation of the linear operator LL∗ + εId (to simplify, we have denoted by L the
operator L(·, 0, 0)).

The actual computation of the term LL∗ applied to some p0 ∈ RM must be regarded as follows.

1. In a first step, we solve the adjoint problem with the initial datum p0. This is achieved in two steps.
We begin by solving the homogeneous forward system

pn+1 − pn

δt
+AMpn+1 + bnpn = 0, n ∈ J0,M − 1K,

p0 = p0.

Then, we solve the backward system for z with second member 1Op
n

zn − zn+1

δt
+AMzn + anzn+1 = 1Op

n, n ∈ J1,MK,

zM+1 = 0.

2. We compute the restriction of the solution (zn)n to the control domain ω by setting vn = 1ωz
n.

This gives a control in L2
δt(0, T ;RM).

3. Afterwards, we proceed to compute the solution (yn)n with this particular control and without
initial data and source term. More precisely, we solve

yn+1 − yn

δt
+AMyn+1 + anyn = 1ωz

n+1, ∀n ∈ J0,M − 1K,

y0 = 0.

Finally, we solve for the backward problem for q with second member 1Oy
n

qn − qn+1

δt
+AMqn + bnqn+1 = 1Oy

n, ∀n ∈ J1,MK,

qM+1 = 0.

The value of L(L∗p0) is then given by q1.

Remark 4.5 Note that the procedure to compute the control for a given problem basically requires to
solve four parabolic systems at each iteration of the minimization algorithm: a forward parabolic equation
with the zero-order term an (resp. bn) for y (resp. for p), one backward parabolic equation with the
zero-order term an (resp. bn) for z (resp. for q).
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4.4 Semilinear problem

We may now come back to solving the nonlinear problem. For a given mesh, a given time step and a given
penalization parameter ε (that may depend on h as discussed previously), we propose to simply use a fixed
point procedure, with a relaxation parameter θ ∈ (0, 1] based on an iteration ȳδt = (ȳn)n 7→ yδt = (yn)n
described as follows

• Given a state ȳδt = (ȳn)n satisfying ȳ0 = y0, we set

an = g(ȳn),∀n ∈ J0,M − 1K, bn = f ′(ȳn), ∀n ∈ J1,MK, b0 = 0,

where the function g is defined in (3.8).

• We solve the penalized insensitizing control problem for the linear system (4.10)-(4.11) associated
with those coefficients. This is done by the conjugate gradient method described in the previous
section. The controlled solution is denoted by yδt.

• If ȳδt − yδt is small enough then we stop the nonlinear solver and take the (linear) HUM control
vδt = (vn)n computed during the previous step as an insensitizing control for the nonlinear equation.

• Otherwise, we step over a new iteration by using as a new guess the state

ȳδt ← [ θyδt + (1− θ)ȳδt.

In the nonlinear test cases presented below we have used θ = 0.8 and less than 10 nonlinear iterations
were necessary to achieve the convergence criterion

‖yδt − ȳδt‖∞/‖ȳδt‖∞ < 10−5.

5 Numerical experiments

We present here some results obtained with the methodology described and analyzed above to the problem
of insensitizing control in various situations. In accordance with the discussion in Section 4, we use the
standard finite-difference scheme on a uniform mesh of the domain Ω = (0, 1) for the space discretization
and the semi-implicit scheme in the time variable. We denote by N the number of points in the mesh
and by M the number of time intervals. It has been observed in [5] that the results in those kind of
problems does not depend too much on the time step, as soon as it is chosen to ensure at least the same
accuracy as the space discretization. The same observation can be done here so that we will always take
M = 2000 in order to concentrate the discussion on the dependency of the results with respect to the
mesh size h. Observe that, with such a choice, the stability condition (4.2) is actually statisfied in all
the presented cases.

In all the results presented below, the chosen horizon time is T = 1 and the underlying elliptic
operator AM is a discretization of the operator −0.1∂2

x. Note that the presence of a diffusion coefficient
which is not equal to 1 does not change anything to our analysis.

The methodology is the one described in Section 4.4 for the nonlinear case and in Section 4.3 for the
linear case.

5.1 The insensitizing problem

As previously noticed, the first positive result on the existence of insensitizing controls for (1.1) was
developed in [25] in the case where y0 = 0, ξ ∈ L2(eM) and ω ∩ Ω 6= ∅. Our main result in this paper
(Theorem 1.4) was precisely a semi discrete version of this result. We also discussed the extensions to
the fully discrete case in Section 4.

Our goal here is to provide illustrations of those results obtained by our simulation tool in the case
where all those assumptions are fulfilled but also to investigate numerically some situations that are not
covered by our analysis.
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5.1.1 Illustration of positive insensitizing results

We begin by testing the case of a localized control domain ω = (0, 0.5), an observatory domain O =
(0.3, 0.8) and y0 ≡ 0. The source term ξ is selected as the space independent function ξ(x, t) = 1[0.4,1](t).
This ensures in particular that ξ ∈ L2(eM) for any value of M. Moreover we choose the nonlinear term
to be f(y) = −0.1 sin(y). All the assumptions of our main result are thus satisfied.

As discussed above, we choose the penalization term ε as a function of h. More precisely, we choose
ε = φ(h) = h4 in all the simulations presented in this paper. This choice is consistent with the order of
approximation of the finite difference scheme since we expect to obtain |q1|L2(Ω) ≤ C

√
φ(h) ∼ Ch2. We

refer the reader to [5] for a more detailed discussion on the selection of the function φ(h) in the context
of the null-controllability problem.

We first plot on Figure 1 the solutions (y, q) without any control. We observe that y = 0 on (0, 0.4)
since the initial data is zero and the source term vanishes on that time interval. Moreover, the adjoint
state q(0) is clearly not zero which proves that, without any control, the functional Ψ is indeed very
sensitive to perturbations of the initial data (see also Figure 4).

T = 1

0.2

0.4

0

(a) The state (t, x) 7→ y(t, x)

T = 1

5 · 10−2

0.1

0

(b) The adjoint (t, x) 7→ q(t, x) ( =observatory domain)

Figure 1: f(y) = −0.1 sin(y), y0 = 0, ξ(x, t) = 1[0.4,1](t). Uncontrolled solution.

In Figure 2, we plot the solution (y, q) obtained with the HUM control v computed by the algorithm
described in previous sections. We observe that, due to the action of the control, y is no more equal
to 0 on the time interval (0, 0.4) and that the adjoint state at the initial time q(0) is very small (see
the discussion below), which illustrates that the functional Ψ is now insensitized to the initial data
perturbations (see also Figure 4).

As far as the asymptotic behavior of the method is concerned, we present in Figure 3 the behavior of
various quantities of interest when the mesh size goes to 0. More precisely, we observe that the control
cost ‖vh,δt‖L2

δt
(0,T ;RM) as well as the optimal energy inf Fφ(h),h,δt both remain bounded as h→ 0. In the

meantime, we see that |q1|L2(Ω) behaves like ∼ C
√
φ(h) = Ch2 as predicted by the theory.

Finally, to illustrate the insensitizing property for the functional Ψ defined in (1.3), we plot the values
of Ψ(y) for solutions of our problem associated with various perturbed initial data y(0) = y0 + τw0 in
the case without control and in the case with the computed control acting on ω. In Figure 4, we can
observe the expected behaviour:

• In the controlled case, the value of Ψ is minimal for τ = 0 and for any choice of w0.

• In the uncontrolled case, the values of Ψ around τ = 0 strongly depend on τ and w0, which proves
that Ψ is sensitive to the perturbations of the initial data.
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T = 1

0.2

0.4

0

(a) The state (t, x) 7→ y(t, x) ( =control domain)

T = 1

5 · 10−2

0.1

0

(b) The adjoint (t, x) 7→ q(t, x) ( =observatory domain)

Figure 2: f(y) = −0.1 sin(y), y0 = 0, ξ(x, t) = 1[0.4,1](t). Controlled solution.

10−3 10−2

10−7

10−5

10−3

10−1

101

slope 2

h

Cost of the control

Size of q1

Optimal energy

Figure 3: Convergence properties of the method for insensitizing problem.
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−0.6 −0.4 −0.2 0 0.2 0.4 0.6

5 · 10−2

0.1

0.15

0.2

τ

Ψ(y)

Contr. Uncontr.

cos(2πx)

sin( 1
3πx) + sin( 15

4 πx)

1(0,0.4)(x)− 1(0.6,1)(x)

Figure 4: Value of Ψ(y) for different parameters τ and initial perturbations w0.

5.1.2 The class of initial data that can be insensitized

The insensitizing results in Theorem 1.4 and in [25, Theorem 1] use the fact that y0 ≡ 0. Actually, there
are very few results identifying the class of initial data that can be insensitized. In [26], the authors
studied this question under particular geometric configurations of the subdomain O to be insensitized
and of the control set ω. To simplify a little, we only consider now the linear case, that is when f(y) = 0.

The case O ⊂ ω : In that situation, one may obtain through classical energy estimates, the following
inequality ∫

Ω

|∂xz(x, 0)|2 ≤ C
∫∫

ω×(0,T )

(|∂tz|2 + |∂2
xz|2),

for solutions to the adjoint system
−∂tz − 0.1∂2

xz = 1Op, in Ω× (0, T ),

∂tp− 0.1∂2
xp = 0, in Ω× (0, T ),

z = p = 0, on ∂Ω× (0, T ),

z(T ) = 0, p(0) = p0.

This estimate of a Sobolev norm on z(0) in terms of the observation for derivatives of z in ω implies that
the insensitization property can be achieved for any initial data in L2(Ω) as soon as we allow the controls
to belong to some negative Sobolev space. It is not known if the result still holds for L2 controls.

We would like to illustrate this issue in Figure 5. For this experiment we have used that ω = (0.3, 0.8),
ξ = 0 and y0(x) = 1(0.2,0.7)(x).

We compare the behavior as h → 0 of the computed solutions in the case where O = (0.4, 0.6)
(Subfigure 5a) and in the case O = (0, 0.6) (Subfigure 5b).

In the first case, we observe a similar situation as in Figure 3 namely the boundedness of the control
cost and of the optimal energy as well as the convergence of the target q1 to zero like h 7→

√
φ(h). This

seems to confirm that such a system is insensitizable with L2 controls.
The results are very different in the second situation, where the cost of the control increases like

h 7→ h−1, the optimal energy like h 7→ h−2 whereas the target q1 tends to zero like h. This seems to
confirm that uniform relaxed observability estimates do not hold for this system and that we can only
achieve approximate insensitizing controllability in general if O 6⊂ ω.
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(a) The case where O ⊂ ω

10−3 10−2
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10−1
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sl. 1

sl. −1
sl. −2

h

(b) The case where O 6⊂ ω

Figure 5: y0(x) = 1(0.2,0.7)(x), ξ = 0, f = 0, ω = (0.3, 0.8). Same legend as in Figure 3.

The case O = Ω : In this situation, it is known from [26, Theorem 2.2] that it is possible to insensitize
any initial data of the form y0 =

∑∞
j=1 bjϕj as soon as

∞∑
j=1

eB
√
λj b2j <∞, B > 0, (5.1)

where λj and ϕj are the eigenvalues and eigenfunctions of the Dirichlet Laplacian, respectively. This
property can be understood as regularity/compatibility conditions for an initial data to be insensitized.

In Figure 6, we present some experiments with different initial data. In Subfigures 6a and 6b, we
select initial data satisfying condition (5.1) and, as expected, we observe that the convergence ratio of q1

is
√
φ(h) = h2 as well as the boundedness of the control cost. In SubFigure 6c we select an initial data

that does not fulfill (5.1): we observe that the size of the target actually goes to 0 but at a lower rate
h 7→ h, while the optimal energy is blowing up as h 7→ h−2. This is again a numerical evidence that, for
such data that does not fulfill (5.1), the system seems to be approximately, but not exactly insensitizable.

5.1.3 The influence of the source term ξ

It has been widely discussed if the hypothesis on the source term, namely ξ ∈ L2(eM) for some M > 0,
is indeed necessary for the insensitizing property to hold. We propose in Figure 7 different simulations
for space independent source terms ξ(x, t) = exp

(
−M

t

)
with different values of M.

We observe that for the larger values ofM we maintain the insensitability result, but as these values
decrease to 0 the convergence rate of the target q1 becomes close to h and not h2 as expected if the
uniform relaxed observability would hold. Similarly, the optimal energy and the control cost seem to
blow up like h−1 and h−2 respectively. As discussed in [5], such behaviors might correspond to the case
where the continuous problem is approximately but not null controllable (and it may even depend on
the time T ). In the insensitizing framework, this means that we are in the context of ε-insensitizing (see
for instance [2]). In these cases, further investigation is desirable.

5.1.4 The case ω ∩ O = ∅
As in other insensitizing results (see e.g. [25], [3], [20], . . . ), we strongly used in our proofs the fact that
ω ∩ O 6= ∅ in order to locally estimate p in terms of z and thus to keep only one observation term in z
in ω. Without this hypothesis, we would not be able to obtain the observability inequality (2.2).
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(a) y0(x) = sin(πx) - Condition (5.1) is satisfied
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(b) y0(x) = sin3(πx) - Condition (5.1) is satisfied
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h

(c) y0(x) = sin2(πx) - Condition (5.1) is not satisfied

Figure 6: The case where O = Ω with ξ = 0, ω = (0, 0.5). Same legend as in Figure 3.
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(a) M = 1
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(b) M = 0.1
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(c) M = 0.01

10−3 10−2
10−9

10−6

10−3

100

103

slope 1

slope −2

h

(d) M = 0.0

Figure 7: Different values of M in the source term. Same legend as in Figure 3.
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In [21], the authors proved that, for system (1.1), the functional Ψ defined in (1.3) can be actually
ε-insensitized when ω∩O = ∅, for any y0 ∈ L2(Ω) and any ξ ∈ L2(Q). Using our computational code, we
are able to test different geometric configurations of ω and O and then to begin investigating the open
problems in that field.

For instance, we choose ω = (0, 0.5), O = (0.8, 1), y0(x) = sin2(πx), f(y) = 0 and ξ(x, t) = 0. In
Figure 8, we observe that the size of the computed target |q1|L2(Ω) decreases to 0 like h0.6 instead of the

optimal rate h 7→ h2 =
√
φ(h). Since only a result of ε-insensitizing is known for the continuous case,

this result may express the fact that the problem may not be exactly insensitizable or that the numerical
approximation may require a stronger condition on the penalization function φ (see [5]). Moreover, new
phenomena (such as a minimal controllability time) associated to the fact that ω ∩ O = ∅ may arise.
This is for instance the case for the null-controllability of coupled parabolic systems, see [1]. In any case,
further investigation is desirable and the numerical simulations may help to make progresses in that
direction.
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Figure 8: The case where O ∩ ω = ∅. Same legend as in Figure 3.

5.1.5 A quadratic case

To conclude this section, we propose to test our computational code for a quadratic nonlinearity f(y) =
−y2. None of our theoretical result apply to this case and it is in fact known from [4] that, even for slightly
sublinear functions f , such equations may not be insensitizable. Actually, the situation is even worse
since those authors show that, for well-chosen nonlinearities f , whatever the control v is, the solution of
the state equation blows up before the time T , which implies in particular that the insensitizing problem
is not even meaningful in that case.

Our goal here is to show that, even if theoretical tools are lacking for studying the general nonlinear
case, we may use numerical simulations to investigate the behavior of the system.

We propose here to deal with the initial data y0 = 0, the source term ξ(x, t) = 8 × 1[0.2,1], with a
control domain ω = (0, 0.7) and an observatory domain O = (0.3, 0.9).

With this choice of parameters, it can be shown that the uncontrolled state equation is blowing up
before the final time T = 1 (we estimate the blow-up time to be around 0.8). However, with our algorithm
we were able to produce discrete controls such that the controlled state equation is well-posed on (0, T )
and which is insensitized around the initial data 0. In other words the control v here has two functions:
it stabilizes the nonlinear state equation on the chosen time interval and simultaneously, it ensures the
insensitizing property for our functional Ψ.

In Figure 9, we observe the same expected behavior as in the linear or globally Lipschitz case. The
evolution in time of the L2-norm of the state y, the adjoint state q and of the control v is given in Figure
10 whereas the complete shape of the solution is shown in Figure 11.
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Figure 9: Convergence properties for the quadratic case. Same legend as in Figure 3.
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Figure 10: f(y) = −y2, y0 = 0, ξ(x, t) = 8× 1[0.2,1](t). Time evolution
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T = 1

1

0

(a) The state (t, x) 7→ y(t, x) ( =control domain)

T = 1

0.2

0

(b) The adjoint (t, x) 7→ q(t, x) ( =observatory domain)

Figure 11: f(y) = −y2, y0 = 0, ξ(x, t) = 8× 1[0.2,1](t). Controlled solution

5.2 Simultaneous insensitizing and null control

In this section we give a short insight of a slightly more general issue than the one of insensitizing controls.
Indeed, in the continuous case, we can ask for simultaneous null and insensitizing controls, that is, we
look for a control v ∈ L2(ω × (0, T )) such that we have simultaneously the null-controllability condition
at time T ,

y(T ) = 0,

and the insensitizing condition
q(0) = 0.

In the semi discrete case, we have an analogous concept. We describe it only in the linear case, for
simplicity. Consider the linear semi discrete system

∂ty +AMy = 1ωv + ξ in RM × (0, T ),

−∂tq +AMq = 1Oy in RM × (0, T ),

y = q = 0 on ∂M× (0, T ),

y(0) = 0, q(T ) = 0.

(5.2)

Following the proof of Theorem 2.1, we can obtain the observability inequality∫∫
Q

e
− M
t(T−t) |z|2 ≤ C

(∫∫
ω×(0,T )

|z|2 + e−C/h
(
|zF |2L2(Ω) + |p0|2L2(Ω)

))
, (5.3)

for any solution (z, p) to the following adjoint system
−∂tz +AMz = 1Op in RM × (0, T ),

∂tp+AMp = 0 in RM × (0, T ),

z = p = 0 on ∂M× (0, T ),

z(T ) = zF , p(0) = p0.

In this system, we notice that z(T ) is not supposed to vanish, which is the main difference with the
previous case.

Remark 5.1 Note that the weight function in the left-hand side of (5.3) vanishes at t = 0 and t = T .

Adapting the results of Section 3, we can prove the simultaneous insensitizing and null control by mini-
mizing with respect to (zF , p0) ∈ (RM)2 the dual functional

J(zF , p0) =
1

2

∫∫
ω×(0,T )

|z|2 +

∫∫
Q

zξ +
φ(h)

2

(
|zF |2L2(Ω) + |p0|2L2(Ω)

)
, (5.4)
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instead of the one defined in (3.4).
Assuming that ξ ∈ L2(Q) is such that∫∫

Q

e
M

t(T−t) |ξ|2 < +∞, (5.5)

and by using the inequality (5.3), we can then prove that the control v built by the minimization of (5.4)
yields a solution (y, q) of system (5.2) satisfying

|y(T )|L2(Ω) + |q(0)|L2(Ω) ≤ Ce
−C/h

(∫∫
Q

e
M

t(T−t) |ξ|2
) 1

2

,

‖v‖L2(Q) ≤ C
(∫∫

Q

e
M

t(T−t) |ξ|2
) 1

2

.
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Figure 12: Simultaneous insensitizing and null-control.

In this case, we can make numerical simulations to illustrate the simultaneous null and insensitizing
controls. As before, we take ω = (0, 0.5), O = (0.3, 0.8) and y0(x) = 0. For this test, we choose the
source term as

ξ(x, t) = 1[0.2,0.8](t),

which verifies the integrability condition (5.5). In Figure 12, we observe that the size of the computed
targets y(T ) and q(0) behaves as expected, i.e.,

√
φ(h) = h2. Moreover, the norm of the computed

control remains bounded as h→ 0.
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A Some discrete calculus results

The objective of this appendix is to provide a summary of calculus rules for discrete operators such as
D, D and also to provide estimates for successive applications of such operators on the weight functions.
We state here the results without proof. For a detailed reading we refer to [6].
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To avoid cumbersome notation we introduce the following continuous difference and averaging oper-
ators. For a function f defined on R we set:

τ+f(x) := f(x+ h
2

), τ−f(x) := f(x− h
2

),

Df :=
1

h
(τ+ − τ−)f, Af = f̂ :=

1

2
(τ+ + τ−)f.

Discrete versions of the results we give below will be natural, indeed, with the notation given in the
introduction, for a function f continuously defined on R, the discrete function Df is in fact Df sampled
on the dual mesh M, and Df is Df sampled on the primal mesh M. We use similar meanings for

averaging symbols f̃ , f̄ (see (1.12), (1.11)), and for more general combinations: for instance D̃Df will

be the function D̂Df sampled on M.

A.1 Discrete calculus formulae

Lemma A.1 Let the functions f1 and f2 be continuously defined over R. We have

D(f1f2) = D(f1)f̂2 + f̂1Df2.

The translation of the result to discrete functions f1, f2 ∈ RM and g1, g2 ∈ RM is

D(f1f2) = D(f1)f̃2 + f̃1D(f2), D(g1g2) = D(g1)ḡ2 + ḡ1D(g2), (A.1)

DD(f1f2) = (DDf1)f̃2 + f̃1(DDf2) + 2Df1 Df2. (A.2)

Lemma A.2 Let the functions f1 and f2 be continuously defined over R. We have

f̂1f2 = f̂1f̂2 +
h2

4
D(f1)D(f2)

The translation of the result to discrete functions f1, f2 ∈ RM and g1, g2 ∈ RM is

f̃1f2 = f̃1f̃2 +
h2

4
D(f1)D(f2), g1g2 = ḡ1ḡ2 +

h2

4
D(g1)D(g2). (A.3)

Lemma A.3 Let the function f be continuously defined over R. We have

A2f :=
ˆ̂
f = f +

h2

4
DDf

In particular, (A.2) can also be written as follows

D(D(f1f2)) = (D(Df1))f2 + f1(D(Df2)) + 2Df1 Df2 +
h2

2
(D(Df1))(D(Df2)). (A.4)

The following proposition covers discrete integration by parts:

Proposition A.4 Let f ∈ RM∪∂M and g ∈ RM. Then,∫
Ω

f(Dg) = −
∫

Ω

(Df)g + fN+1gN+ 1
2
− f0g 1

2
,∫

Ω

fg =

∫
Ω

f̃g − h

2
fN+1gN+ 1

2
− h

2
f0g 1

2
.
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A.2 Some results related to the weight functions

We present here two technical results related to discrete operations performed on the Carleman weight
functions. These are of particular interest in the demonstration of Theorem 2.1. We refer the reader to
[6], [9] for a complete review of the results and their proofs.

Lemma A.5 Let f be a smooth function defined on R. We have

Djf = ∂jxf + C′jh
2

∫ 1

−1

(1− |σ|)j+1∂j+2
x f(.+ ljσh)dσ,

Ajf = f + Cjh
2

∫ 1

−1

(1− |σ|)∂2
xf(.+ ljσh)dσ, j = 1, 2, l1 =

1

2
, l2 = 1.

We set r = esϕ and ρ = r−1. The positive parameters s and h will be large and small respectively.
We highlight the dependence on s, h and λ in the following estimate. We assume s ≥ 1 and λ ≥ 1.

Proposition A.6 Provided sh ≤ K, we have

rAjDρ = r∂xρ+ sOλ,K
(
(sh2)

)
= sOλ,K(1), j = 0, 1,

rD2ρ = r∂2
xρ+ s2Oλ,K

(
(sh2)

)
= s2Oλ,K(1).

The same estimates hold with ρ and r interchanged.

References

[1] F. Ammar-Khojda, A. Benabdallah, M. González-Burgos, and L. de Teresa. New phenom-
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