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Abstract—In this paper, an effective method is proposed to ad-
dress the problem of automatic 4D Facial Expression Recognition
(4D FER). The flow of 3D faces is first modeled to capture the
spatial deformations based on the recently-developed Riemannian
approach, namely Dense Scalar Fields (DSF), where registration
and comparison of neighboring 3D face frames are jointly
led. The deformations obtained are then fed into a temporal
filtering based magnification step in order to amplify the slight
facial actions over time. The proposed method allows revealing
subtle (hidden) deformations which enhance the performance of
emotion classification. We evaluate our approach on the BU-
4DFE dataset, and the state-of-art accuracy up to 94.18% is
achieved, which is superior to the top one so far reported, clearly
demonstrating its effectiveness.

I. INTRODUCTION

Facial expressions analysis and recognition from 3D data
has attracted lots of researchers due to its diverse applications
in the past decade, such as facial animation, human-computer
interaction, etc.In recent years, there has been tremendous
interest in tracking and recognition facial expressions from dy-
namic 3D facial expression sequence (4D data), it is suggested
that the dynamics of facial expressions provides important cues
about the underlying emotions that are not available in static
3D images.

There are a few works that use 4D data for facial ex-
pression analysis. Sun and Yin, the pioneers of 4D FER,
extracted a Spatio-Temporal (ST) descriptor from dynamic
sequences of 3D facial scans [1], and applied HMM classifier
to predict the expression type. In [2], the tracking-model-
based approach is presented for vertex correspondences, vertex
motion estimation, and HMM is trained to learn the spatial
and temporal information of the 3D model sequence. Canavan
et al. [3] presented a dynamic curvature based approach for
facial activity analysis, then constructed the dynamic curvature
descriptor from local regions as well as temporal domains,
and SVM classifier is adopted for classification. Sandbach
et al. [4] exploited 3D motion-based features (Free-Form
Deformation, FFD) between neighboring 3D facial geometry
frames for FER. A feature selection step was applied to

localize the features of each of the onset and offset segments
of the expression. The HMM classifier was used to model
the full temporal dynamics of each expression. In [5], the
entire expressive sequence is modelled to contain an Onset
followed by an Apex and an Offset. Feature selection methods
are applied to extract features for each of the onset and offset
segments of the expression. These features are then used to
train GentleBoost classifiers and build an HMM to model
the full temporal dynamics of the expression. Ben Amor et
al [6], [7], [8] presented the facial expression deformation
by collections of radial curves, Dense Scalar Fields (DSFs)
features are feed into Random Forest or HMM classifier for
classification. Xue et al. [9] applied three dimension discrete
cosine transform (3D-DCT) on local depth patch-sequences to
extract spatio-temporal features, and selected nearest-neighbor
classifier to make decision.

Even though the performance of 4D FER has been great
boosted in recent years, amplify the subtle movement on
the facial surface is still an unsolved problem. We present
a novel and effective approach to handle this problem, our
contributions are two-folds:
• A comprehensive pipeline of spatio-temporal processing

for effective facial expression recognition from 4D data.
• A method to amplify subtle movements on facial surfaces

which contributes to distinguish similar expressions.
The rest of the paper is structured as follows. Section II

introduces the background of the DSF based geometry feature.
The magnification of subtle facial deformation is described
in Section III. The experimental results are presented and
analyzed in Section IV, followed by Section V where we
conclude the paper.

II. DENSE SCALAR FIELDS

Following the geometric approach recently-developed in
[6], we represent 3D facial surfaces by a collection of radial
curves emanating from the nose tip. It is a parameterization
imposed for 3D face description, registration, comparison,
etc.The amount of deformation from one shape to another
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Fig. 1: Top row: facial texture images of an individual with
different expressions for visualization; middle row: depth maps
of each 3D face frame used for FER in this study; and
bottom row: facial deformations in the Riemannian space.
Warm colors are associated to bigger χ values and correspond
to the facial regions with high deformations, and cold colors
reflect the most static facial parts.

(across the 3D video) is computed through analyzing the
differences between the corresponding radial curves based on
the theory of differential geometry.

Specifically, in the pre-processing step, the 3D face mesh
in each frame is first aligned to the first one. The facial
surfaces are then approximated by indexed collections of radial
curves βα, where the index α denotes the angle formed by
the curve with respect to a reference one. These curves are
further uniformally resampled. Given a radial curve β of the
facial surface with an arbitrary orientation α ∈ [0, 2π], it
can be parameterized as β : I → R3, with I = [0, 1],
and mathematically represented using the square-root velocity
function (SRVF), denoted by q(t), according to:

q(t) =
β̇(t)√
‖β̇(t)‖

, t ∈ I. (1)

This geometry representation has the advantage of capturing
the curve shape and makes the calculus simpler. While there
are several ways to measure the curve shape, an elastic
analysis of the parametrized curves is appropriate in this
application, particularly under facial expression variations.
This is because (1) such analysis uses the square-root velocity
function representation which allows for the comparison of
local facial shapes in the presence of deformations; (2) this
method employs a square-root representation under which the
elastic metric is reduced to the standard L2 metric and thus
simplifies the analysis; (3) based on this metric, the group of
re-parametrization acts by isometry on the curves manifold,
and a Riemannian re-parametrization metric can thus be set
between two facial curves. Shown in Fig. 1 are examples of
apex frames taken from the 3D videos on the BU-4DFE dataset
as well as the dense 3D deformations computed with respect
to their neutral frames. Let us define the space of the SRVFs

as
C = {q : I → R3, ‖q‖ = 1} ⊂ L2(I,R3) (2)

where ‖ · ‖ indicates the L2 norm. With the L2 metric on its
tangent space, C becomes a Riemannian manifold. Basically,
using this parametrization, each radial curve is represented
on the manifold C by its SRVF. Accordingly, given SRVF q1
and q2 of two curves, the shortest path ψ∗ on the manifold C
between them (called geodesic path) is a critical point of the
following energy function:

E(ψ) =
1

2

∫
‖ψ̇(τ)‖2dτ (3)

where ψ denotes a path on the manifold C between q1 and q2,
τ is the parameter for traveling along the path ψ, and ψ̇(τ) ∈
Tψ(τ)(C) is the tangent vector field on the curve ψ(τ) ∈ C.
Since elements of C have a unit L2 norm, C is an hypersphere
in the Hilbert space L2(I,R3). As a consequence, the geodesic
path between any two points q1 and q2 ∈ C is given by the
minor arc of the great circle connecting them. The tangent
vector field on this geodesic between the curves β1 and β2
making the angle α with the reference curve is parallel along
the geodesic and one can represent it with the initial velocity
vector (called shooting vector) without any loss of information.

dψ∗α
dτ |τ=0

=
θ

sin(θ)
(q2 − cos(θ)q1), (θ 6= 0). (4)

where θ = dC(q1, q2) = cos−1(〈q1, q2〉) represents the length
of the geodesic path connecting q1 to q2. In practice, the curves
are re-sampled to a specified number of points, say T , and the
face is approximated by a collection of |Λ| curves. The norm
of the quantity at each discrete point r is computed to measure
the amount of 3D deformation in this position of the surface
parameterized by the pair (α, r), termed Dense Scalar Fields
(DSFs). The final feature vector is of the size T × |Λ|. We
will refer to this quantity at a given time t of the 3D video
by χ(t) (see bottom row of Fig. 1 for illustration). It provides
the amplitude of the deformations between two facial surfaces
in a dense way.

III. SUBTLE FACIAL DEFORMATION MAGNIFICATION

As described in Section II, χ reveals the shape difference
between two facial surfaces by deforming one mesh to another
through an accurate registration step. However, there exists
another challenge to capture certain facial movements, espe-
cially the slight ones, with low spatial amplitude, reflected
by the limited performance in distinguishing similar 3D facial
expressions in the literature. To solve this problem, we propose
a novel approach to highlight the subtle geometry changes of
the facial surface in χ by adapting the Eulerian spatio-temporal
processing [10] to the 3D domain.

The Eulerian spatio-temporal processing was introduced for
motion magnification in 2D videos [10]. Its basic idea is to
amplify the variation of pixel values over time in a spatially-
multiscale manner without explicitly estimating motion but
exaggerating it by amplifying temporal color changes at fixed
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Fig. 2: (a) Overview of 3D video magnification. The original facial deformation features are first decomposed into different
spatial frequencies, and the temporal filter is applied to all the frequency bands. The filtered spatial bands are then amplified by
a given factor ζ, added back to the original signal, and collapsed to the output sequence. (b) An example of facial expression
deformation (norm of the velocity vector) before (green) and after (red) magnification.

positions. It relies on a linear approximation related to the
brightness constancy assumption that forms the basis of the op-
tical flow algorithm. However, the case is not that straightfor-
ward in 3D, because the vertex correspondence across frames
cannot be achieved as easy as that in 2D. Fortunately, during
the computation of χ, such correspondence is established by
surface registration and remeshing, and we can thus apply
Eulerian spatio-temporal processing to 3D video. We take into
account the values of the time series χ at any spatial location
and highlight the differences in a given temporal frequency
band of interest. It therefore combines spatial and temporal
processing to emphasize subtle changes in a 3D face video.

The process is shown in Fig. 2(a). Specifically, the video
sequences are first decomposed into different spatial frequency
bands by Gaussian pyramid, and these bands tend to be mag-
nified differently. We consider that the time series correspond
to the values of χ on the mesh surfaces in a frequency band
and apply a band pass filter to extract the frequency bands
of interest. The temporal processing, T, is uniform for all
spatial levels and all χ within each level. We then multiply
the extracted band passed signal by a magnification factor ζ,
and add the magnified signal to the original and collapse the
spatial pyramid to obtain the final output.

For the translational motion of the facial mesh, we express
the observed χ(s, t) value with respect to a displacement func-
tion δ(t), such that χ(s, t) = χ(s) + δ(t) and χ(s, 0) = χ(s).
By using a first-order Taylor series expansion, at time t,
χ(s+ δ(t)) can be approximated as

χ(s, t) ≈ χ(s) + δ(t)
∂χ(s)

∂s
(5)

Let φ(s, t) be the result of applying a broadband temporal
band pass filter to χ(s) at each position (s). Assume that the
motion signal δ(t) is within the pass band of the temporal
filter.

φ(s, t) = δ(t)
∂χ(s)

∂s
(6)

Amplify the band pass signal by factor ζ and add it back to
χ(s).

χ̂(s, t) = χ(s, t) + ζφ(s, t) (7)

Algorithm 1: Online 3D Deformation Magnification
Input: χ, l-Gaussian pyramid levels, ζ-amplification

factor, ξ-sample rate, γ-attenuation rate, f-video
frequency

Step1. Spatial Processing
for i = 1; i ≤ n do

D(i, :, :, :) = decompose the χ(i), with l level
Gaussian pyramid.

Step2. Temporal Processing
S = T(D, f, ξ)
Step3. Magnification
for i = 1; i ≤ 3 do

S(:, :, :, i) = S(:, :, :, i) ∗ ζ ∗ γ
Step3. Reconstruction
for i = 1; i ≤ n do

χ̂(i) = S(i, :, :, :) + χ(i)

Output: χ̂(t)

By combining (5), (6), and (7), we reach

χ̂(s, t) ≈ χ(s) + (1 + ζ)δ(t)
∂χ(s)

∂s
(8)

Assuming that the first-order Taylor expansion holds for the
amplified larger perturbation (1 + ζ)δ(t), the motion magnifi-
cation of 3D face video can be simplified as:

χ̂(s, t) ≈ χ(s+ (1 + ζ)δ(t)) (9)

This shows that the spatial displacement δ(t) of the χ(s) at
time t, is amplified to a magnitude of (1+ζ). Sometimes δ(t)
is not entirely within the pass band of the temporal filter. In
this case, let δk(t), indexed by k, represent different temporal
spectral components of δ(t). The result in a band pass signal
is,

φ(s, t) =
∑
k

γkδk(t)
∂χ(s)

∂s
(10)

where γ is an attenuation factor. Temporal frequency depen-
dent attenuation can be equivalently interpreted as a frequency-



dependent motion magnification factor, ζk = γζ, and the
amplified output signal is computed by

χ̂(s, t) ≈ χ(s+
∑
k

(1 + ζk)δk(t)) (11)

Fig. 2(b) displays an example of facial deformation trajectory
before (green) and after (red) magnification.

IV. EXPERIMENTAL RESULTS

A. Dataset and Protocol

The BU-4DFE dataset [1] is a dynamic 3D facial expression
dataset which consists of 3D facial sequences of 58 females
and 43 males. It includes in total 606 3D sequences possessing
the 6 universal expressions. Each 3D sequence captures a facial
expression at a rate of 25 fps (frames per second) and lasts
approximately 3-4 seconds.

In our experiments, at a time t, the 3D face model f t is
approximated by a set of 200 elastic radial curves originating
from the nose tip, and a total of 50 points on each curve
are sampled. Based on this parameterization, each 3D face
geometry in the video sequence is compared to a reference
frame f0 to derive χ(t) at time t. Then, within the spatial
processing step, a Gaussian pyramid decomposition is used to
decompose χ into 4 band levels. Finally, a temporal processing
to all the bands is applied. The factor ζ is set to 10, the sample
rate ξ is set to 25, f ∈ [0.3, 0.4], and the attenuation rate γ is
set to 1.

It should be noted that the proposed approach can either
be evaluated when making use of full sequences [6], [9],
[11] or sliding window-based sub-sequences [1], [2], [5], [12],
while as pointed in [13], the latter can bias the final result.
As a result, we exploit the former, and our experiments are
conducted on two sub-pipelines: (1) the whole video sequence
(denoted as WV) and (2) the magnified whole video sequence
(denoted as MWV).

A multi-class Support Vector Machine (SVM) is exploited
where χ̄ is treated as a feature vector to predict the expression
label. We also adopt HMM to encode the temporal behavior
of the sequence for decision. To allow fair comparison with
the previous studies, we randomly select 60 subjects from the
BU-4DFE dataset under 10-fold cross-validation protocol.

B. Performance

Table I shows that the magnification procedure achieves
an improvement of around 10% in the accuracy for both
classifiers, i.e. SVM and HMM. Without magnification, our
approach reaches the performance of 82.49% and 83.19%
using the SVM and HMM classifiers, while the results are
improved to 93.39% and 94.18%, which highlights the effec-
tiveness of magnification in 3D face videos. Table II shows the
confusion matrices (WV, MWV) achieved by using the SVM
and HMM classifiers. From this table, we can see that the
SU and HA sequences are better predicted than the others.
This is mainly due to the clear patterns and high intensities
of their deformations. The remaining expressions (DI, FE,
AN and SA) are harder to distinguish. We believe that two

major reasons induce this difficulty: (1) intra-class variations
make similar classes confusing, such as DI/AN/FE; and (2)
lower deformation magnitude is often exhibited when these
expressions are performed. Furthermore, it can be seen from
these confusion matrices, the accuracies in distinguishing AN,
DI and FE expressions are all significantly ameliorated. Fig.
3 gives more illustrations of deformation magnification on the
sequences of the same subject possessing the six prototype
expressions.

C. Comparison with state-of-the-art

Several studies report their FER results on the BU-4DFE
dataset; however they differ in the experimental setting. In this
section, we compare our results with the one of the existing
approaches considering these differences.

Top results on BU-4DFE are shown in Table III. In this
table, #E denotes the number of expressions, #S is the
number of subjects, #-CV provides the number of cross-
validation, and Full Seq./Win means the decision is made
based on full sequence or sub-sequences captured using a
sliding window. [2] reports the highest accuracy when using
a sliding window of 6 frames; nevertheless, the approach
requires manual annotation of 83 landmarks on the first frame.
Moreover, the vertex-level dense tracking is time consuming.
In a more recent work from the same group developed by
Reale et al. [12], the authors deliver a classification rate of
76.9% using the sequences of 100 subjects with a fixed size
of window of 15 frames, when segmentation is manually
applied to the 3D face video to extract the expressive time
interval. In [14], Fang et al. reach an accuracy of 74.63%
with 507 sequences of 100 subjects, but they do not provide
details on the classification scheme. Le et al. [11] evaluate
their algorithm on the sequences of 60 subjects only on three
expressions (HA, SA and SU) and display the result of 92.22%.
Regarding on the tasks that conduct classification under the
same protocol [6], [9], [13], the proposed method outperforms
them, demonstrating its competency at 4D FER. Besides,
it also possesses the advantages: (1) no manual landmark
is required; and (2) no dimensionality reduction or feature
selection techniques are applied.

V. CONCLUSIONS

In this paper, an effective approach is presented for 4D
FER. It focuses on improving the performance by 3D video
magnification which reveals subtle facial deformations. After
a preprocessing step, the flow of 3D faces is first modeled to
capture spatial shape changes in the DSF based Riemannian
geometry space, where registration and comparison are jointly
achieved. Such deformations are then amplified using the
temporal filter over time. The prediction is finally carried
out using these magnified features. Experimental results on
the BU-4DFE dataset demonstrate the effectiveness of the
proposed method.



TABLE I: Average accuracy with standard deviation achieved by SVM and HMM using full sequence before and after
magnification on the BU-4DFE database.

Algorithm Magnification? Performance (%)

SVM on χ̄
N 82.49 ± 3.10
Y 93.39 ± 3.54

HMM on χ(t)
N 83.19 ± 2.83
Y 94.18 ± 2.46

TABLE II: Confusion matrices (WV, MWV) achieved by the SVM and HMM classifiers respectively on the BU-4DFE database.

SVM on χ̄ Whole Video (WV) Magnified Whole Video (MWV)
% AN DI FE HA SA SU AN DI FE HA SA SU

AN 73.86 9.18 6.49 1.75 6.11 2.51 91.07 2.73 2.01 1.59 2.08 0.51
DI 8.76 71.27 9.29 3.51 4.84 2.21 2.05 92.62 2.63 1.07 1.38 0.24
FE 5.79 5.37 73.14 4.59 5.39 5.61 1.66 1.53 92.33 1.31 1.54 1.62
HA 0.81 1.18 2.42 93.6 1.08 0.88 0.91 0.88 2.36 94.29 0.97 0.58
SA 2.54 2.27 2.99 1.63 88.75 1.77 1.36 1.22 1.62 0.9 93.93 0.96
SU 0.74 0.88 1.91 0.75 1.38 94.32 0.51 0.61 1.29 0.52 0.96 96.11

Average 82.49 ± 3.10 93.39 ± 3.54
HMM on χ(t)

% AN DI FE HA SA SU AN DI FE HA SA SU
AN 75.29 5.88 7.31 1.14 8.17 2.21 91.87 1.91 2.41 0.38 2.69 0.73
DI 10.42 71.55 11.43 1.82 4.27 0.5 2.11 94.22 2.32 0.29 0.86 0.19
FE 5.07 6.86 73.69 3.33 8.06 2.99 1.37 1.86 92.85 0.91 2.19 0.81
HA 0.48 0.87 1.54 94.93 1.81 0.37 0.47 0.77 1.43 95.3 1.67 0.35
SA 3.71 1.01 4.17 0.65 89.19 1.26 1.84 0.51 2.07 0.33 94.61 0.63
SU 0.49 0.33 2.79 0.32 1.59 94.47 0.33 0.22 1.89 0.22 1.08 96.25

Average 83.19 ± 2.83 94.18 ± 2.46

TABLE III: Comparative results with the state-of-the-art on
BU-4DFE.

Method Experimental Settings Accuracy
Sun et al. [1] 6E, 60S, 10-CV, Win=6 90.44%
Sun et al. [2] 6E, 60S, 10-CV, Win=6 94.37%
Reale et al. [12] 6E, 100S, –, Win=15 76.9%
Sandb. et al. [5] 6E, 60S, 6-CV, Win 64.6%
Fang et al. [14] 6E, 100S, 10-CV, – 74.63%
Le et al. [11] 3E, 60S, 10-CV, Full seq. 92.22%
Xue et al. [9] 6E, 60S, 10-CV, Full seq. 78.8%
Berretti et al. [13] 6E, 60S, 10-CV, Full seq. 79.4%
Berretti et al. [13] 6E, 60S, 10-CV, Win=6 72.25%
Ben Amor et al. [6] 6E, 60S, 10-CV, Full seq. 93.21%
Ben Amor et al. [6] 6E, 60S, 10-CV, Win=6. 93.83%
This work – SVM on χ̄ 6E, 60S, 10-CV, Full seq. 93.39%
This work – HMM on χ(t) 6E, 60S, 10-CV, Full seq. 94.18%
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Fig. 3: Illustrations of the deformation magnification on the sequences of the same subject performing the six universal
expressions. One can appreciate the magnification effects on 3D deformations compared to those of the original DSF feature.
From up to bottom, each row presents the texture image, the depth map, the original DSF feature, and the amplified feature,
respectively.


