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Capacitive Energy Conversion with Circuits
Implementing a Rectangular Charge-Voltage Cycle
Part 2: Electromechanical and Nonlinear Analysis

Eoghan O’Riordan, Student Member, IEEE, Andrii Dudka, Dimitri Galayko, Member, IEEE, Philippe Basset, Orla
Feely, Fellow, IEEE, and Elena Blokhina, Senior Member, IEEE,

Abstract—In this paper, we explore and describe the electrome-
chanical coupling which results in eKEH conditioning circuits
implementing a rectangular QV cycle, including but not limited
to the charge pump and Bennet’s doubler circuits. We present
numerical and semi-analytical analyses describing the nonlinear
relationship between the oscillating mass and the conditioning
circuit. We believe this is a poorly understood facet of the
device and, as we will portray, effects the potential harvested
energy. An approach to determine the frequency shift due to the
electromechanical coupling is presented and compared with novel
experimental results. We provide some examples of bifurcation
behaviour and show that the only source of nonlinearity is in the
coupling between the electrical and mechanical domains. This
work continues from the electrical analysis presented in Part
1, providing a full insight into the complex behaviour of the
electromechanical coupling.

Index Terms—electrostatic kinetic energy harvesters, elec-
tromechanical coupling, steady-state oscillations, multiple scale
methods, bifurcation analysis

I. INTRODUCTION

As an electrostatic kinetic energy harvester (eKEH) is a type
of transducer, converting mechanical vibrations into electrical
energy [1]–[4], an understanding of the relative effects caused
by both physical domains provides a greater insight into how
the system operates and so how it may be optimised.

Due to the use of a variable capacitor, eKEHs require an
initial biasing. This can be provided in the form of an electret
or some power source. In either case, once an electrical bias is
placed across the capacitive plates (which oscillate freely with
the external mechanical vibrations when unbiased) the eKEH
experiences electromechanical coupling.

There are three general families of eKEH conditioning
circuits which can be grouped according to the QV cycle they
implement: the tear drop QV cycle [5], [6], triangular QV
cycle [7]–[9] and the rectangular QV cycle [10]. The work
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in [11] presents a detailed qualitative comparison between the
convertible energy available to each configuration.

Building on the electrical analysis of the circuit presented
in Part 1, in this work, we will present the full coupled
electromechanical system and its analysis. In the electrical
analysis we normally assume that the maxima and minima
of Ct are known, Cmax and Cmin respectively. In reality
Cmax and Cmin are defined by the amplitude of the res-
onator displacement which is not known a priori. Indeed, the
resonator displacement depends on the external mechanical
force, structure of the resonator and the electrical force of the
transducer, generated by the conditioning circuit. To have a full
picture of the coupled electrical and mechanical domains, the
system in both domains should be considered in some unified
analysis. Very few works have addressed the coupling between
the electrical and mechanical forces in eKEHs [12] and to the
authors’ best knowledge, no such analysis has been undertaken
for conditioning circuits implementing a rectangular QV cycle
(e.g., the Bennet’s doubler, [13]).

This study is applied to any conditioning circuit implement-
ing a rectangular QV cycle. The generality of this study can be
explained as follows: for a fixed rectangular cycle and given
transducer configuration Ctran(x), the transducer force is fixed
Ftran = f(Ctran(x), V ). Therefore the electromechanical
energy conversion and mechanical behaviour is not sensitive
to the particular architecture of conditioning circuit as far as
the rectangular QV cycle is implemented.

In this study we have chosen the charge pump with resistive
flyback [14] for three reasons: i) it implements a rectangular
QV cycle, ii) by accurately choosing the resistive load this
configuration can model the behaviour of the charge pump
with inductive flyback [10], [15], [16] or of the Bennet’s
doubler, and iii) it is suitable for analytical analysis. Therefore,
while this article is presented in terms of the charge pump con-
ditioning circuit, the analysis is universal to all conditioning
circuits implementing the rectangular QV cycle.

Analytical and semi-analytical methods not only provide
validation of the numerical simulations but also provide a
greater understanding of the system dynamics, and where
numerical simulations are generally long computer intensive
operations, analytical and semi-analytical models allow faster
solutions of the system and the possibility of multi-parameter
analysis.

We examine the nonlinear behaviour in the system and
develop an analytical event driven model to aid numerical

Copyright c© 2015 IEEE. Personal use of this material is permitted. However, permission to use this material
for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
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Fig. 1. Electrostatic kinetic energy harvester employing a charge pump
conditioning circuit with resistive flyback. This harvested energy facilitates
the pumping of charges from the large reservoir capacitor, Cres, to the smaller
storage capacitance, Cst, where Cres >> Cst >> Ct.

results. The system is examined using the Multiple Scales
Method (MSM) perturbation technique, treating the eKEH as
a nonlinear oscillator with a nonlinear transducer force. The
application of perturbation techniques allows us to determine
the transient and steady-state dynamics for multi-parameter
simulations and gives a greater understanding of the system
operation.

The original measurements used for the validation of this
study were done with the experimental set-up presented
in [16]. This work implemented, for the first time, a charge
pump with inductive flyback employing a fabricated MEMS
device. The used MEMS device was characterised in [5].

In this paper the layout is as follows. In Section II the
three coupled mechanical models are presented. The Multiple
Scales Method analysis is presented in Section III along with
steady-state oscillations. The nonlinear dynamics which exist
in circuits of this type are presented in Section IV. Section V
presents a novel method for calculating the frequency shift
occurring as a result of the nonlinear coupling. Finally, in
Section VI, the results are compared with experimental results
from the fabricated device.

II. STATEMENT OF THE PROBLEM

In this work we employ three models to describe the
system; a behavioural model of the circuit implemented in
the VHDL-AMS/SPICE environment, a set of differential
equations derived from Newton’s second law and Kirchoff’s
current equations, and a simplified model that was the basis
for semi-analytic results. Consistency between the models was
ensured at each stage of the work by comparing the solutions
of the differential equations and simplified model with the
VHDL results.

A. VHDL-AMS/Spice Behavioural Model
The model of the system was achieved using a mixed be-

havioural description implemented in the VHDL-AMS/SPICE
environment provided with the AdvanceMS tool of Mentor
Graphics. The model is realised as follows. The conditioning
circuit is described as an electrical network described by an
Eldo netlist, where Eldo is a commercial variant of SPICE. The
transducer and resonator block is implemented by a VHDL-
AMS model, seen as an electrical dipole behaving as a variable
capacitor [17].

B. Numerical Model

A simple electrostatic harvester consists of a high quality
resonator, a variable capacitor (transducer) Ct, and a condi-
tioning circuit (Fig. 1). Thus as the displacement, x, of the
mobile mass is affected by both the external vibrations and
the transducer force ft, it can be described by the following
Newtonian equation

ẍ+ (b/m)ẋ+ ω2
0x = Aext cos (ωextt) + ft/m (1)

where m is the mass of the resonator, b is the damping factor,
ω0 =

√
k/m is the natural frequency, k is the spring constant,

Aext is the acceleration amplitude of external vibrations and
ωext is the frequency of the external vibrations. The overdot
denotes the derivative with respect to time, t. Note that the
initial conditions for the displacement and velocity can be
any, and we can assume them to be zero x(0) = ẋ(0) = 0.
The initial conditions for all voltages are the same: Vres(0) =
Vt(0) = Vst(0) = V0 . The transducer force ft is dependent on
x (the mobile mass position) and Vt (the transducer voltage)

ft(x, Vt) =
V 2
t

2

dCt
dx

(2)

Making use of diode models, capacitor models and applying
Kirchoff’s circuit laws the system can be reduced to a further
three differential equations describing the voltages; Vres, Vt,
Vst

V̇st =
1

Cst

(
K(−Vt − Vst)−

(Vst − Vres)

R

)
(3)

V̇res =
1

Cres

(
(Vst − Vres)

R
−K(Vres + Vt)

)
(4)

V̇t =
1

Ct

(
(K(−Vt − Vst)−K(Vres + Vt))

− Vt ẋ
dCt
dx

) (5)

where K is the diode model current K(V ) = Is(e
qV/kT − 1).

In this paper we consider the symmetrical gap closing trans-
ducer [5], denoted SGC throughout this paper for variables that
are directly changeable with the choice of transducer config-
uration. This defines the form of the variable capacitance, Ct,
and its derivative, dCt/dx. They are described by:

Ct =
2C0

1− (x/d)2
,

dCt
dx

=
4C0d

2x

(d2 − x2)2
(6)

where C0 = ε0S/d and ε0 is the permittivity of a vacuum.
To reduce the number of parameters in the system and outline
only essential ones, the system was normalised

y′′ + 2βy′ + y = α cos (Ωτ) + ft(y, y
′, Ut) (7)

U ′st = φ1F (−Ut − Ust)−
(Ust − Ures)

τ1
(8)

U ′res =
(Ust − Ures)

τ2
− φ2F (Ures + Ut) (9)

U ′t = φ3C(y)(F (−Ut − Ust)− F (Ures + Ut))

− V(Ut, y, y
′)

(10)
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where y = x/d, Ut,st,res = Vt,st,res/V0, τ = ω0t, Ω = ωext/ω0,
β = b/2mω0, α = Aext/dω

2
0 , φ1 = I0/ω0V0Cst, τ1 = Cstω0R,

φ2 = I0/ω0V0Cres, τ2 = Cresω0R, φ3 = I0/2ω0V0C0 and F
is the dimensionless diode model F (U) = (eqV0U/kT − 1).
The prime denotes the derivative with respect to dimensionless
time τ . The form of the functions C(y), V(Ut, y, y

′) and
ft(y, y

′, Ut) depend on the transducer geometry. To present
the normalised system of equations (7)-(10) in a more gen-
eral manner, and highlight the transducer dependent terms,
we present the transducer dependent functions seperately.
For the symmetrical gap closing transducer, the terms C(y),
V(Ut, y, y

′) and ft(y, y′, Ut) are:

C = (1− y2), V =
2Uty

′y

1− y2
, ft = ψSGC

U2
t y

(1− y2)2
(11)

where ψSGC = 2C0V
2
0 /mω

2
0d

2.

C. Simplified Model

The acceleration amplitude of external vibrations, Aext, the
initial voltage on the capacitors, V0, and the load resistance,
R, may vary and affect the behaviour of the system. We refer
to them as the control parameters of the dynamical system.
The experimental parameters used in this study are listed in
Table I.

The simplified model is obtained by reducing the system of
differential equations to one differential equation (7) with a
piecewise defined transducer force ft. In order to do this, we
take three assumptions:

• Ures can be assumed constant.
• Ust is constant after the transient process.
• Diodes are ideal with a threshold voltage UD on

Such a circuit implements, exactly, the rectangular QV cycle
presented in Section II of the Part 1 article.

The first assumption is valid since by the circuit design, Cres
is very large such that the voltage variation across it is indeed
negligible.

Since Cst is significantly larger than Cmax, the variation of
the voltage across it is negligible compared to Ut. Therefore,
U ′st = 0, however the value of Ust after the transient process
is not known and can be determined by assuming that, after a
sufficient transient has passed, Cst has saturated and so draws
no further current (cf Section III.B Part 1). Thus equating the
average change in charge on Ct to the average current flowing
through the load (RL), in one cycle, we obtain the following
equation:

Ust = V0

(
T0

RL
+ Cmax

T0

RL
+ Cmin

)
(12)

where T0 is the period of driven oscillations and Cmax and
Cmin are the maximum and minimum values of Ct during
one cycle of oscillations. Note Cmax and Cmin are functions
of the resonator displacement (x), as shown in (6), which is a
dynamical quantity.

The approximation (12), presented in [18], was improved
significantly by including the threshold diode voltages. The

TABLE I
PARAMETERS OF THE SYSTEM

Proof mass (m) 66 · 10−6 kg
Initial gap between fingers (d0) 43.5 · 10−6 m

No. of fingers (N) 142
Length of fingers (l) 1.97 · 10−3 m
Finger thickness (h) 380 · 10−6 m
Location of Stoppers 36 · 10−6 m
Damping Factor (b) 7.9 · 10−3 Nsm−1

Quality factor (Q) 8.5
Spring constant (k) 68 Nm−1

Aspect ratio of sidewalls (αr) 0.013
Diode Threshold Voltage 0.35V

S 1.063 · 10−4 m2

Cst 3.3 · 10−9 F
Cres 1.0 · 10−6 F
Aext 0.3g

resulting approximation is shown in Fig. 2. The inclusion of
the threshold voltages resulted in the following equation:

Ust = V0

(
T0

RL
+ Cmax

T0

RL
+ Cmin

− UDon
Cmax + Cmin

T0

RL
+ Cmin

)
(13)

where UDon is the dimensionless diode threshold voltage.
The variable voltage across the transducer Ut can be found

by analysing one cycle of the resonator oscillations and
sequencing the stages of circuit operation. Ut is approximated
as an event driven oscillation developed as a function of the
capacitance. From Fig. 3 one can see the change of state in
Ut at both Cmax and Cmin, from D1 on to D1 off and from
D2 on to D2 off respectively. We model Ut over one full
cycle of steady-state oscillations. While the model presented
in [18] was a four piece function, the configuration of the
SGC transducer doubles the frequency of Ct, and therefore
Ut, oscillations. Therefore our model of Ut is an eight part
function.

However, to simplify our explanation we will discuss the
first four terms which are simply repeated for the eight part
piecewise function. Figure 2 presents a four part approxi-
mation, detailed below, against the corresponding numerical
simulation.

Estimating the maxima and minima of Ut as constants,
simply equal to Ust + UD2on and Ures − UD1on the four part
approximation requires two further Ut and τ expressions. We
achieve this by finding the analytical solution of Ut for both
diodes off and using it to calculate the times at which it reaches
the magnitude of the Ut maximum (T1) or minimum (T2).
When both diodes are off, (10) simplifies to:

U ′t = V(Ut, y, y
′) (14)

The analytical solution can easily be determined by subbing
y = a cos(τ+ϕ) into (14), where y = a cos(τ+ϕ) is the first
approximation for the displacement (see the Multiple Scales
Method in the next section), and solving for Ut:

Ut = const · (a2(− cos (2τΩ))− a2 + 2) (15)

where const is a constant of integration. The expressions
in (15) describe the behaviour of Ut in two regions, 0 < τ <
T1 and T0/4 < τ < T2.

Stage 1 starts at the moment when the capacitance of the
transducer is maximal, ie. Ct = Cmax. We denote this moment
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of time as τ = 0, and both diodes are turned off. From Fig. 3
we can see that, for this scenario, diode 1 has just turned
off. Thus our initial condition for Ut is Ut(0) = Ures − UD1on
and we can therefore calculate const from (15). The resulting
expression is v1(a, τ) in (19).

Stage 2 starts at time τ = T1. This event occurs when
the voltage Ut reaches the value that is required to turn on
diode 2, ie. D1 off, D2 on. As we approximate the diodes
as an ideal diode with dimensionless threshold voltage UD on,
Ut(T1) = Ust + UD2on. Therefore we realise the following
equation which allows us to calculate T1:

v1(a, T1) = Ust + UD2on (16)

Note: T1 is a function of tv1(a) which is presented in (19).
Stage 3 begins when the capacitance of the variable trans-

ducer reaches its minimal value Cmin. The corresponding
moment in time is τ = T0/4. As diode 2 has just turned
off, the initial condition for Ut is Ut(T0/4) = Ust +UD2on. As
in Stage 1 this allows us to evaluate const, from (15), where
v2(a, τ) (in (19)) is the corresponding Ut expression.

Finally, Stage 4 commences at τ = T2, which is the moment
at which the voltage across the transducer reaches the value
required to turn on diode 1:

Ut(T2) = Ures − UD1on (17)

Thus, as in Stage 2, the time T2 can be calculated by letting
the two knowns equal each other:

v2(a, T2) = Ures − UD1on (18)

Stage 4 lasts until Ct reaches its maximal value at τ = T0/2.
From this point, the piecewise approximation continues with
T3 and T4 found in a similar fashion with the difference being
that they are shifted by T0/2. After the eight part solution, the
new cycle of oscillation begins. The analytical terms of the Ut
function are given below:

SGC =


v1(a, τ) = (2− a2 − a2 cos(2Ωτ))(Ures−UD1on

2−2a2 )

v2(a, τ) = (2− a2 − a2 cos(2Ωτ))(Ust+UD2on
2 )

tv1(a) =
(
−1
a2

(
a2 − 2 + (2− 2a2) (Ust+UD2on)

Ures−UD1on

))
tv2(a) =

(
−1
a2

(
a2 − 2 + 2 (Ures−UD1on)

Ust+UD2on

))
(19)

where v1(a, τ) and v2(a, τ) are two functions in the eight
part piecewise Ut approximation and tv1(a) and tv2(a) rep-
resent two of the switching times. Combining all parts of the
piecewise approach, we describe the voltage Ut with good ac-
curacy as shown in Fig. 2. Inserting the piecewise description
of Ut into ft, in (11), allows a piecewise description of the
transducer force, presented in (21). Thus, the simplified model
of the system is given by the equation:

y′′ + 2βy′ + y = α cos (Ωτ) + ft(y, Ut) (20)

2.0558 2.056 2.0562 2.0564 2.0566 2.0568
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Fig. 2. A generic comparison of the dimensionless Ut obtained from
numerical simulations (red line) and the solution of the improved simplified
model (dotted green line) employing (13). The figure describes the events
during one half cycle of oscillations in the resonator: 0 ≤ τ < T1 both
diodes are off (stage 1), T1 ≤ τ < T0/4 the second diode is on (stage 2),
T0/2 ≤ τ < T2 both diodes are off again (stage 3) and T2 ≤ τ < T0/2 the
first diode is on (stage 4).

ft
ψSGC

=



v1(ymax, τ)2 y
(1−y2)2 , 0 < τ < T1

(Ust(ymax) + UD2on)2 y
(1−y2)2 , T1 < τ < T0/4

v2(ymax, τ)2 y
(1−y2)2 , T0/4 < τ < T2

(Ures − UD1on)2 y
(1−y2)2 , T2 < τ < T0/2

v1(ymax, τ)2 y
(1−y2)2 , T0/2 < τ < T3

(Ust(ymax) + UD2on)2 y
(1−y2)2 , T3 < τ < 3T0/4

v2(ymax, τ)2 y
(1−y2)2 , 3T0/4 < τ < T4

(Ures − UD1on)2 y
(1−y2)2 , T4 < τ < T0.

(21)
where the dimensionless transducer force ft is scaled by

ψSGC as described in (11) and the event driven time limits
in (21) are:

T1(a) =
1

2Ω
arccos(tv1(a)), T0/4 =

π

2Ω

T2(a) =
π

Ω
− 1

2Ω
arccos(tv2(a)), T0/2 =

π

Ω

T3(a) = T1(a) +
π

Ω
, 3T0/4 =

3π

2Ω

T4(a) = T2(a) +
π

Ω
, T0 =

2π

Ω
(22)

This reduces the system of differential equations to one dif-
ferential equation, (7), with a piecewise force ft. Solving the
system of differential equations, above, is long and computer
intensive thus this approximation is very useful for numerical
solutions also as it greatly reduces the complexity. We can
also use this model to apply the multiple scales method in a
similar fashion as that described in [9].

III. MULTIPLE SCALES METHOD AND STEADY-STATE
OSCILLATIONS

The method of multiple scales (MSM) is an asymptotic
method that is often applied for the analysis of weakly
nonlinear oscillators [19], both autonomous and under external
excitation.

The form of the method studied in this work, applied to
the constant charge eKEH conditioning circuit, is derived in
full in [9]. Only terms important to our study are included
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Fig. 3. QV cycle over one oscillation cycle for the charge pump circuit
with resistive flyback. The area enclosed in one cycle is equal to the energy
harvested during that cycle.

in this article. It is applicable to all eKEHs, as long as
the dimensionless parameters β, α, ψ and σ in (7) are
comparatively small relative to unity. Typical values of the
dimensionless parameters for the real experimental data with
(an external vibration amplitude, Aext = 0.3g, and a nominal
initial voltage, V0, of 20V ) give α = 0.0586, β = 0.0587 and
ψ = 0.0968, which are clearly small terms.

A requirement of the presented method is that the transducer
force ft be periodic. It is also advantageous that the system be
high Q, which is the case for narrow band energy harvesters
and so is fulfilled. Please note, however, that this method can
incorporate higher Fourier coefficients and also allows for the
inclusion of mechanical nonlinearities as presented in [20].

The multiple scales method approaches the eKEH as a
simple resonator with a perturbation term. It then solves this
by introducing different time scales.

As the transducer force ft is periodic with period T it can
be described as a Fourier series and as this is a narrow band
energy harvester the first harmonic of the Fourier series should
be sufficient in approximating ft:

ft(y0, Ut,0) = f0(a) + a1(a) cos(T0 + φ)

+ b1(a) sin(T0 + φ)
(23)

The Fourier coefficients for the symmetrical gap closing
transducer are:

f0(a) =
Ω

2π

∫ T

0

ft(y0, Ut,0)dt

a1(a) =
Ω

π

∫ T

0

ft(y0, Ut,0) cos(Ωt)dt

b1(a) =
Ω

π

∫ T

0

ft(y0, Ut,0) sin(Ωt)dt (24)

The total solution of y can be described by

y(τ) = a cos(τ + ψ) (25)

where ψ = σT1 − φ. Obtained by the same method as
in [9], the equations providing information about the transient
dynamics of the system are presented in (26). They describe
the slow amplitude a and phase ψ of the mobile mass

oscillations in the transient and steady-state modes:

ȧ = −βa− b1(a)

2
+
α

2
sin(ψ)

aψ̇ = aσ +
a1(a)

2
+
α

2
cos(ψ) (26)

By setting ȧ = 0 and ψ̇ = 0 and taking a phase ψ̇0

we can combine the steady-state solutions into one equation.
The resulting equation provides a solution for the steady-state
amplitude of oscillations, a0:

α2

4
=

(
a0σ +

a1(a0)

2

)2

+

(
βa0 +

b1(a0)

2

)2

(27)

In conjunction with (25), we obtain the steady-state solution
of y of the form

y0(τ) = a0 cos ((1 + σ)τ − ψ0) (28)

where a0 and ψ0 are the steady-state amplitude and phase
of oscillations. The index ’0’ is used to emphasize that this
is a steady-state solution. Formally, x0 = (a0, ψ0) is a fixed
point of the set (26). Some transducer geometries experience
a constant shift in the oscillations (described by yav in [9]).
However, due to the symmetry of the SGC device in this study,
there is no average displacement.

According to the Routh-Hurwitz criterion, the point (a0, ψ0)
is stable if the conditions in (29) are met. However, this
stability condition is necessary, but not entirely sufficient.

2β +
b′1
2

+
b1

2a0
> 0

(β +
b′1
2

)(β +
b1

2a0
) + (σ +

a′1
2

)(σ +
a1
2a0

) > 0 (29)

If the conditions, in (29) are not satisfied, the orbit defined
by a0 and ψ0 is unstable (a saddle orbit). The importance of
this stability will be presented later. The derivation of (29) is
presented in [9].

Envelopes of oscillations for varying external vibration
amplitudes and three different values of σ (normalized fre-
quency mismatch between external vibrations and the natural
frequency) are presented in Fig. 4. They compare the solution
of the numerical differential equations with the MSM solution.
Solutions of the differential equations were in very close agree-
ment with VHDL/Spice simulations and so can, essentially, be
considered equivalent.

Fig. 4 presents two example cases for σ ≈ ±0.125 com-
pared with the scenario when σ ≈ 0. Based on the figure,
we verify the accuracy of the simplified model with MSM to
have good accuracy with the numerical models of the system,
even for an increase in the magnitude of σ. Results of the
semi-analytic model are presented in later sections.

IV. BIFURCATION AND COMPLEX BEHAVIOUR

For nonlinear oscillators it is established that an increase
in system parameters or in the amplitude of the external
force results in bifurcations of previously stable orbits and,
ultimately, to irregular, chaotic behaviour [21].

Without the transducer force, the system described by (1)
is simply a driven oscillator. We can solve this analytically
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Fig. 4. The envelope of oscillations for a sweep of external vibration
amplitude Aext comparing the numerical and MSM solutions, for different
values of the small parameter σ. The numerical solution at ωext = 160Hz
(i.e. σ ≈ 0) is shown by the squares. The MSM solution (full black line)
clearly agrees very well in this case. The other two cases represent the same
simulation with a difference of σ± 0.125. The solutions for ωext = 140Hz
are shown by circles (numerical) and the dashed blue line (MSM). The
triangles (numerical) and dotted red line (MSM) describe the envelope of
oscillations for ωext = 180Hz.

and thus understand the dynamics, amplitude of vibrations
etc., and so determine the maximum harvested energies. The
nonlinear force ft describes the interaction of the mechanical
and electrical domains and its presence in (1) results in there
being no closed form solution. The effect of this nonlinearity is
essentially the focus of this paper as it is the electromechanical
coupling. This is what makes this study universal to all circuits
which implement a rectangular QV cycle as the force ’seen’
by the mechanical resonator is equivalent for all similar QV
cycles.

Fig. 5 presents a bifurcation diagram depicting the change
of dynamics in the resonator displacement as the amplitude
of external vibrations (Aext) is varied. Note that there are
no mechanical nonlinearities included in this analysis and
yet we find that the nonlinear damping force ft results in a
period doubling cascade before reaching chaotic behaviour.
The nonlinear effect of the non-conservative force (ft) is
another example of the complex behaviour which results from
the electromechanical coupling in eKEHs.

We can characterise and analyse the change in dynamics
presented in Fig. 5 in many ways. In this study we have
calculated Floquet multipliers and checked Lyapunov stability
in the form of Lyapunov exponents.

Due to spacial constraints we only briefly discuss some of
the techniques used in this study to understand the system
dynamics. The Floquet multipliers provide an insight into
the stability of the orbit. The orbit is asymptotically stable
if there are no eigenvalues outside the unit circle. If, for
some change in control parameter, a Floquet multiplier leaves
the unit circle it signifies that a bifurcation has occurred.
Depending on the point at which the multiplier exits the unit
circle, the bifurcation can be characterised. For the parameters
presented in Fig. 5, a Floquet multiplier leaves the unit circle
through -1 at approximately 13.06m/s2. Therefore, not only
does this highlight the existence of a bifurcation point around
13.06m/s2, it also indicates that the original orbit undergoes a
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x 10
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A
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)

Fig. 5. A bifurcation diagram, taken using a Poincaré section, showing the
changing dynamics in the resonator for a sweep of potential external vibrations
(Aext). Note the scale of the oscillations: the stoppers were moved to allow
this study of the nonlinear dynamics.

doubling bifurcation. Lyapunov exponents are the real parts of
the Floquet multipliers. The Lyapunov exponents or character-
istic exponents are associated with a trajectory and essentially
measure the average rates of expansion and contraction of
trajectories surrounding it [21]. The largest Lyapunov exponent
provides a good understanding of the systems transition to
chaos. Formal mathematical definition of the largest Lyapunov
exponent can be explained in the following way. Take x0(t) to
be a steady state trajectory or a fixed point in the state space.
If at t = 0 a perturbed trajectory, x(t), is initiated, locally, and
allowed to run until a time t, the resulting largest Lyapunov
exponent is described by the expression:

λ1 = lim
t→∞

1

t
log
‖x(t)− x0(t)‖
‖x(0)− x0(0)‖

(30)

where x0 represents the original set of nonlinear equations and
x is the system x0 with the inclusion of a small perturbation
to its initial conditions. For a change in control parameters, if
λ1 becomes positive the system has entered a chaotic regime.

To extract a more comprehensive understanding of the
system dynamics, Lyapunov exponents corresponding to each
system variable can be calculated. This is formulated in a
similar manner as the largest exponent with the difference
being that each exponent is analysed seperately. To achieve
this, each perturbation has to be orthogonal. This can be im-
plemented using the Gram-Schmidt process [21]. The largest
Lyapunov exponent does not need orthogonality as for each
solution it will simply calculate the largest Lyapunov exponent
on the most unstable plane. The benefit of calculating the
seperate Lyapunov exponents is that we can see the individual
evolutions.
From the Lyapunov analysis, we see that one of the exponents
is zero close to Aext = 13.06m/s2. This signifies a bifurcation
has occurred and is in agreement with the first bifurcation point
in Fig. 5. The exponents become negative again before becom-
ing zero at approximately Aext = 13.12m/s2, corresponding
to the second bifurcation point. The exponents become pos-
itive at approximately Aext = 13.13m/s2 signifying chaotic
behaviour confirming the dynamics shown in Fig. 5.
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V. MODIFICATION OF RESONANT FREQUENCY DUE TO
ELECTROMECHANICAL COUPLING

In the application of narrow band energy harvesters, for
which most eKEHs are designed, operating the system around
the resonant frequency is very important to maximise the
energy available for harvesting.

As discussed above in Section IV, the coupling between the
mechanical and electrical domains has a significant impact on
the resonator dynamics in the system. The transducer force ft
alters the effective spring stiffness of the system and therefore
changes the resonant frequency of the system.

If the force is conservative (only dependent on the dis-
placement) it can be assimilated as a nonlinear spring, whose
stiffness is the full derivative of the transducer force:

−ktx =

(
dft
dx

)
x (31)

The term kt influences the resonant frequency according to
the simple equation:

ωres =

√
k + kt
m

(32)

Clearly, in the case when kt is positive it will result in
electrostatic hardening and in the case of a negative kt the
resonant frequency is lowered, softening the response. Any
type of transducer can easily be accommodated in this formula.

In the case of capacitive energy harvesters the force depends
both on the velocity and the displacement. Thus the actual
modification of the frequency can only be determined by a
full analysis of the coupled system.

In the rectangular QV cycle conditioning circuit, the force
can be assumed conservative only in two extreme cases: (i)
for the case when Vres = Vst and (ii) when the charge pump
has saturated (cf. saturation discussion in Part 1). In the first
case (i) the bias voltage on the capacitor is fixed equal to Vres
such that the force is:

ft(x) =
V 2
res

2

dCt
dx

(33)

and for the second case (ii) the charge on the capacitor is fixed
equal to Q = CmaxVres, giving the transducer force:

ft(x) =
Q2

2C2
t

dCt
dx

(34)

Combining (31) and (32), it can be proven that the resonance
frequency shift for the two configurations presented in (33)
and (34) represent the limits of the shift in the resonance
frequency, for a given transducer.

The frequency shift for any nontrivial rectangular QV cycle,
for any transducer, will be inside the limits given by (32). For
the three most common transducer grometries, area overlap
(AO), simple gap closing (GC) and symmetrical gap closing
transducer (SGC) the pair of extreme kt values are presented
in Table II. This provides further verification of the novel
approach to determine the frequency shift presented below.

We now present our novel method for calculating the fre-
quency shift due to the electromechanical force ft for any QV
cycle. To the best knowledge of the authors, a tool to determine

TABLE II
EXTREME kt LIMITS

Transducer kt for Fixed V kt for Fixed Q

AO 0
α2
t,AOQ

2
0

C3
0

GC −V 2
res

C0

d2
0

SGC −2V 2
res

C0

d2
0

the magnitude of the potential electrostatic shift in oscillations
of eKEH devices has not previously been presented.

The method is a simple application of the multiple scales
method which allows the user calculate the resonant frequency
shift caused by electrostatic softening.

Equation (27) is an implicit function of both a0 and σ.
Denoting (27) as H(a0, σ) and taking the partial derivatives
H ′a0(a0, σ) and H ′σ(a0, σ) we can determine the implicit
derivative:

da

dσ
=

(a0σ + a1(a0)
2 )a0

2a0β2 + βb1(a0) + βa0
∂b1(a0)
∂a0

+ b1(a0)
2

∂b1(a0)
∂a0

(35)

Setting this equal to 0 to find its extremum, the resulting
formula for the frequency shift is:

σ = −a1(a0)

2a0
(36)

This result highlights the dependence of the frequency shift
on the first Fourier cosine term of the transducer force, and as
this term is nonzero we will have a frequency shift for different
parameters. Interestingly, for the constant charge conditioning
circuit presented in [9], the formula is correct as a1(a0) = 0
and there is no frequency shift in the oscillations.

Even in cases when σ is large and the multiple scales
method is no longer as accurate this tool is still very useful, at
least to give an impression of the scale of the resonance shift
and so limit the range of numerical simulations.

Fig. 6 compares the numerical frequency shift with the
solution of (36) for the experimental symmetrical gap closing
device. Also included in the plot are comparisons of the
frequency shift for both a simple gap closing and area overlap
transducer, given as

Ct,GC =
C0

1− (x/d)
, Ct,AO = C0 + αt,AOx (37)

respectively. The parameters from Table I were used for all
transducers with the exception that the area of the capacitor
plates was altered (and the gap between plates itself for the
gap closing transducer) to give equal Cmax and Cmin values,
at the maximum displacement allowed by the geometry (cf
Section VI.B). We have previously presented the multiple
scales analysis of these transducers in [18].

In Fig. 6 we see large electrostatic softening in the case of
the symmetrical gap closing transducer (hysteresis is present
at V0 = 25V and higher voltages), a minimal change for
the simple gap closing transducer and a small increase in
the resonant frequency of the area overlap transducer. The
frequency shift is clearly a function of the transducer geometry,
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Fig. 6. A comparison of the resonant frequencies at different initial biasing
voltages for the three most common transducer configurations. The numerical
symmetrical gap closing transducer solution is represented by the black
triangles and the corresponding solution of (36) shown by the black dot/dash
line. The filled blue squares describe the numerical area overlap transducer,
in comparison with the AO solution of (36) plotted as the dotted blue line.
The simple gap closing transducer is the middle waveform, shown by the red
squares (numerical) and the solid red line (solution of (36)).

but it is also dependent on the QV cycle and parameters of
the system. For different transducer parameters the simple
gap closing transducer also experiences a modification of the
resonance frequency.

Experimental confirmation of our analysis describing the
resonant frequency shift due to electromechanical coupling is
presented in Section VI.

VI. EXPERIMENTAL VERIFICATION OF MODEL

A. Experimental Set-up

The experimental set-up which we use to validate our anal-
ysis was presented in [16]. It consists of a charge pump with
inductive flyback [10]. The inductive flyback was actuated
by a fixed periodic time sequence (cf. detailed description
in Part 1). The used MEMS device is a micro resonator
coupled with a capacitive transducer, submitted to sinusoidal
external vibrations with fixed frequency and amplitude. The
MEMS device was characterised in [5] and these parameters
are provided in Table I.

B. Transducer Model

The transducer described in [5] experiences an undercut
due to the etching, by deep reactive ion etching (DRIE).
This results in a more complicated model for the capacitance,
including logarithmic functions.

To employ our analysis we introduced a simple equivalent
model of a symmetrical gap closing transducer, as shown
in (6). To accommodate the undercut by DRIE for our sim-
plified model we took the average gap between the fixed and
movable fingers to be:

d = d0 + hαr,

where h is the height of the silicon substrate and defined in
the orthogonal direction to the substrate plane, αr is the ratio
of the silicon undercut by DRIE and d0 is the gap between
the fixed and movable fingers at the top of the comb.

In an equivalent manner to the fitting of the theoretical
values and experimental results described in [5] we calculated
the maxima and minima of the capacitance, Ct, allowed by the
geometry. The net experimental values (88pF/40pF) compare
very well with our theoretical values of (86.8pF/38.8pF).

C. Description of Experiment and Model Equivalence

In the experimental setup, it is not possible to measure the
displacement of the MEMS resonator. This makes validation of
the analytical model difficult. However, based on our analytical
model, we can compute and derive quantities that can easily be
measured, and that are related to the dynamics of the resonator.

The implemented experiment measured the steady-state
value of the voltage Vst (denoted Vst ss), when the charge
pump operated without flyback starting from the initial voltage
on Cst capacitor:

Vst0 = Vres, (38)

where Vres is a controlled (input) parameter of the experiment.
Such a model is equivalent to the architecture in Fig. 1, with
Rload =∞.

The actual steady-state value of Vst is a result of the
evolution of the system which starts at Vst0 = Vres. Indeed, in
this experiment, the amplitude of the mass vibration and hence
the value of Ct are affected as the charge pump increases the
value Vst.

Fig. 7 explains the scenario of the experiment. The goal of
the experiment is to measure the saturation voltage on Cst,
when the charge pump runs without a flyback. The only role
of the flyback is a periodic initialisation of the circuit (setting
Vst = Vres), after the charge pump reaches the steady-state.
In order to validate the proposed analytical method, the Vst ss
quantity was obtained by the multiple scales method analysis,
but with a very large resistive load mimicking the operation
of a freely running charge pump without a flyback. Therefore,
both experimental and analytical models are equivalent as they
compare a generic charge pump without flyback. The external
acceleration was of amplitude 0.3g, and the frequency was
swept over the range 95Hz-155Hz. The same experiment was
repeated for different values of Vres.

The plot in Fig. 8 represent the value ∆V = Vst ss − Vres.
This quantity represents the increase of the Vst during the
charge pumping. It is directly related to the energy converted
by the charge pump as:

∆W = 0.5Cst∆V
2. (39)

D. Experimental Results

The ∆V obtained by the MSM is in a very good agreement
with that obtained by the experiment, considering approx-
imations used in our method (diode model, approximation
about the transducer capacitance, uncertainty about the lumped
parameters of the resonator). For all Vres, the MSM pre-
dicts a consistent frequency shift, as well as the shape of
the resonance curve. It also gives quite a correct value of
∆V , in particular for moderate and large Vres. Tolerances
of the parameters in the diodes model may be a source of
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Fig. 7. Description of the experiment. The charge pump was allowed to reach
saturation voltage (Vst ss). Switched flyback was employed to reset the value
of Vst to Vres once its saturation voltage was measured.

discrepancies at low Vres, since the ∆V is of the same order
as the diode threshold.

It is remarkable that the nonlinear effect of the electro-
static force is prominent on the plots for large Vres. Indeed,
hysteresis in the resonance curves can be seen both in the
analytical and experimental data. At increased Vres, the MSM
solution shows the existence of two stable branches joined by a
third unstable branch. The reproduction of the hysteresis in the
MSM solutions is interesting as it highlights the nonlinearity
is due to electrical, and not mechanical, forces. As noted
previously in Section III, if the Routh-Hurwitz criterion is not
satisfied a saddle orbit exists. For the unstable branch, in the
area of the hysteresis, the Routh-Hurwitz criterion is indeed
negative and so we can deduce the presence of a saddle orbit.

Fig. 9 provides a global view of the resonance frequency
shift as Vres voltage increases, where experimental data is
compared with results from the MSM model. This shows good
agreement of the method (36) proposed in Section V with the
experimental modification of frequency due to electromechan-
ical coupling.

VII. CONCLUSIONS

This work is the first fundamental study of the shift in
resonance due to electromechanical coupling for a complex
conditioning circuit employing electrostatic vibration energy
conversion. It is also one of the first studies to provide an
analysis of the nonlinearities arising from the electromechan-
ical coupling of an experimental device, particularly in the
case of a multi-variable conditioning circuit such as the charge
pump circuit. The charge pump is a very promising eKEH
conditioning circuit. While in this work we have modelled a
charge pump with resistive flyback, both Part 1 and Part 2 have
highlighted the ability to relate both flyback configurations
equally by calculating an effective resistance. In terms of the
electromechanical coupling behaviour present in all eKEHs,
the coupling is simply a function of the charge and voltage
on the variable capacitor. Therefore this analysis is not simply
applicable to the charge pump but to any conditioning cir-
cuits implementing a rectangular QV cycle, such as Bennet’s
doubler.

The electromechanical coupling due to the force ft is the
cause of all the nonlinearities in the system. The influences of
the nonlinear coupling described in this work include:
• The amplitude of the resonator displacement is directly

affected by the magnitude of the attractive force between
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Fig. 8. The experimental Vst ss values are shown by the solid black line with
dots (a line is used to highlight the hysteresis effect). The solution of Vst ss
from the multiple scales solution (equivalent to the solution of (36)) is shown
with the solid blue waveform. The green dotted line in the MSM solution
highlights the hysteresis due to the multistablility. Each figure represents a
different initial charging voltage U0 : (a) 5V, (b) 10V, (c) 15V, (d) 20V, (e)
25V, (f) 30V, (g) 35V, (h) 40V. As the initial voltage continues to increase
we see hysteresis occur.
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Fig. 9. A plot of the frequencies corresponding to the saturation voltage
(and therefore the maximum energy on Cst, as shown in (39)) as a function
of the initial pre-charge voltage. The green triangle waveform describes the
experimental results and the red squares represent the MSM solution.
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the capacitor plates.
• The resonant frequency of oscillations can shift due

to the electromechanical coupling, this also effects the
amplitude of oscillations in the resonator.

• The change in resonator dynamics such as a cascade of
bifurcations, shown in Fig. 5.

The necessity in gaining an enhanced understanding of the
entire system in order to truly optimise the energy harvested by
these devices is highlighted experimentally in Fig. 8. Even at
low electrostatic biasing the maximum energy is not harvested
at the resonance frequency. As shown in Fig. 6, there is no way
to determine what shift may occur for different transducers and
parameter values without modelling the nonlinear coupling.
Therefore we simply cannot afford to neglect the influence of
the transducer force and the nonlinearities it introduces.

The model resulting from the multiple scales method can
be relatively easily adapted to include mechanical nonlin-
earities [20]. Therefore, from this work, it is envisaged that
we will be able to expand this analysis to include further
nonlinear influences such as white noise and mechanical
nonlinearities as a potential route to widening the systems
frequency response [22]–[25].

Simulations of the differential equations describing the
resonator and conditioning circuitry compare very accurately
with the corresponding VHDL-AMS/ELDO results. The mod-
els presented in this study have been compared with novel
experimental results and provide a greater understanding of the
electromechanical coupling which resulted in the experimental
data.
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