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Abstract. Discovering sequential patterns in sequence databases is an
important data mining task. Recently, hierarchies of closed partially-
ordered patterns (cpo-patterns), built directly using Relational Concept
Analysis (RCA), have been proposed to simplify the interpretation step
by highlighting how cpo-patterns relate to each other. However, there are
practical cases (e.g. choosing interesting navigation paths in the obtained
hierarchies) when these hierarchies are still insufficient for the expert. To
address these cases, we propose to extract hierarchies of more informative
cpo-patterns, namely weighted cpo-patterns (wcpo-patterns), by extend-
ing the RCA-based approach. These wcpo-patterns capture and explicitly
show not only the order on itemsets but also their different influence on
the analysed sequences. We illustrate how the proposed wcpo-patterns
can enhance sequential data analysis on a toy example.

1 Introduction

Searching for sequential patterns [1] is a well-known data mining task whose aim
is to find regularities and tendencies in sequential data that can be interpreted
and assessed by experts. Various algorithms have therefore been proposed [9] and
many of them focus on extracting efficiently concise representations of sequential
patterns (e.g. closed sequential patterns [15]). To obtain a more compact set of
such sequential patterns, efficient algorithms for directly mining closed partially-
ordered patterns (cpo-patterns, [2]) were proposed in [12,5]. Precisely, a cpo-
pattern summarises a set of closed sequential patterns, which coexist in the same
sequences, and it has a graphical representation that facilitates the interpretation
step. However, regardless of the fewer number of obtained cpo-patterns, the
interpretation step remains difficult since these cpo-patterns are unorganized.

In [10], Relational Concept Analysis (RCA, [13]) is used to directly extract
hierarchies of cpo-patterns that help the interpretation step by highlighting the
relationships between cpo-patterns. Indeed, RCA classifies sets of objects de-
scribed by attributes and relations, allowing the discovery of hierarchies of pat-
terns. Nica et al. have proposed to extract cpo-patterns by navigating only the
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intents of the interrelated concepts from the RCA result, i.e. a family of concept
lattices, beginning with concept intents from the main lattice. The extracted
hierarchies of cpo-patterns help in understanding the obtained knowledge and
provide a quick way to navigate to interesting cpo-patterns.

Nevertheless, cpo-patterns still do not capture all the particularities hidden in
the analysed sequential data. A cpo-pattern considers only the order on itemsets
in its supporting sequences, and, besides, the itemsets are treated uniformly
even if they can have different roles in these sequences. In fact, previous studies
showed that exploiting the time information from the analysed sequences, such
as capturing time-intervals between adjacent itemsets [4] in the mined sequential
patterns, leads to more valuable knowledge. In addition, there are practical cases
(e.g. choosing among cpo-patterns that have the same frequency in the analysed
data) when the hierarchical order on the extracted cpo-patterns given by the
lattice is still insufficient for the expert. In contrast to existing works, here, we
propose to study and measure the repetitive occurrences of preceded itemsets in
a cpo-pattern, i.e. itemsets with specific predecessors; this measure may show
the non-accidental occurrence of such itemsets in the considered sequences.

To address the aforementioned limitations, this paper focuses on extract-
ing hierarchies of more informative cpo-patterns, namely weighted cpo-patterns
(wcpo-patterns), that capture and explicitly show the different weightiness of
itemsets. These hierarchies can be directly obtained by extending the RCA-based
extraction method presented in [10]. Briefly, we suggest as well to navigate the
extents of the interrelated concept that reveal the different weightiness of pre-
ceded itemsets in the analysed sequential data. Accordingly, by exploiting the
RCA result, we extract hierarchies of wcpo-patterns that better characterise the
analysed sequential data.

Our paper is structured as follows. In Section 2 we give the theoretical back-
ground of our work. Section 3 introduces a running medical example and details
how to explore it using RCA. Section 4 formally defines our proposal for mining
directly wcpo-patterns. Then, we illustrate how the proposed wcpo-patterns can
enhance the sequential data analysis in Section 5. Finally, we present an overview
of the related work in Section 6, and conclude the paper in Section 7.

2 Preliminaries

Our approach relies both on sequential patterns and formal concept analysis
domains.

2.1 Sequences, Sequential Patterns and PO-patterns

Let I = {I1, I2, ..., Im} be a set of items. An itemset IS is a non empty, un-
ordered, set of items, IS = (Ij1...Ijk) where Iji ∈ I. Let IS be the set of all
itemsets built from I. A sequence S is a non empty ordered list of itemsets,
S = 〈IS1IS2...ISp〉 where ISj ∈ IS. The sequence S is a subsequence of an-
other sequence S ′ = 〈IS′1IS′2...IS′q〉, denoted as S �s S ′, if p ≤ q and if there are
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Sequence Id Sequence

S1 〈(d)(bce)〉
S2 〈(ad)(bc)(e)〉

(a) DS

bc

>

e

< d

(b) G1

Fig. 1: (a) DS a sequence database; (b) G1 cpo-pattern

integers j1 < j2 < ... < jk < ... < jp such that IS1 ⊆ IS′j1, IS2 ⊆ IS′j2, ..., ISp ⊆
IS′jp. An item can occur only once in an itemset, but can occur several times in

different itemsets of the same sequence.
Sequential patterns have been defined by [1] as frequent subsequences found

in a sequential dataset. A sequential pattern is associated to a support, i.e.
the number of sequences containing the pattern, that has to be greater than or
equal to a minimum support, denoted by θ. Formally, the support of a sequential
pattern M extracted from a sequential dataset DS is defined as Support(M) =
|{S ∈ DS |M �s S}|. For instance, M1 = 〈(d)(bc)〉 and M2 = 〈(d)(e)〉 are two
sequential patterns found in Fig. 1(a) sequence database for θ = 2.

Partially-ordered patterns, po-patterns, have been introduced by [2], to syn-
thesise sets of sequential patterns. Formally, a po-pattern is a directed acyclic
graph G = (V, E , l). V is the set of vertices, E ⊆ V × V is the set of directed
edges, and l is the labelling function mapping each vertex to an itemset. With
such a structure, we can determine a strict partial order on vertices u and v
such that u 6= v : u < v if there is a directed path from u to v. However,
if there is no directed path from u to v, these elements are not comparable.
Each path of the graph represents a sequential pattern, and the set of paths
in G is denoted by PG . A po-pattern is associated to the set of sequences
SG that contain all paths of PG . The support of a po-pattern is defined as
Support(G) = |SG | = |{S ∈ DS |∀M ∈ PG ,M �s S}|. Furthermore, let G and G′
be two po-patterns with PG and PG′ their sets of paths. G′ is a sub po-pattern
of G, denoted by G′ �g G, if ∀M ′ ∈ PG′ ,∃M ∈ PG such that M ′ �s M . A
po-pattern G is closed, denoted cpo-pattern, if there exists no po-pattern G′ such
that G ≺g G′ with SG = SG′ . For example, Fig. 1(b) shows G1 cpo-pattern that
synthesises M1 and M2 sequential patterns that coexist exactly in the same
sequences S1 and S2.

2.2 FCA and RCA

Formal Concept Analysis (FCA, [6]) considers an object-attribute context which
is a set of objects described by attributes, and builds from it a concept lattice
used to analyse the objects. Concisely, an object-attribute context K is a 3-tuple
(G,M, I), where G is a set of objects, M a set of attributes, and I ⊆ G ×M
an incidence relation. C = (X,Y ) where X = {g ∈ G|∀m ∈ Y, (g,m) ∈ I} and
Y = {m ∈ M |∀g ∈ X, (g,m) ∈ I} is a formal concept built from K. X and Y
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are respectively the extent and the intent of the concept. Let CK be the set of all
formal concepts that can be built on K. Let C1 = (X1, Y1) and C2 = (X2, Y2) be
two concepts from CK , the concept generalisation order �K is here defined by
C1 �K C2 iff X1 ⊆ X2 (⇔ Y2 ⊆ Y1). LK=(CK , �K) is the concept lattice built
from K. We denote by >(LK) the concept from LK whose extent has all the
objects, and by ⊥(LK) the concept from LK whose intent has all the attributes.

RCA extends the purpose of FCA to relational data. RCA applies iteratively
FCA on a Relational Context Family (RCF). An RCF is a pair (K,R), where K
is a set of object-attribute contexts and R is a set of object-object contexts. K
contains n object-attribute contexts Ki = (Gi,Mi, Ii) , i ∈ {1, ..., n}. R contains
m object-object contexts Rj = (Gk, Gl, rj) , j ∈ {1, ...,m}, where rj ⊆ Gk×Gl is
a binary relation with k, l ∈ {1, ..., n}, Gk = dom(rj) the domain of the relation
and Gl = ran(rj) the range of the relation. Gk and Gl are the sets of objects of
the object-attribute contexts Kk and Kl, respectively. RCA relies on a relational
scaling mechanism that is used to transform a relation rj into a set of relational
attributes that extends the object-attribute context describing the set of objects
dom(rj). A relational attribute ∃rj(C), where ∃ is the existential quantifier, and
C = (X,Y ) is a concept whose extent contains objects from the ran(rj), de-
scribes an object g ∈ dom(rj) if rj(g)∩X 6= ∅. Other quantifiers can be found in
[13]. RCA process consists in applying FCA first on each object-attribute con-
text of an RCF, and then iteratively on each object-attribute context extended
by the relational attributes created using the concepts from the previous step.
The RCA result is obtained when the families of lattices of two consecutive steps
are isomorphic and the object-attribute contexts are unchanged.

3 Relational Analysis of Sequential Data

3.1 Running Example

Patterns hidden in sequential medical data about patients and their medical
histories can provide valuable medical knowledge for physicians. Here, we pro-
pose to study the symptoms (e.g. fever and cough) that indicate the presence
of viruses (e.g. influenza) in patients. The symptoms and viruses are detected
by medical examinations and viral tests, respectively. In Fig. 2 is a medical se-
quence, i.e. a chronologically ordered set of medical examinations with a viral
test at the end, all undergone by the same patient. The medical examinations
are itemsets of symptoms, while the viral test is the target 1-itemset (set of only
one item) that contains the studied object of interest (here, the influenza virus).

Fig. 2: Medical sequence
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Table 1: Medical toy sequential dataset.
Sequence Id Sequence

S1 〈(FEVERmoderate)(FEVERmoderate COUGHhigh)(FEVERhigh COUGHhigh)(FEVERmoderate)(InfluenzaA)〉
S2 〈(FEVERmoderate)(FEVERhigh COUGHhigh)(InfluenzaA)〉
S3 〈(COUGHmoderate FEVERmoderate)(InfluenzaA)〉
S4 〈(FEVERmoderate)(FEVERmoderate COUGHhigh)(FEVERhigh COUGHhigh)(InfluenzaA)〉
S5 〈(FEVERmoderate)(FEVERhigh)(FEVERhigh)(COUGHhigh)(InfluenzaA)〉
S6 〈(FEVERmoderate)(COUGHhigh)(FEVERhigh)(FEVERhigh)(InfluenzaB)〉
S7 〈(FEVERmoderate)(COUGHhigh FEVERhigh)(COUGHhigh)(InfluenzaB)〉
S8 〈(COUGHmoderate FEVERmoderate)(InfluenzaB)〉
S9 〈(FEVERmoderate)(FEVERhigh)(COUGHhigh)(InfluenzaB)〉
S10 〈(FEVERmoderate)(FEVERhigh COUGHhigh)(InfluenzaB)〉

Table 1 illustrates a medical toy example of sequential data. We consider only
pertinent medical sequences to recognize influenza outbreaks (e.g. only medi-
cal examinations undergone by patients within two weeks before a viral test).
There are three items as follows: two symptoms FEVER and COUGH, and one virus
Influenza. The symptoms can be moderate or high, while the influenza virus
can be of type A or B. Thus, in this example we deal with qualitative sequential
data. For instance, S3 sequence consists in one medical examination undergone
by a patient who experienced moderate cough and moderate fever before being
diagnosed with influenza A virus.

The physicians try to assess the cough and fever symptoms felt by patients
to better understand how to early recognize outbreaks of influenza A/B virus,
and, besides, to distinguish between influenza A and influenza B outbreaks. To
this end, we build qualitative sequential sub-datasets from Tab. 1, based on the
diagnosed type of influenza. Hence, there are two sub-datasets referred to as
DSfluA (sequences from S1 to S5 ) and DSfluB (sequences from S6 to S10 ).

3.2 Preprocessing Qualitative Sequential Data

In this section and in Section 3.3, we briefly recall and improve the temporal
relational analysis step proposed in [10], and we exemplify it with only DSfluA.
Exploiting the relational character of our medical qualitative sequential data
given in Tab. 1, we define a temporal model for DSfluA composed of four sets
of objects, as follows: viruses (V), symptoms (S), viral tests (VT), and medical
examinations (ME). The viral tests are linked to viruses by a qualitative binary
relation has virus A. Similarly, medical examinations are linked to symptoms
by qualitative relations has symptom (mS or hS) differentiated by the type of
identified symptoms, e.g. moderate or high. Viral tests/medical examinations
and medical examinations are linked by a temporal binary relation is preceded
by (ipb) that associates a viral test/medical examination to a medical exami-
nation if the viral test/medical examination is preceded in time by the medical
examination. There is no temporal binary relation between viral tests since our
aim is to study the symptoms that prognosticate influenza A virus.

As explained in Section 3.1, the set of viruses contains only one object (item)
Influenza and the set of symptoms contains two objects COUGH and FEVER. In
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Table 2: D′SfluA of unique identifiers.
Sequence

〈IS1 Seq1 IS2 Seq1 IS3 Seq1 IS4 Seq1 Seq1〉
〈IS1 Seq2 IS2 Seq2 Seq2〉
〈IS1 Seq3 Seq3〉
〈IS1 Seq4 IS2 Seq4 IS3 Seq4 Seq4〉
〈IS1 Seq5 IS2 Seq5 IS3 Seq5 IS4 Seq5 Seq5〉

order to build the set of viral tests and the one of medical examinations (since
an itemset can correspond to several viral tests or medical examinations in the
analysed sequences, each occurrence of the itemset should be uniquely identified),
we re-modelled our medical sequences of itemsets as the medical sequences of
unique identifiers (UIDs) given in Tab. 2.

Formally, let DS be a sequential dataset and S ∈ DS a sequence of itemsets.
We model S as 〈IS1 Seq IS2 Seq...ISp Seq Seq〉, that is, a sequence of UIDs.
Let D′S be the set of all such sequences of UIDs derived from DS sequences.
Seqi is the UID of the target 1-itemset and it uniquely identifies the sequence
S . We define Gm = {Seqi}i∈[1,n], where n = |D′S |, as the set of all UIDs of
the target 1-itemsets in D′S . The function getS : Gm → DS maps a target 1-
itemset UID to the corresponding sequence of itemsets. ISj Seqi is the UID of
an itemset and specifies Seqi sequence that owns the itemset. We define Gt =
{ISj Seqi}i∈[1,n];j∈[1,li], where li is the number of itemsets (except the target
1-itemset) in Seqi sequence, as the set of all itemset UIDs, excluding Gm, in D′S .
The function getSeq : Gt → Gm maps an itemset UID to the sequence that owns
it. The function getIS : Gm ∪ Gt → IS maps an itemset/target 1-itemset UID
to the corresponding itemset.

For instance, D′SfluA (Tab. 2) is a sequence database of UIDs, where Gm is
the set of all viral test UIDs, while Gt is the set of all medical examination UIDs.
The third sequence 〈IS1 Seq3 Seq3〉 is derived from getS(Seq3) = S3 (Tab.
1). Seq3 uniquely identifies the viral test getIS(Seq3) = (InfluenzaA) in S3 .
IS1 Seq3 is owned by getSeq(IS1 Seq3) = Seq3 and it uniquely identifies the
medical examination getIS(IS1 Seq3) = (COUGHmoderate FEVERmoderate) in S3.

3.3 Exploring Qualitative Sequential Data Using RCA

Firstly, the RCA input (RCF) – an excerpt is depicted in Tab. 3 – is built follow-
ing the temporal modelling described in Section 3.2. Tables KS (symptoms), KVT
(viral tests) and KME (medical examinations) represent object-attribute contexts.
Let us note that, KME has no column since a medical examination is described
only using has symptom qualitative relations, and the rows represent the UIDs
of medical examinations from Tab. 2. There is no object-attribute context of
viruses since we focus on a specific virus and thus all viral tests detect influenza
A. Tables RVT-ipb-ME (viral test ipb medical examination), RME-ipb-ME (med-
ical examination ipb medical examination), RmS (medical examination detects
a moderate symptom) and RhS (medical examination detects a high symptom)
represent object-object contexts. For example, RVT-ipb-ME has viral tests as
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Table 3: RCF excerpt composed of object-attribute contexts (KS, KVT and KME),
and object-object contexts (RVT-ipb-ME and RhS).

KS F
E
V
E
R

C
O
U
G
H

FEVER ×
COUGH ×

KVT

Seq1

Seq2

Seq3

Seq4

Seq5

KME

IS1 Seq1

IS2 Seq1

IS3 Seq1

IS4 Seq1

IS1 Seq2

IS2 Seq2

IS1 Seq3

IS1 Seq4

IS2 Seq4

IS3 Seq4

IS1 Seq5

IS2 Seq5

IS3 Seq5

IS4 Seq5

RVT-ipb-ME I
S
1
S
e
q
1

I
S
2
S
e
q
1

I
S
3
S
e
q
1

I
S
4
S
e
q
1

I
S
1
S
e
q
2

I
S
1
S
e
q
2

I
S
1
S
e
q
3

I
S
1
S
e
q
4

I
S
2
S
e
q
4

I
S
3
S
e
q
4

I
S
1
S
e
q
5

I
S
2
S
e
q
5

I
S
3
S
e
q
5

I
S
4
S
e
q
5

Seq1 × × × ×
Seq2 × ×
Seq3 ×
Seq4 × × ×
Seq5 × × × ×

RhS F
E
V
E
R

C
O
U
G
H

IS1 Seq1

IS2 Seq1 ×
IS3 Seq1 × ×
IS4 Seq1

IS1 Seq2

IS2 Seq2 × ×
IS1 Seq3

IS1 Seq4

IS2 Seq4 ×
IS3 Seq4 × ×
IS1 Seq5

IS2 Seq5 ×
IS3 Seq5 ×
IS4 Seq5 ×

rows and medical examinations as columns. A cross indicates a link between ob-
jects, e.g. the cell identified by the viral test Seq3 and the medical examination
IS1 Seq3 contains a cross since both are undergone by the same patient and the
medical examination precedes the viral test, as shown in Tab. 2.

Secondly, RCA is applied1 on the aforementioned RCF and the family of con-
cept lattices given in Fig. 3 is obtained after four iterations. There is a concept
lattice for each object-attribute context as follows: LKVT (viral tests), LKS (symp-
toms) and LKME (medical examinations). LKVT is considered as the main lattice
since it contains the target 1-itemsets. LKME is considered as the temporal lattice
since it describes the temporal links between the itemsets. LKME and LKVT are
modified during the iterative steps due to the qualitative and temporal relations
that have respectively as domain the set of objects of KME and KVT. Each concept
is represented by a box structured from top to bottom as follows: concept name,
simplified intent, simplified extent. The representation of each lattice is simpli-
fied as every attribute/object is top-down/bottom-up inherited. The navigation
amongst these lattices follows the concepts used to build relational attributes,
e.g. the relational attribute ∃RVT-ipb-ME(CKME 6), which is a temporal one since
it introduces the temporal relation is preceded by, of the concept intent CKVT 5 in
LKVT lattice allows us to navigate from CKVT 5 to CKME 6 concept in LKME lattice.

4 Extracting WCPO-patterns from the RCA Result

In [10], Nica et al. have shown how to directly extract hierarchies of cpo-patterns
by navigating interrelated concept intents from the RCA result (which is built as
explained in Section 3) beginning with concept intents from the main lattice. For
each navigated concept intent, a vertex (itemset) is derived from all qualitative
relational attributes, while an edge is derived from each temporal relational
attribute. When a cpo-pattern is extracted the order on itemsets in the analysed
sequences is exploited, while the itemsets themselves are considered uniformly.

1 using RCAExplore tool (http://dolques.free.fr/rcaexplore)

http://dolques.free.fr/rcaexplore
http://dolques.free.fr/rcaexplore


8 Nica et al.

CKVT_0
∃RVT-ipb-ME(CKME_0)
∃RVT-ipb-ME(CKME_9)

 

CKVT_5
∃RVT-ipb-ME(CKME_10)
∃RVT-ipb-ME(CKME_8)
∃RVT-ipb-ME(CKME_6)
∃RVT-ipb-ME(CKME_7)

 

CKVT_9
∃RVT-ipb-ME(CKME_21)
∃RVT-ipb-ME(CKME_20)
∃RVT-ipb-ME(CKME_19)
∃RVT-ipb-ME(CKME_18)

 

CKVT_8
∃RVT-ipb-ME(CKME_22)
∃RVT-ipb-ME(CKME_16)

 

CKVT_7
∃RVT-ipb-ME(CKME_11)

Seq1

CKVT_3
∃RVT-ipb-ME(CKME_17)
∃RVT-ipb-ME(CKME_5)
∃RVT-ipb-ME(CKME_3)
∃RVT-ipb-ME(CKME_15)

Seq4

CKVT_1
∃RVT-ipb-ME(CKME_1)

 

CKVT_6
∃RVT-ipb-ME(CKME_12)
∃RVT-ipb-ME(CKME_14)
∃RVT-ipb-ME(CKME_13)

Seq5

CKVT_2
∃RVT-ipb-ME(CKME_2)

Seq3

CKVT_4
∃RVT-ipb-ME(CKME_4)

Seq2

(a) LKVT (main lattice)

CKS_3
 
 

CKS_2
FEVER
FEVER

CKS_0
 
 

CKS_1
COUGH
COUGH

(b) LKS

CKME_0
 
 

CKME_10
∃RME-ipb-ME(CKME_0)
∃RME-ipb-ME(CKME_9)

 

CKME_21
∃RME-ipb-ME(CKME_10)
∃RME-ipb-ME(CKME_8)

 

CKME_22
∃RME-ipb-ME(CKME_21)
∃RME-ipb-ME(CKME_20)
∃RME-ipb-ME(CKME_19)

 

CKME_16
∃RME-ipb-ME(CKME_6)

 

CKME_1
∃RME-ipb-ME(CKME_22)
∃RME-ipb-ME(CKME_11)
∃RME-ipb-ME(CKME_1)
∃RME-ipb-ME(CKME_12)
∃RME-ipb-ME(CKME_2)

∃RmS(CKS_0)
∃RhS(CKS_0)

 

CKME_11
∃RME-ipb-ME(CKME_17)
∃RME-ipb-ME(CKME_15)
∃RME-ipb-ME(CKME_18)
∃RME-ipb-ME(CKME_4)

IS4_Seq1

CKME_12
∃RME-ipb-ME(CKME_16)
∃RME-ipb-ME(CKME_14)
∃RME-ipb-ME(CKME_13)

IS4_Seq5

CKME_2
∃RmS(CKS_1)

IS1_Seq3

CKME_3
 

IS2_Seq1
IS2_Seq4

CKME_15
 

IS3_Seq1
IS3_Seq4

CKME_13
 

IS3_Seq5

CKME_17
∃RME-ipb-ME(CKME_5)
∃RME-ipb-ME(CKME_3)
∃RME-ipb-ME(CKME_7)

 

CKME_5
 
 

CKME_14
 
 

CKME_18
 
 

CKME_9
∃RmS(CKS_3)
∃RmS(CKS_2)

IS1_Seq1
IS1_Seq2
IS1_Seq4
IS1_Seq5

CKME_7
∃RhS(CKS_1)

 

CKME_19
 
 

CKME_4
 

IS2_Seq2

CKME_20
 
 

CKME_8
∃RhS(CKS_3)

 

CKME_6
∃RhS(CKS_2)

IS2_Seq5

(c) LKME (temporal lattice)

Fig. 3: LKVT lattice of viral tests, LKS lattice of symptoms and LKME lattice of
medical examinations obtained by applying RCA on the RCF given in Tab. 3

Figure 4, on the left hand side, illustrates a set of concepts whose intents are
navigated starting with CKVT 4 from the main lattice LKVT (Fig. 3(a)); on the
right hand side, is depicted the extracted cpo-pattern, which is contained in each
sequence of CKVT 4 extent (S1 , S2 and S4 ). The last vertex of the cpo-pattern is
derived from the first navigated concept intent. It is noted that the cpo-pattern
preserves the order on itemsets in these sequences. However, the cpo-pattern
can be misleading if the itemsets have different numbers of occurrences in these
sequences. For instance, the cpo-pattern given in Fig. 4 does not encapsulate
that in our sequences there are 3 occurrences of (FEVERhigh COUGHhigh) itemset
when each occurrence is preceded by (FEVERmoderate) itemset, and 5 occurrences
of (FEVERmoderate) with no constraint on its order.

Formally, let G = (V, E , l) be a cpo-pattern, and SG the set of sequences
that support G. Let vi ∈ V be a vertex of G, and Vi = {v ∈ V|v ≤ vi} the set
of predecessors of vi in G (including vi). Furthermore, Ei = {(vk, vl) ∈ E|vk ∈
Vi and vl ∈ Vi}. Gi = (Vi, Ei, l) is a sub-graph of G, associated to vertex vi. Let

Fig. 4: From a set of navigated concepts to a cpo-pattern
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introduce ISi ⊇ l(vi) an itemset in a sequence S ∈ SG . ISi is a preceded itemset
w.r.t. vi ∈ V, iff ∃Si �s S ,Si = 〈IS1IS2...ISpISi〉 and ∀M ∈ PG i,M �s Si (i.e.
there exists a subsequence of S , ending with ISi, that supports Gi).

Actually, each sequence of SG can repeatedly contain the same itemset having
the same predecessors. In the following, we are going to show how to capture such
information (that reveal the weightiness of vertices) by additionally navigating
the interrelated concept extents to obtain more informative cpo-patterns.

4.1 From Uniform Vertices to Weighted Vertices

Our purpose is to formalise an approach for determining the weightiness of ver-
tices (derived from concepts of the temporal lattice) that correspond to itemsets
with specific predecessors, namely preceded itemsets. To this end, as explained
in Section 2.1, let DS be a sequence dataset re-modelled as D′S of UIDs. Gm is
the set of all target 1-itemset UIDs in D′S , while Gt is the set of all other itemset
UIDs.

Let LKm
= (CKm

,�Km
) be the main lattice (e.g. the lattice of viral tests

LKVT) whose set of main concepts CKm is derived from the formal context Km =
(Gm,Mm, Im). Gm is the domain of a temporal relation is preceded by, denoted
by ipb1 ⊆ Gm × Gt (e.g. viral test ipb1 medical examination). A main concept
Cm ∈ CKm

is a pair (Xm, Ym) such that:

– the intent Ym consists of temporal relational attributes that are navigated
to reveal GCm = (Vm, Em, lm) cpo-pattern whose last vertex vm is the one
derived from Cm; vm is labelled with the target 1-itemset ;

– the extent Xm gathers all UIDs in Gm of the sequences that contain all
paths in GCm

; SGCm
= {getS(Seq) ∈ DS |Seq ∈ Xm}.

Note that the range of ipb1 temporal relation is Gt, and thus the set of
vertices Vm contains one or more vertices vt derived from temporal concepts,
and vm vertex. Indeed, let LKt

= (CKt
,�Kt

) be the temporal lattice (e.g. the
lattice of medical examinations LKME) whose set of temporal concepts CKt

is
derived from Kt = (Gt,Mt, It) context. Gt is both the domain and the range
of a second temporal relation is preceded by, denoted by ipb2 ⊆ Gt × Gt (e.g.
medical examination ipb2 medical examination). A temporal concept Ct ∈ CKt

is a pair (Xt, Yt) such that:

– the intent Yt contains temporal relational attributes that are navigated to
reveal GCm = (Vm, Em, lm) cpo-pattern whose vertex vt is derived from Ct;
vt vertex is labelled with lm(vt) itemset;

– the extent Xt gathers all UIDs in Gt that identify itemsets containing
the itemset lm(vt) and respect the temporal order with the UIDs pointed
by temporal relational attributes of Yt. We introduce Xt|m = {IS Seq ∈
Xt|getSeq(IS Seq) ∈ Xm}.

Proposition 1. Xt|m is the set of all UIDs that identify a preceded itemset w.r.t.
vt ∈ Vm. Furthermore, Xt is the set of all UIDs that identify a preceded itemset
w.r.t. vkt ∈ Vk

m, with k ∈ {1, ..., |LKm |}.
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Proof. Let ISi be a preceded itemset w.r.t. vt ∈ Vm. Then ISi ⊇ lm(vt) and
∃S ∈ DS ,∃Si �s S such that ISi is the last itemset in Si and Si supports the
sub-graph of vt predecessors in GCm

while S supports GCm
. Let Seq be the UID

of S : Seq ∈ Xm. Furthermore, the UID of ISi, i.e. ISi Seq, owns all temporal
relational attributes of Yt and is thus included in Xt|m.

Let Ct be a temporal concept revealing a vertex vt ∈ Vm. Let ISi Seq ∈ Xt|m
be the UID of ISi = getIS(ISi Seq) ⊇ lm(vt), and S ∈ DS the sequence referred
by getSeq(ISi Seq) ∈ Xm. ISi ∈ S , S supports the graph GCm

. We can define
Si �s S the subsequence of S ending with ISi. Let Gt be the sub-graph of vt
predecessors in GCm

: ∀M ∈ PGt,M �s Si. Thus ISi is a preceded itemset w.r.t.
vt ∈ Vm.�

Definition 1 (Weighted CPO-pattern). Given a main concept Cm, the ver-
tex vm derived from Cm, the associated cpo-pattern GCm = (V, E , l), and a func-
tion w : (V − {vm}) → Rn

≥0, where n is constant. A weighted cpo-pattern is
a quadruple (V, E , l, w), i.e. the cpo-pattern GCm

with the function w that maps
each vertex to a n-tuple of real positive numbers (vertex measures of weightiness).

We propose three vertex measures of weightiness that represent: the persis-
tency of the corresponding preceded itemset in the subset of sequences of DS
(how many repetitions of it are in that subset); the overall weight of the preceded
itemset (how often it occurs) in DS ; the specificity of the preceded itemset in the
subset of sequences of DS (the extent to which it belongs only to that subset).

In the following, we consider a main concept Cm = (Xm, Ym), the associated
cpo-pattern GCm

= (V, E , l), and a vertex vt ∈ V derived from a temporal concept
Ct = (Xt, Yt).

Definition 2 (Vertex Persistency). The persistency of vt, denoted by $vt ,
is the total number of repetitions (repetitive occurrences in the same sequence)
of preceded itemsets w.r.t. vt.

$vt =
|Xt|m| − |Xm|
|Xm|

(1)

Persistency of a vertex measures the persistence of the corresponding pre-
ceded itemset in a subset of the analysed dataset. We consider that the preceded
itemset characterizes the subset of the analysed data if it is not accidental, i.e.
the preceded itemset occurs repeatedly in the subset.

Definition 3 (Vertex Overall Weight). The overall weight of vt, denoted
by ωvt , is the total number of occurrences of preceded itemset w.r.t. vit ∈ GiCm

,
i ∈ {1, ..., |LKm |}.

ωvt = |Xt| (2)

Overall Weight of a vertex measures how numerous is the corresponding
preceded itemset in all analysed sequences. Therefore, the overall weight provides
an overview of the number of occurrences of the preceded itemset in the analysed
dataset and it can be a reference point used in decision-making by the expert.
Using the overall weight of a vertex vt, the overall frequency of vt in DS can be

computed as ϕvt = |Xt|
|Gt| .
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Definition 4 (Vertex Specificity). The specificity of vt, denoted by ςvt , is
the relative number of preceded itemsets w.r.t. vt.

ςvt =
|Xt|m|
|Xt|

100 ∈ (0%, 100%] (3)

Specificity of a vertex measures the extent to which the corresponding pre-
ceded itemset is specific for a subset of the analysed data. We consider that the
vertex is likely to be more interesting for low values of the specificity, that is, if
the preceded itemset characterises the current subset and other sequences from
the analysed dataset as well.

Using these three measures, a vertex derived from a temporal concept can
be mapped to a 3-tuple such as ($vt

, ωvt , ςvt).

4.2 Application to the Running Example

To illustrate our method, let us examine the set of interrelated concepts nav-
igated to extract GCKVT 5 cpo-pattern associated to CKVT 5 main concept from
LKVT (Fig. 3(a)). More precisely, we propose to investigate the navigated concept
extents. To this end, Fig. 5 illustrates GCKVT 5 cpo-pattern, whose vertices are
annotated with 3-tuples ($vt , ϕvt , ςvt), and the navigated concept extents.

The vertex labelled with (InfluenzaA) target 1-itemset, is derived from
CKVT 5 intent. CKVT 5 extent comprises the sequences in DSfluA (Tab. 1) con-
taining all the paths in GCKVT 5, i.e. SGCKVT 5 = {S1 ,S2 ,S4 ,S5}. There are 4
distinct (InfluenzaA) target 1-itemsets in DSfluA that are preceded by the
itemsets (FEVERhigh), (COUGHhigh) and (FEVERmoderate) in the order they appear
in GCKVT 5. The vertex labelled with (FEVERhigh) preceded itemset is derived from
CKME 6 temporal concept intent and it is denoted by vCKME 6. The CKME 6 ex-
tent gathers the 5 itemsets (each UID represents an itemset) in DSfluA that
contain FEVERhigh item and that are preceded by the (FEVERmoderate) itemset.
Therefore, the overall weight of vCKME 6 is ωvCKME 6

= 5. Since all the itemsets in
the CKME 6 extent are owned by the sequences in SGCKVT 5, the vCKME 6 specificity
is ςvCKME 6

= 5
5100 = 100%. In addition, we observe that CKME 6 extent contains

the group of itemsets {IS2 Seq5, IS3 Seq5} that occur in the same sequence
getSeq(IS2 Seq5) = getSeq(IS3 Seq5) = Seq5 s.t. getS(Seq5) ∈ SGCKVT 5. Then,
CKME 6 extent contains only one repetition identified by IS3 Seq5, and thus
vCKME 6 persistency is $vCKME 6

= 0.25. Similarly, the vertex vCKME 7 labelled with
(COUGHhigh) preceded itemset is derived from CKME 7 temporal concept intent
and has the overall weight ωvCKME 7

= 6 and the specificity ςvCKME 7
= 6

6100 = 100%.
Since there are two groups of two itemsets that occur in Seq1 and Seq4, re-
spectively, the persistency of vCKME 7 is $vCKME 7

= 0.5. The vertex vCKME 9 labelled
with (FEVERmoderate) preceded itemset is derived from CKME 9 temporal concept
intent. CKME 9 extent comprises the 8 itemsets in DSfluA (Tab. 1) that contain
FEVERmoderate item, i.e. the overall weight of vCKME 9 is ωvCKME 9

= 8. The itemset
IS1 Seq3 (gray colored in Fig. 5) is owned by getS(Seq3) /∈ SGCKVT 5 and thus,
the vCKME 9 specificity is ςvCKME 9

= 7
8100 = 87.5%. Since the CKME 9 extent contains

three repetitions identified by IS2 Seq1, IS4 Seq1, and IS2 Seq4, the vCKME 9

persistency is $vCKME 9
= 0.75.
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Fig. 5: Extraction of the wcpo-pattern associated to CKVT 5 concept (Fig. 3(a))

5 Enhancing Sequential Data Analysis Using
WCPO-patterns

Using RCA as explained in [10], hierarchies of cpo-patterns are obtained in
order to improve the interpretation step by highlighting how the extracted cpo-
patterns relate to each other. However, there are practical cases (three such cases
are discussed in Section 5.1, 5.2 and 5.3) when the order between the extracted
cpo-patterns is insufficient for the expert. To improve these practical cases, we
propose to use hierarchies of wcpo-patterns and to exploit the vertex measures
of weightiness introduced in Section 4.1.

Henceforth, we use our running example to illustrate three practical cases
that take advantage of the proposed wcpo-patterns when a physician tries to
interpret the extracted medical knowledge. As these examples demonstrate, for
the sake of our approach illustration, the wcpo-patterns can lead to more infor-
mative medical knowledge since the different importance of vertices or paths are
considered. It is worth mentioning that the persistency, overall weight and the
specificity of a vertex can be considered simultaneously or not depending on the
motivation behind the analysis step.

5.1 Practical Case: Ranking CPO-pattern Vertices and Paths

In a cpo-pattern, its vertices/paths are considered uniformly. The expert can
easily be misled by this assumption into thinking that all vertices/paths in a
cpo-pattern have the same impact on the object of interest. To illustrate that,
let us suppose that a physician tries to interpret the cpo-pattern given in Fig. 5
by disregarding the weightiness of vertices. The physician finds that often before
outbreaks of influenza A the patients feel high cough and high fever in any order,
but after feeling moderate fever. Since the medical knowledge (cpo-pattern) was
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mined with very high support (4 out of 5 analysed medical sequences), the
physician can infer with high confidence that ”moderate fever should always be
considered as an early sign of a possible influenza A outbreak” and that ”high
fever and high cough should always be the first signs of influenza A outbreak”.

However, let us assume that the physician analyses again the cpo-pattern
given in Fig. 5 by paying attention to the weightiness of vertices. High fever
and high cough symptoms, which are felt by patients after moderate fever, are
ςvCKME 6

= ςvCKME 7
= 100% specific only to the four medical sequences. In contrast,

moderate fever symptom is ςvCKME 9
= 87.5% specific to the four medical sequences

and besides, to other analysed medical sequences. Consequently, moderate fever
felt by patients before influenza A outbreaks can be a global available tendency
in the dataset and thus the physician can infer with higher confidence that ”mod-
erate fever should always be an early sign of a possible influenza A outbreak”.
Since the high fever and high cough felt by patients after moderate fever is a
tendency available only in a subset of the analysed dataset, the physician can
conclude with less confidence that ”high fever and high cough should always be
the first signs of influenza A outbreak”.

In addition, the physician can deduce that high cough is more persistent
than high fever in the four medical sequences, i.e. $vCKME 7

> $vCKME 6
. Therefore,

the high cough is more likely to be the first sign of influenza A outbreak, while
high fever, for example, can be caused by a bacterial infection. Similarly, this
assumption holds if the overall weights are analysed. Relying on the persistency
of high cough, the physician can rank the paths, i.e. FEVERmoderate ← COUGHhigh ←
InfluenzaA path is more pertinent to recognize influenza A outbreak.

5.2 Practical Case: Selecting Interesting Navigation Paths in
CPO-pattern Hierarchies

Usually the extracted hierarchies of cpo-patterns are very large, and even if the
relationships between cpo-patterns are highlighted, and the support measure
can be considered, their navigation is still not an easy task for the expert. For
instance, let us suppose that a physician tries to navigate the hierarchy of cpo-
patterns shown in Fig. 6 while ignoring the weightiness of vertices. This figure
depicts an excerpt (with five cpo-patterns from (a) to (e)) from the hierarchy of
wcpo-patterns obtained adding new medical sequences to the RCF given in Tab.
3. The physician begins the navigation from the simple cpo-patterns (having
only one vertex) (a) and (b). Thus, the physician has an overview of the com-
mon tendencies of the analysed DSfluA and minimises the chance of overlooking
interesting cpo-patterns. It is noted that both cpo-patterns were mined with the
same support, and apparently they mark out two interesting navigation paths
in the hierarchy. Nevertheless, when the physician considers the persistency of
vertices, their different importance are highlighted. The physician can easily
infer that high cough is more probable to be a sign of influenza A outbreak,
i.e. high cough is more persistent ($ = 2) than high fever ($ = 1). Accord-
ingly, the physician selects the navigation path that consists in the descendant
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Fig. 6: Excerpt from the hierarchy of wcpo-patterns obtained by adding new
medical examinations and viral tests to the RCF given in Tab. 3

wcpo-patterns of (b) and the analysis continues by applying the same ranking
criterion.

5.3 Practical Case: Distinguishing the Best Represented
Sub-Dataset by a CPO-Pattern

There are cases when it is useful to find out discriminant tendencies for differ-
ent types of the studied object of interest. Here, in our running example, the
physician is interested in distinguishing between outbreaks of influenza A and
B by assessing the symptoms felt by patients. Usually, the physician determines
that the same extracted cpo-pattern belongs rather to DSfluA or DSfluB (given
in Tab. 1) by relying on support measure. However, there are cases when a
cpo-pattern is found with equal support in both datasets.

For example, let us consider that the physician tries to understand if the
cpo-pattern given in Fig. 7 represents a discriminant tendency for influenza A
or influenza B outbreak. The cpo-patterns given in Fig. 7(a) and Fig. 7(b) were
extracted from DSfluA and from DSfluB , respectively. Both cpo-patterns were
mined with the same support and thus it is impossible to distinguish between
them by disregarding the weightiness of vertices. In contrast, when the physician
considers, for instance, the persistencies of vertices, it is easily noted that high
cough and moderate fever are more persistent in the subset of DSfluA, while high
fever has the same persistence in both subsets (one ofDSfluA and one ofDSfluB).
Accordingly, the physician can conclude that the cpo-pattern is a distinguishing
characteristic of influenza A outbreak since two out of three vertices are more
significant in Fig. 7(a). Moreover, this inference is drawn with more confidence
by additionally considering the overall weights of the vertices, i.e. mainly, high
cough and moderate fever are more numerous in DSfluA than in DSfluB .

6 Related Work

Traditional pattern mining algorithms in sequence databases, such as those sur-
veyed in [9] for sequential pattern mining and closed sequential pattern mining,
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Fig. 7: Distinguishing between outbreaks of influenza A and B

or FreCPO [12] and OrderSpan [5] for cpo-pattern mining, consider only the
order on itemsets in concerned sequences and treat all the itemsets uniformly. To
capture more particularities hidden in the analysed data, Srikant et al. [14] pro-
pose to extract more informative sequential patterns by adding time constraints
in advance, and thus a pattern is extracted only if it admits a max-gap and a
min-gap between adjacent itemsets. Pei et al. [11] push various constraints, e.g.
time-interval and gap information between items, into the mining process to limit
the mining results. Chen et al. [4] propose to extract time-interval sequential pat-
terns that reveal the time interval between successive items and besides these
time-intervals are explicitly shown in the patterns. To capture the time interval
between all pairs of items in the extracted patterns, Hu et al. [7] introduce the
multi-time-interval sequential pattern. Chang et al. [3] propose to find weighted
sequential patterns by pushing a time-interval weight measure (the weight of a
sequence derived from the time-interval of the sequence itemsets) into the min-
ing process. Besides, in [8,16] more informative sequential patterns are obtained
pushing pre-assigned quantitative information, which are recorded in the anal-
ysed database, into the mining process. In contrast, our RCA-based approach
focuses more on enhancing the interpretation step by extracting hierarchies of
wcpo-patterns. We capture for each vertex (preceded itemset) in a cpo-pattern
its weightiness (e.g. specificity), in the analysed sequences and we show them
explicitly in the extracted wcpo-pattern. Consequently, the expert is guided by
(i) the relationships between wcpo-patterns that are revealed by the obtained
hierarchies, (ii) the weightiness of vertices and (iii) the more informative order
(partial order) of itemsets.

7 Conclusion

This work presents an approach for enhancing sequential data analysis within
the framework of RCA. To this end, we propose to extract more informative pat-
terns, namely weighted cpo-patterns, that capture and explicitly show not only
the order on itemsets (as do traditional cpo-patterns) but also their different in-
fluence on the analysed sequence database through measures such as persistency,
specificity and overall weight. Moreover, thanks to the hierarchical RCA results,
we directly obtain the relationships between these wcpo-patterns that guide the
interpretation step and help in better understanding the extracted knowledge.
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In this paper, we have formally defined our approach and we have illustrated it
on a toy example.

In the future, we plan to study the properties of the proposed measures, and
to make a comparison with existing measures of interest. In addition, a possible
extension of our work is to consider time-intervals between itemsets, or to add
quantitative information recorded in the analysed sequence database to obtain
more valuable knowledge.
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