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Abstract 18 

The future of global rice productions in top producing countries is undermined by the impact of 19 

climate change threatening food security in the near future. In those European Mediterranean areas 20 

where rice is cultivated, this peculiar cropping system plays a crucial role in terms of sociocultural 21 

and ecological issues, and the climate change impact is still scarcely investigated. In this study, we 22 

explored the future trends of potential rice yields in the region considering the multiple sources of 23 

uncertainty associated with climate and yield predictions. Two rice crop models (STICS and 24 

WARM) were calibrated using 20 field experiments carried out in two main European rice 25 

producing areas – i.e., the Italian Lomellina and the French Camargue. These models were then 26 

applied under a range of climate change scenarios in 2030 and 2070 time frames, considering 27 

projections from the combination of four General Circulation Models and two extreme 28 

Representative CO2 Concentration Pathways (RCP 2.6 and 8.5). We compared the simulated yield 29 

levels with no adaptation, and designed adaptation strategies based on the anticipation of sowing 30 

date and the adoption of varieties with longer crop cycle. Our results showed that with no 31 

adaptation yields would decrease on average by 8% in 2030 and 12% in 2070 in Camargue and 32 

Lomellina, respectively. Future simulated yields in the two areas were lower than in the baseline in 33 

67% (Camargue) and 84% (Lomellina) of the cases. The implementation of both adaptation 34 

strategies proved to be effective in reversing the situation, leading to an average yield increase of 35 

28% and 25% in 2030 and 2070, respectively. The associated probability of lower yields than in 36 

current conditions was 24% in the two sites. Despite the uncertainty in predictions, mainly related 37 

to site, GCM and RCP, our findings indicate that the European rice sector has the potential to 38 

enhance current production levels in a changing climate, if longer cycle varieties will be grown in 39 

Mediterranean rice areas. 40 

Keywords 41 

Adaptation strategies, Camargue, Lomellina, rice yields, STICS, WARM 42 
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Introduction 43 

The effects of climate change on the future rice (Oryza sativa L.) production is still under debate in 44 

the three top producing countries – China (Tao and Zhang, 2013), India (Aggarwal and Mall, 2002) 45 

and Indonesia (Naylor et al., 2007) – due to the counterbalance between the beneficial effect of 46 

rising atmospheric CO2 concentration and the exacerbation of abiotic stresses on crop growth, such 47 

as heat (Baker et al., 1992), drought (Wassmann et al., 2009) and salinity (Redman et al., 2011). 48 

The available estimates are discordant, and range between an increase of 10-15% in 2020 (Tao and 49 

Zhang, 2013) to 7-10% yield losses per every 1 °C increase in air temperature (Peng et al., 2004; 50 

Krishnan et al., 2007). Given the leading role of rice as a staple food for humans (Fitzgerald et al., 51 

2008; Soora et al., 2013) and the need of doubling crop production by 2050 to meet the projected 52 

demand of the global population (Ray et al., 2013), this research question is in the spotlight, and 53 

efforts are still needed to deepen current knowledge. In the meanwhile, rice growers and 54 

stakeholders of the rice sector are already implementing adaptation strategies, ranging from 55 

individual autonomous local reactions (Dharmarathna et al., 2014) to planned policy interventions 56 

(Huang et al., 2015), in order to alleviate the negative impacts of climate change in the main 57 

producing environments (Howden et al., 2007).  58 

Nevertheless, less research has been devoted to analyse the consequences of climate change on rice 59 

production in Europe (EU), where rice is the 6th most produced cereal, with almost 4 million tons on 60 

about 650,000 ha in 2013, for an average yield of 6 t ha-1 (FAOSTAT, 2014). Although not being a 61 

staple food crop in EU, rice plays a pivotal sociocultural (Picazo-Tadeo et al., 2009) and ecological 62 

(Longoni, 2012) role in several Mediterranean countries, where the human consumption is steadily 63 

increasing (Ferrero and Tinarelli, 2007; Worldatlas, 2016). Italy, Spain, Greece, Portugal and 64 

France are the five top European producing countries, and present a higher per capita annual rice 65 

consumption (6-18 kg year-1) than in non-producing northern countries (3.5-5.5 kg year-1, Maclean 66 

et al., 2002). The typical European rice production system presents paddy cultivation under 67 

continuous flooding during most part of the crop cycle (Hill et al., 1991), and water drainages to 68 
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allow rooting, top-dressing fertilization, herbicide spraying and harvesting (Fusi et al., 2014). Cold 69 

temperatures are the main environmental constraint to rice production in Mediterranean countries 70 

(Jena and Hardy, 2012). Damages to rice crop due to low temperatures can occur at any growth 71 

stage, being particularly severe at sowing, when they can undermine the germination capacity and 72 

the establishment of rice plants (Ferrero and Tabacchi, 2002), and during microsporogenesis stage 73 

(Dingkuhn et al., 1995), when high diurnal temperature ranges can increase the risk of pollen 74 

sterility (Russo and Callegarin, 1997). With increased temperatures due to climate change, heat 75 

stress could be more frequent on temperate rice crop. Recent findings in rice physiology indicate 76 

that heat stress causing sterility in the exerted part of the panicle is likely to occur even in 77 

Mediterranean countries, especially in warm and humid years (Julia and Dingkuhn, 2013).  78 

The complex effects of global warming and CO2 increase on rice growth in Mediterranean countries 79 

comprise both detrimental and beneficial effects. The meta-analysis carried out by Wang et al. 80 

(2015) reports a percentage yield increase of 24.5% at 660-699 ppm, which is mainly associated to 81 

an increase in the number of panicles and grains per plant. Likewise, available free air CO2 82 

enrichment experiments allowed to quantify the atmospheric fertilization benefits on temperate rice 83 

yields in the range 7-15% at 586-645 µmol mol-1 for japonica type varieties (Kim et al., 2003), 84 

which are the most widespread in EU (Confalonieri and Bocchi, 2005). The increase in air 85 

temperature can lead to the decreased occurrence of cold sterility events, which currently are a 86 

major constraint to European rice yield. Potential positive effects of higher temperature are also 87 

related to the anticipation and the extension of the growing season length (Peng et al., 1995), which 88 

can favour the cultivation of longer cycle varieties, and to the improvement of plant photosynthetic 89 

rates. The latter will probably increase because of the thermal requirements of this tropical crop 90 

(Borjigidai et al., 2006) and due to the higher CO2 concentration in the atmosphere. The 91 

temperature increase can also cause detrimental effects on future rice production, such as the 92 

shortening of the crop cycle, especially of the grain filling period (Matthews and Wassmann, 2003) 93 

and the increased risk of heat sterility during pollination (Hirabayashi et al., 2015), and the loss of 94 
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sink activity of the panicle (Kim et al., 2011). As for other driving variables of the biophysical 95 

system (Dieleman et al., 2012), the predominance of the complex interactions on the simple 96 

additive effects between temperature and CO2 in affecting crop production, constitutes an additional 97 

source of variability in the future trends of rice yield (Long et al., 2006).  98 

The complex array of uncertainties connected with the study of the impact of climate change on 99 

crop yield – including observed climate inputs, future CO2 concentrations, climate model outputs 100 

and projected impacts (Challinor et al., 2009) – makes current projections inherently highly 101 

uncertain (Godfray et al., 2010; Asseng et al., 2013). An effective and standard methodological 102 

framework to quantify these multiple sources of uncertainty is still lacking (Burke et al., 2015), 103 

even if this became a topic by itself (Wesselink et al., 2015). Moreover, the ranking of their 104 

importance is considered a required milestone to improve the understanding of the real impacts of 105 

climate change, and to enhance the credibility of climate change studies for policy makers (Ruiz-106 

Ramos and Minquez, 2010). 107 

To date, the impacts of climate change on rice yield are scarcely investigated in European 108 

production areas, where the impacts of temperature changes in the 21st century are expected to be 109 

huge in response to even slight changes in large-scale climatic factors (Gao and Giorgi, 2008), and 110 

to substantially vary at fine spatial scale (Gao et al., 2006). In most studies, the EU rice 111 

Mediterranean region is included in global scale simulations, but its results are never specifically 112 

discussed. For instance, Ray et al. (2014) studied the relations between climate and yield 113 

variabilities in 1979-2008, showing that climate variability is responsible for 13-43% of rice yield 114 

variability in Mediterannean countries, with the average very close to the world one (0.29 and 0.31, 115 

respectively; data retrieved from Supplementary Material). A recent assessment of future rice yields 116 

as affected by climate change was performed in Italy using a single crop model (Bocchiola, 2015).  117 

Focusing on irrigation water use, it reports a general yield increase until mid-century and a decrease 118 

later on. Mediterranean regions are indeed considered as one of the most prominent climate change 119 
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hotspots (Giorgi, 2006), because they lay in the transition zone between the arid northern African 120 

climate and the wet-temperate climate of central EU (Mariotti et al., 2015).  121 

This paper aims at exploring the main trends of future Mediterranean rice yields, and to quantify 122 

and rank the multiple sources of uncertainty related to climate and yield predictions. Two rice crop 123 

models were applied in two main European rice producing areas - the Italian Lomellina and the 124 

French Camargue - to simulate potential rice growth and development in current conditions and 125 

under a wide range of climate change scenarios, considering projections of four General Circulation 126 

Models (GCM) and two contrasting Representative CO2 Concentration pathways (RCP; IPCC, 127 

2014). 128 

 129 

1. Materials and methods 130 

 131 
Figure 1. Activities performed in this study, with associated synthetic input information. 132 
Stat: statistical analysis on the simulation outputs. 133 
 134 

The workflow of the activities performed in this study is presented in Figure 1. Step A led to the 135 

generation of the future weather scenarios (section 2.2) as input for the crop model simulations, 136 

starting from baseline weather data and using RCP-based GCM projections as input for a weather 137 

generator. In Step B, current weather data were used as input for the crop models, which were 138 

calibrated against measurements from field experiments performed in the two study areas (section 139 

Observed 1991-2010 
GCM x RCP 

Activity Inputs 
Climate ï Other 

Generation of future weather 
scenarios 

Calibration of the crop models 

Development of adaptation 
strategies 
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Step B 
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Simulation of baseline and 
future potential yields 

Step D 

Analysis of variance of 
simulated future yields 

Step E 

    Model 
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- 
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Baseline and future 
scenarios 

Calibrated model 
parameters 

Baseline and future 
scenarios 

Adaptation strategies 
 

- 
 

Simulated future 
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X 

X 

X 

X 
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2.3.2). Step C aimed at developing the adaptation strategies, which were implemented for crop 140 

model simulations (section 2.3.3). Input data were the baseline and future weather scenarios to 141 

derive (1) the relationships between farmers’ sowing dates and air temperature, and (2) new crop 142 

model parameters, which were modified to reproduce alternative varieties to be tested in the future 143 

scenarios. Step D concerned the simulation of potential rice yields (section 2.3.3) in current and 144 

future weather scenarios, considering no adaptation, and the implementation of adaptation 145 

strategies. In Step E, an analysis of variance was performed to quantify the contribution of each 146 

source of uncertainty to yield variability (section 2.4). 147 

 148 

2.1 Characterization of the study areas 149 

The Italian Lomellina and the French Camargue were selected as two representative areas to 150 

evaluate the impact of climate change on European rice production (Figure 2). Rice crop was grown 151 

in 2015 on around 80,000 ha in Lomellina and on around 20,000 ha in Camargue, representing 152 

together 22% of the total EU rice harvested area (Ente Nazionale Risi, www.enterisi.it; FAOSTAT, 153 

2014).  154 

According to the updated Köppen-Geiger climate classification (Peel et al., 2007) and to the 155 

environmental stratification of EU (Metzger et al., 2005), both areas fall into the 156 

temperate/mesothermal climatic group, with Lomellina belonging to the North Mediterranean and 157 

Camargue to the South Mediterranean environmental zone. The French and Italian rice areas 158 

present hot summers and mild to cool winters, with differences in their rainfall patterns. 159 

Precipitations are mainly distributed during autumn and winter months, being on average higher in 160 

Lomellina (938 mm) than in Camargue (745 mm). Average air temperatures during the rice 161 

growing season (from May to September) range from 19.9°C in Camargue to 20.5°C in Lomellina 162 

in the period 1991-2010. 163 

The typical agricultural management of rice fields presents direct seeding and continuous flooding 164 

until milky ripening stage, with two-three water drainages during the growing season to promote 165 

http://www.enterisi.it/
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rooting and before the application of weed control products and top dress fertilizers (mainly urea, 166 

average dose 150 kg ha-1), which are usually split at sowing, tillering and panicle differentiation 167 

stage. The most widespread rice varieties mainly belong to the japonica ecotype, with main 168 

differences in the duration of the growing cycle.  169 

Weed infestation and cold temperatures are among the main constraints to rice production during 170 

the crop establishment phase in both French and Italian rice areas, whereas spikelet sterility due to 171 

cold air irruptions around flowering (Biologische Bundesanstalt, Bundessortenamt und CHemische 172 

Industrie, BBCH codes 61-69) often occurs leading to yield losses (Mariani et al., 2009).  173 

174 
Figure 2. Location of the two study areas (A : Lomellina, B : Camargue). Black dots represent the 175 
locations of the meteorological stations 176 
 177 

2.2 Current and future weather scenarios 178 

For current weather scenarios, 20-years series of daily weather data for the period 1991-2010 were 179 

collected from weather stations located inside the French and Italian rice areas. Castello d’Agogna 180 

(45°14' N, 08°41' E) and Fourques (42°58’N, 2°78’E) were selected for the Lomellina and 181 

Camargue case studies, respectively (Figure 2). The available weather variables were daily 182 

maximum and minimum air temperature (°C), precipitation (mm d-1), global solar radiation (MJ m-2 183 
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d-1), average wind speed (m s-1) and evapotranspiration (mm d-1). These baseline data and four 184 

GCM realizations of two contrasting RCP were used to generate the 20-years future weather series 185 

to consider a range of plausible impacts of the changes in atmospheric composition due to the 186 

effects of technology, economy, lifestyle, and policy development on climate (IPCC, 2014). Two 187 

future time frames were considered, referring to the near (2030) and long-term (2070) futures.  188 

The GCM were randomly selected among the ones included in the Coupled Model Intercomparison 189 

Project (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/): the Norwegian Earth System Model 190 

(NOResm, Tjiputra et al., 2013), the Model for Interdisciplinary Research on Climate (MIROC-191 

ESM, Watanabe et al., 2011), the Hadley Centre Global Environmental Model version 2 192 

(HadGEM2-ES, Collins et al., 2011), and the GCM developed by the Goddard Institute for Space 193 

Studies (GISS-ES, Schmidt et al., 2006). 194 

The two extremes of the RCP of greenhouse gas (GHG) concentration proposed by IPCC were used 195 

in this study: the RCP 2.6, which assumes a peak of global annual GHG emissions between 2010-196 

2020 and a radiative increase up to 2.6 W m-2, with CO2 concentration reaching 420 ppm in 2100, 197 

and the RCP 8.5, projecting a continuous rise of GHG emissions throughout the 21st century with a 198 

radiative increase of 8.5 W m-2, with CO2 concentration reaching 936 ppm in 2100 (IPCC, 2014). 199 

The CO2 concentration for baseline conditions was set to 382 ppm, and the future CO2 200 

concentrations used as input in the simulation experiment were 438 ppm (2030) and 444 ppm 201 

(2070) for RCP 2.6, and 438 ppm (2030) and 660 ppm (2070) for RCP 8.5 (IPCC, 2013). 202 

The average monthly absolute anomalies of temperature and precipitation in the period 2021-2040 203 

for 2030 time frame, and 2061-2080 for 2070 time frame (difference or ratio between the future and 204 

the present value of the variable; Déqué et al., 2007), corresponding to each GCM × RCP 205 

combination, were downloaded from the Program for Climate Model Diagnosis and 206 

Intercomparison data portal (https://pcmdi.llnl.gov/search/cmip5/). They were then used to 207 

modulate the parameters of the CLIMAK weather generator (Danuso, 2002), in order to generate 208 

the 20-years of future weather series to be used in the simulation experiment, following the 209 

https://pcmdi.llnl.gov/search/cmip5/
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procedure used by Confalonieri et al. (2013), Cappelli et al. (2015) and Paleari et al. (2015). In this 210 

simulation experiment 34 weather series of 20-years were used, as the sum of the 2 baseline for 211 

Lomellina and Camargue and of 32 future weather scenarios, as the product of 2 RCP × 4 GCM × 2 212 

future time frames × 2 study areas. 213 

 214 

2.3. Simulation experiment design 215 

2.3.1. Crop simulation models 216 

The simulation of rice growth and development in baseline and future weather scenarios was 217 

performed at potential production level, i.e., defined by the genotype of the rice variety and by solar 218 

radiation, temperature and CO2 concentration (De Wit and Penning de Vries, 1982; Rabbinge, 219 

1993). We did not consider the limiting effects of water and nutrient availability on yield – the 220 

attainable production level – because rice-cropping systems are flooded and receive generally a 221 

high fertilization rate in both areas. We used the generic crop model STICS (Brisson et al., 1998) 222 

adapted for rice (Ruget et al., 2016) and the rice model WARM (Confalonieri et al., 2009) to 223 

perform the simulation experiment, as these two models were developed under temperate 224 

conditions. Although they both simulate crop phenological development as a function of thermal 225 

time accumulation and share the main concept of radiation use efficiency (RUE, g MJ-1, Warren 226 

Wilson, 1967) to reproduce biomass growth, they markedly differ in the formalization of the 227 

algorithms used to mimic crop growth and respond to weather input data (Table 1). Main 228 

differences between the two models are the time step to compute rice growth and development – 229 

hourly for WARM and daily for STICS – and the formalization of the plant processes leading to the 230 

dynamic increase of leaf area index and to the partitioning of assimilates to leaves, stems and 231 

panicles. Hourly data of air temperature and global radiation as input for the WARM model were 232 

estimated according to Campbell (1985) and Chen et al. (1999) starting from daily data. 233 

The WARM model daily updates the leaf area index (m2 m-2) by multiplying the daily increase of 234 

leaves biomass (kg m-2) by the specific leaf area (m2 kg-1), and computes leaves senescence as 235 
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driven by a threshold of thermal time, whereas STICS calculates the leaf area index increase as 236 

mediated by air temperature. The partitioning pattern in STICS is driven by a dynamic harvest 237 

index, which is upper limited by the product of grain numbers by maximum grain weight, whereas 238 

in WARM it depends solely on crop development stage, with the weight of reproductive organs 239 

starting to grow after panicle initiation stage. The maximum value of radiation use efficiency is 240 

modulated in both models by temperature, radiation, development stage and CO2 concentration, 241 

according to different modelling approaches. The two models differ in the simulation of the impacts 242 

of cold and heat stress on rice yield. The WARM model simulates a reduction of spikelet fertility 243 

due to cold and heat stresses acting in a critical time window around flowering, whereas STICS 244 

stops the grain filling process in post-anthesis while decreasing the number of grains during the 245 

ripening period as a response to low and high temperatures. The beneficial effect of increasing 246 

atmospheric CO2 in future climate scenarios is simulated by the two models with empirical 247 

functions (Appendix B).  248 

 249 

Table 1. Modelling approaches used by the WARM and STICS models to simulate plant processes, 250 

as employed in this study.  251 

Process Sub process WARM STICS 

Phenology 

Emergence Thermal time sum Sowing depth and soil humidity 
Flowering and 
maturity dates 

Thermal time sum Thermal time sum 

Thermal time 
accumulation  

Nonlinear function between 
minimum, optimum and 
maximum temperature 

Trapezoidal linear function 
between minimum, two 
optimum and maximum 
temperature 

Input 
temperature 

Air temperature Crop temperature  

Time step Hourly Daily 

Leaf area 
dynamics 

Leaf area index 
increase 

Driven by specific leaf area and 
leaves biomass 

Driven by temperature 

Leaf senescence Thermal time, leaf life duration Thermal time, leaf life duration 

Biomass 
accumulation Photosynthesis 

Net photosynthesis, a single 
value of maximum radiation 
use efficiency 

Net photosynthesis, three values 
of maximum radiation use 
efficiency according to the 
phenological phase. 
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Time step Hourly Daily 

Limiting 
factors on 
radiation use 
efficiency 

Temperature Nonlinear function between 
minimum, optimum and 
maximum temperature 

Linear function between 
minimum, optimum and 
maximum temperature 

Radiation Linear decrease above a 
radiation threshold 

Nonlinear decrease of the daily 
relation between biomass 
increase and intercepted 
radiation 

Development 
stage 

Linear decrease after flowering Variation of the value of 
maximum radiation use 
efficiency according to the 
phenological phase 

CO2 effect Exponential function, Eq. 2 Exponential function, Eq. 1 

Partitioning of 
assimilates 

Vegetative 
organs 

Nonlinear, driven by 
development stage  

Fixed parameter of the ratio 
between daily growth of leaves 
and stems 

Reproductive 
organs 

Driven by development stage, 
starting from panicle initiation 

Dynamic harvest index and 
maximum grain number fixed at 
flowering, maximum grain 
weight as genotypic parameter 

Limiting 
factors to 
yield 
accumulation 

Extreme 
temperatures 

Around flowering During ripening period 

Damage Heat/cold sterility acting on 
panicle biomass 

Stop of grain filling, reduction 
of grain numbers during early 
ripening 

 252 

2.3.2. Models’ calibration in current weather conditions 253 

We calibrated the two crop models using phenological observations (dates of flowering and 254 

maturity) and dynamic field data of leaf area index (LAI, m2 m-2) and aboveground biomass (AGB, 255 

t ha-1) collected in 10 experimental trials in Lomellina (years 1989, 1990, 1995, 1996) and in 256 

surveys in 10 farmer fields in Camargue (years 1987, 1988 and 2009). Full information on these 257 

datasets including the description of the site, the sowing date, the variety and synthetic data on crop 258 

development and growth are provided in Appendix A. The agronomic management of the fields 259 

aimed at growing rice crop at potential production level. Experiments were carried out under flood 260 

irrigation and non-limiting nitrogen conditions, in order to avoid water and nitrogen stresses during 261 

the whole crop cycle. Weeds were controlled in pre-sowing and post-emergence in both sites, and a 262 

chemical treatment against blast disease was applied around flowering in Lomellina experiments. 263 
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The field datasets refer only to japonica-type varieties, which were split in two groups according to 264 

the length of their crop cycle (japonica early and japonica medium).  265 

AGB and LAI were measured several times during the crop cycle to characterize the crop growth 266 

dynamics, whereas yield was sampled at harvest. The AGB samples were oven-dried until constant 267 

weight, whereas LAI was sampled by destructive planimetric methods, according to Jonckheere et 268 

al. (2004). The BBCH scale (Lancashire et al., 1991) was used to assess the main rice phenological 269 

stages: emergence (BBCH=10), flowering (BBCH=65) and physiological maturity (BBCH=89). 270 

STICS and WARM were calibrated and evaluated separately for japonica early and medium 271 

varieties. For each group, 10 French and 10 Italian datasets were split into independent calibration 272 

and evaluation subsets to assure the applicability of the two models across study areas. The crop 273 

model calibration was performed independently for the two models via automatic optimization tools 274 

using the root mean square error between simulated data and measurements as the objective 275 

function, and tuning parameter values within their biophysical ranges. For both models, we started 276 

from default parameterization for rice crop. For WARM model, the parameters under calibration 277 

involved with phenological development were the thermal thresholds to reach flowering and 278 

maturity (°C day), whereas to reproduce organs growth the potential radiation use efficiency (g MJ-279 

1), the three cardinal temperatures for biomass accumulation (minimum, optimum, maximum 280 

temperature, °C), the partitioning of assimilated to leaves at emergence (0-1, dimensionless), and 281 

the specific leaf area at emergence and tillering (m2 kg-1). In STICS, phenology was calibrated by 282 

adjusting the thermal time requirements (°C day-1) between (i) emergence and maximum leaf area 283 

increase, (i) beginning of stem elongation and maximum LAI, (iii) emergence and beginning of 284 

grain filling, (iv) flowering and maturity, and the leaf life duration (°C day-1). The calibrated 285 

parameters related to biomass accumulation were the maximum rate of gross leaf surface area 286 

production (m2 plant degree day-1), the coefficient of decrease of maximum leaf area as function of 287 

plant density (dimensionless), the potential radiation use efficiency (g MJ-1), the speed of thermal 288 

increase of harvest index (g grain g plant-1 day-1), the maximum grain weight (g) and the maximum 289 
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number of grains (grains m-2). The calibrated temperature response functions to simulate both 290 

phenological development and the limitation to radiation use efficiency are reported in Appendix C, 291 

as well as the model parameters and the results of model calibration and evaluation.  292 

 293 

2.3.3. Simulations in current and future weather scenarios 294 

The calibrated sets of model parameters characterizing current rice varieties were used to simulate 295 

potential rice yield in baseline weather scenario (1991-2010). Simulations were performed by 296 

setting May, 1st as a fixed sowing date in the two study areas, according to available datasets, 297 

farmers’ interviews and expert knowledge. The simulation of the future trends of rice yield in the 298 

two areas were performed adopting the same model parameters and sowing date than in baseline 299 

scenario, and by testing the implementation of three adaptation strategies: (1) the anticipation of the 300 

sowing date (sowing adaptation), (2) the adoption of varieties with a longer crop cycle (variety 301 

adaptation), or (3) the combination of sowing and variety adaptations (double adaptation).  302 

The sowing adaptation corresponds to a shifting of the rice sowing date according to a mathematical 303 

rule, which was derived on baseline weather scenarios. Considering May 1st as the average sowing 304 

date in current conditions, we computed the number of times when the weekly moving average of 305 

daily average air temperature was above 10°C (Gao et al., 1983) in the period March, 1st - May, 1st. 306 

The application of this rule led to different values in the two study sites: in Camargue, i.e., 6.3 307 

weekly averages were above 10°C in the specified two-months period, and 4.3 in Lomellina. Then, 308 

we applied the same rule and thresholds on the future 20-year weather series for Camargue and 309 

Lomellina, in order to derive the new sowing dates to be used in future weather scenarios (Table 2).  310 

The variety adaptation was developed using a 1-year weather series, computed by daily averaging 311 

the 32 future weather scenarios resulting by all the available combinations of 4 GCM × 2 RCP × 2 312 

sites. This choice allowed us to obtain average weather conditions from the GCM and RCP 313 

ensemble projections, leading to calibrate two model parameter sets, i.e., one for japonica medium 314 

and the other for japonica late variety.  315 
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The calibrated values of thermal time threshold to reach flowering and maturity dates in STICS and 316 

WARM were adjusted by running the two models on this synthetic year, using the average sowing 317 

date coming from sowing adaptation, and forcing the length of the crop cycle to match 140 days and 318 

160 days, as representative of japonica medium and late varieties. Compared to calibrated sets of 319 

parameters, the values changes involved only the thermal thresholds, i.e. amount of the growing 320 

degree-days required to reach flowering and maturity stage in the two models. The ratio between 321 

the thermal time requirements in the periods emergence-flowering and flowering-maturity was kept 322 

equal to the model calibration in current weather conditions. 323 

 324 

Table 2. Simulation settings adopted for the simulation of potential rice production in current and 325 

future weather conditions, considering the implementation of sowing (shift of the sowing date) and 326 

variety (adoption of varieties with longer crop cycle) adaptation strategies. JE = japonica early, JM 327 

= japonica medium, JL = japonica late  328 

Site Time  
horizon 

Setting Adaptation strategy 
No Sowing Variety Double 

Camargue 
2030 Sowing May, 1st April, 21st May, 1st April, 21st 

Variety JE, JM JE, JM JM, JL JM, JL 

2070 Sowing May, 1st April, 9th May, 1st April, 9th 
Variety JE, JM JE, JM JM, JL JM, JL 

Lomellina 
2030 Sowing May, 1st April, 26th May, 1st April, 26th 

Variety JE, JM JE, JM JM, JL JM, JL 

2070 Sowing May, 1st April, 20th May, 1st April, 20th 
Variety JE, JM JE, JM JM, JL JM, JL 

 329 

2.4 Statistical analysis 330 

Uncertainties in yield predictions attributable to the GCM, the RCP, and the crop model were 331 

evaluated with an analysis of variance together with the effects of the time frame, the site and the 332 

variety group. The contribution of each source of uncertainty was assessed by the Mean Squared 333 

Error (MS), calculated as the sum of squares divided by the associated number of degrees of 334 

freedom (df). MS was used to compare the contributions of the different factors to the total 335 

variability in simulated rice yields (the highest the MS of a factor, the highest its contribution). The 336 
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significance of each factor was then evaluated using F-tests. Finally, the goodness-of-fit of the 337 

model was assessed by the adjusted R2 and the size of the errors in the residuals (Root Mean Square 338 

Error, RMSE). All analyses were performed with the R software version 3.2.3 (R Development core 339 

team, 2015). The analysis of variance was performed using the ‘aov’ function and the RMSE was 340 

calculated using the ‘rmse’ function of package hydroGOF (Zambrano-Bigiarini, 2014). 341 

  342 
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3. Results 343 

3.1. Future trends of rice yield 344 

3.1.1. Yield dynamics 345 

 346 

Figure 3. Dynamic of simulated panicle biomass growth from panicle initiation to physiological 347 
maturity in baseline (black line) and in future weather scenarios, considering no adaptation (cyan) 348 
and the implementation of double adaptation (considering together sowing and variety adaptations, 349 
orange). Plotted values are the mean of daily data simulated by the two crop models in the baseline 350 
(solid black line), and in the future (i.e., considering all crop model × variety × GCM × RCP 351 
combinations for no adaptation – cyan dashed line, varieties japonica early and medium – and with 352 
sowing and variety adaptation – orange dashed line, varieties japonica medium and late) with 353 
associated standard deviation (extreme coloured lines, for future conditions only). Data are 354 
presented divided by site (Camargue, A and B; Lomellina, C and D) and time frame (2030, A and 355 
C; 2070, B and D). For each combination site × time frame, the average duration of rice growth 356 
stages is reported in number of days (Veg-vegetative period, from germination to panicle inititation; 357 
Rep-reproductive period, from panicle initiation to flowering; Rip-ripening, from flowering to 358 
maturity; Tot-total cycle length, from germination to maturity). 359 
 360 

The results related to yield dynamics simulated under current/climate change scenarios are 361 

presented in Figure 3. In 2030, the simulation of rice phenological development in both sites with 362 

no adaptation (Figure 3A, C) led to a shortening of the crop cycle of 13.5 days due to an 363 

anticipation of the main rice growth stages (-6 days for vegetative period, -2.5 days for reproductive 364 

period and -5 days for the ripening period). In 2070, the further anticipation of the main 365 

phenological phases (-9.5 days for vegetative period, -3.5 days for reproductive period and -6 days 366 
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for ripening) led to a shortening of the whole crop cycle of 19 days. The combined effect of the 367 

anticipation of sowing dates and the adoption of varieties with higher thermal requirements (double 368 

adaptation) determined a longer duration of the main phenological stages and their delayed 369 

occurrence with respect to both no adaptation and baseline simulations (Figure 3B, D). This effect 370 

was clearer in 2030 (+13 days for vegetative period, +7.5 days for reproductive period and +13.5 371 

days for ripening), whereas in 2070 the increase of air temperature smoothed these differences, 372 

especially for reproductive (+5.5 days) and grain filling (+7.5 days) period. Therefore, the average 373 

duration of the whole crop cycle was longer in 2030 (155 days) than in 2070 (148.5 days). On 374 

average, the impact of climate change on the shortening of the crop cycle was similar in the two 375 

case studies, with -32 days in 2030 and -30 days in 2070 in Lomellina and -36 days in 2030 and -25 376 

days in Camargue.  377 

With no adaptation, the differences in simulated yield between the two sites were small in 2030, and 378 

the associated mean yields ranged between 6.3 t ha-1 (Lomellina) and 7 t ha-1 (Camargue), being 379 

lower than in baseline conditions by -4.5% ÷ -11.8% (average -8.2%) for Camargue and Lomellina, 380 

respectively. In 2070, a decrease of final yield was simulated in Lomellina (5.8 t ha-1) whereas in 381 

Camargue mean yield remained more stable (6.8 t ha-1), because of the beneficial effect of the 382 

temperature increase on rice growth rates, which counterbalanced the shortening in phenological 383 

development. This led, with respect to baseline simulated yields, to smaller yield loss in Camargue 384 

(-6.4%) than in Lomellina (-19.6%) in 2070. The implementation of double adaptation in Camargue 385 

led to mean yield in 2070 (9.6 t ha-1) even higher than in 2030 (9.4 t ha-1). On the contrary, mean 386 

simulated yield were higher in 2030 (9 t ha-1) than in 2070 (8.4 t ha- 1) in Lomellina. For both time 387 

frames, yield increases, relatively to site specific baseline conditions, were lower in Lomellina than 388 

in Camargue, with a mean increase of +26% in 2030 and +16.9% in 2070 in Lomellina, while 389 

Camargue experienced average yield increases of +29.2% and +31.8% in 2030 and 2070, 390 

respectively. 391 
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3.1.2. Yield distribution 392 

 393 

394 
Figure 4. Cumulative frequency distribution of simulated yields in site-specific baseline and in 395 
future weather scenarios with no adaptation and with the implementation of the three adaptation 396 
strategies, as compared to the simulations in baseline conditions for the two sites (Camargue, A and 397 
B; Lomellina, C and D) and the two time frames (2030, A and C; 2070, B and D). Red line 398 
indicates the site-specific baseline; Dotted black line indicates no adaptation; Dotted grey line 399 
indicates Sowing adaptation; Full black line indicates the Variety adaptation; and Full grey line 400 
indicates the double adaptation; Magenta lower and upper lines correspond to -10% and +10% of  401 
site-specific mean baseline yield, respectively. Numbers correspond to the frequency of simulated 402 
yields above or below the ±10% mean baseline yield, respectively. 403 
 404 

The cumulative distributions of simulated potential yields in baseline and scenarios in both sites and 405 

future time frames are displayed in Figure 4. Simulations with no adaptation led to the lowest yields 406 

in all conditions tested. In Camargue, values ranged from 4.5 t ha-1 to 8.6 t ha-1 in 2030 and from 407 

1.6 t ha-1 to 8.5 t ha-1 in 2070. In Lomellina, simulated yields were even lower, ranging from 1.4 t 408 

ha-1 to 8.6 t ha-1 in 2030 and from 0 t ha-1 to 8.8 t ha-1 in 2070 (see Appendix D for details). The 409 

benefits due to the implementation of double adaptation were consistent, since it allowed simulated 410 

yields ranging between 6 t ha-1 and 11.8 t ha-1 in 2030, and between 3 t ha-1 and 12.2 t ha-1 in 2070 411 

in Camargue. In Lomellina, simulated yields were in the range 2.5-12.2 t ha-1 in 2030 and 0-12.4 t 412 

ha-1 in 2070. The almost total yield loss (around 0 t ha-1) simulated in 2070 corresponded to the 413 

0.31%
0.94%

22.19% 25.62%

1.88%
4.06%

91.25% 93.28%

8.75%
98.75%

0

2

4

6

8

10

12

0 25 50 75 100
Cumulative frequency of simulated yield (%)

Yi
el

d 
(t 

ha
-1

)

A. Camargue − 2030

2.34%
4.53%

23.75% 30.31%

6.41% 12.34% 84.84% 92.66%

8.75% 98.75%

0

2

4

6

8

10

12

0 25 50 75 100
Cumulative frequency of simulated yield (%)

Yi
el

d 
(t 

ha
-1

)

B. Camargue − 2070

3.91%
4.53%

41.88% 47.03%

13.59% 14.69% 97.19%
97.81%

18.75% 83.75%

0

2

4

6

8

10

12

0 25 50 75 100
Cumulative frequency of simulated yield (%)

Yi
el

d 
(t 

ha
-1

)

C. Lomellina − 2030

17.5% 19.69% 59.69% 63.59%

28.12% 30.31% 95.78%
97.19%

18.75% 83.75%

0

2

4

6

8

10

12

0 25 50 75 100
Cumulative frequency of simulated yield (%)

Yi
el

d 
(t 

ha
-1

)

D. Lomellina − 2070



 20 

occurrence of massive heat stress due to extreme weather conditions, which were more frequent in 414 

Lomellina than in Camargue in almost all of simulations (90%) for each adaptation strategy (mean 415 

difference of 4 days for double adaptation, and of 3 days for no, sowing and variety adaptation; see 416 

Appendix E). We refer here to “heat stress” as the combined effects of panicle sterility simulated by 417 

WARM and of the reduction of grain number and weight simulated by STICS.  418 

In baseline, the frequency of simulated yields leading to yield loss above 10% was lower in 419 

Camargue (8.75%) than in Lomellina (18.75%) (Figure 4). Similarly, a lower number of 420 

simulations resulted in yields gain above 10% in Camargue (1.25%) than in Lomellina (16.25%). 421 

No adaptation and sowing adaptation led to much higher risks to get more than 10% of yield loss, as 422 

compared with the site-specific mean of the baseline scenario (more than 22% and 41% of 423 

simulated yields, respectively, see Figure 4). No adaptation and sowing adaptation led to more than 424 

10% of yield increase in less than 10% and 5% of the cases in Camargue and Lomellina, 425 

respectively. The number of simulated future yields associated with more than 10% of yield loss 426 

with respect to the site-specific mean baseline was strongly reduced with variety and double 427 

adaptation (maximum of 5% and 20% in Camargue and Lomellina, respectively). Simulated yields 428 

for variety and double adaptation resulted in more than 10% of yield increase, as compared to the 429 

site-specific mean baseline, in most of the simulations (more than 87% and 69% of the simulated 430 

yields in Camargue and Lomellina, respectively). The risks of yields with more than 10% of yield 431 

loss were lower in 2030 than in 2070 for both sites, with larger differences between the two time 432 

frames in Lomellina (Figure 4). The fraction of simulated yields with more than 10% of yield 433 

increase was also larger in 2030 than in 2070, with larger differences in Camargue (e.g., 9% and 434 

15% of the simulated yields with sowing adaptation in 2030 and 2070, respectively). The effect of 435 

the sowing adaptation on final yield was negligible in all conditions tested, as the distributions of 436 

simulations with earlier sowing dates were almost overlapped with the ones with current sowing 437 

date (May, 1st), whereas simulations with double adaptation were very similar than with variety 438 

adaptation.  439 
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 440 

3.2 Quantifying yield uncertainty due to climate changes projections 441 

3.2.1. Overview of the magnitude of each factor 442 

 443 

Figure 5. Boxplots of final yields simulated according to each modality (x-axis) of the six factors 444 
considered here (crop model, group of varieties, GCM, RCP, site and time frame). 445 
Plotted values refer to simulations with no adaptation (A), according to the implementation of 446 
sowing (B) and variety adaptation (C) and to double adaptation (D). 447 
Extreme values correspond to quantiles 10 and 90. STI: Stics; WAR: Warm; EAR: early variety; 448 
MED: medium variety; LAT: late variety; GIS: Giss; HAD: Hadgem; MIR: Miroc; NOR: Noresm; 449 
2.6: RCP 2.6; 8.5: RCP 8.5; LOM: Lomellina; CAM: Camargue; 2030: Time frame 2030; 2070: 450 
Time frame 2070. In red are indicated median baseline yield (bold line), and 25th and 75th quantiles 451 
considering together the simulated yields of the two sites, the two varieties and the two crop 452 
models.  453 
 454 

Figure 5 summarizes the effects of each factor by synthetizing its distribution (10, 25, 50, 75 and 455 

90th quantiles) for each factor modality (e.g., STICS and WARM modalities for the crop model 456 

factor). The ranking of the modalities’ median values was stable for every factor whatever the 457 

adaptation strategy considered, whereas the associated yield variability differed according to the 458 
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different modalities of each factor (Figure 5). Median yield values and yield variability simulated 459 

by WARM were higher than for STICS, this difference increasing with variety and double 460 

adaptation (Figure 5). The adoption of varieties with a longer cycle had an opposite impact on the 461 

yield variability simulated by the two models, with WARM increasing and STICS reducing the 462 

yield variability. The varieties with longer cycles displayed higher yields than early varieties, 463 

consistently between the four tested strategies. The yield variability associated to GCM was similar 464 

between the four modalities.  465 

Median yields for RCP 2.6 were higher than for RCP 8.5 for the four strategies, with lower 466 

differences for the variety and double adaptations. Yields simulated with RCP 2.6 were less variable 467 

than with RCP 8.5. Lomellina median yields showed a wider distribution, and lower values, than 468 

Camargue yields for all adaptation strategies. The median yield difference between the two sites 469 

was lower with variety and double adaptation, as compared to no and sowing adaptation (Figure 5). 470 

The median simulated yield variability was higher in 2070 than in 2030, while their ranking differed 471 

between no and sowing adaptations compared to variety and double adaptation. For variety and 472 

double adaptation, most of the simulated yields were above the median, and even the first quartile 473 

of baseline yield distribution (Figure 5). Thus, while the ranking of factors and modalities remained 474 

stable for the different adaptation strategies, there was a systematic yield increase when adapting 475 

the variety (variety and double adaptation), as compared to no adaptation and to sowing adaptation. 476 

 477 

3.2.2. Ranking the components of uncertainty 478 

Table 3. Analysis of variance of mean future yields with and without adaptation strategies, 479 
considering together the two time frames (2030 and 2070), the two RCP (2.6 and 8.5), the four 480 
GCM (Giss, Hadgem, Miroc and Noresm), the two sites (Camargue and Lomellina), the two crop 481 
models (Stics and Warm), and the two groups of variety. 482 

  
No adaptation Sowing  Variety Double 

Factor d.f. MS p-value MS p-value MS p-value MS p-value 
Time frame 1 79 <0.001 30 <0.001 97 <0.001 35 <0.001 
RCP 1 137 <0.001 109 <0.001 166 <0.001 175 <0.001 
GCM 3 136 <0.001 130 <0.001 158 <0.001 157 <0.001 
Site 1 455 <0.001 564 <0.001 217 <0.001 410 <0.001 
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Crop model 1 0 0.981 1 0.252 59 <0.001 2 0.371 
Variety group 1 128 <0.001 221 <0.001 114 <0.001 120 <0.001 
Adjusted R2 0.329 0.339 0.173 0.187 
RMSE 0.976 0.921 1.440 1.424 
d.f. : number of degrees of freedom ; MS : Mean Squared Error ; RMSE : Root Mean Squared Error 483 
(in t ha-1) 484 
 485 

The results of the analysis of variance performed for each adaptation strategy are presented in Table 486 

3. The site was the most explanatory factor of simulated yields in future weather scenarios, either 487 

considering or not adaptation strategies (Table 3). On average, simulated yields in Camargue were 488 

higher than in Lomellina, with an increase of 0.8-0.9 t ha-1 (Figure 6), except for the simulations 489 

considering only the variety adaptation strategy (0.6 t ha-1, see Appendix G). This site effect could 490 

be explained by the highest occurrence in Lomellina, as compared to Camargue, of extremely high 491 

temperature during the summer (Appendix F), inducing more days with heat stress during ripening 492 

(Appendix E). For instance, Lomellina highlighted, for the July-August period, 58% of years where 493 

maximum temperatures exceeded 36°C (i.e., sterility threshold), while it was only 36% of the years 494 

in Camargue (Appendix F). The ranking of the importance of the different factors was consistent 495 

when considering simulations with no adaptation, variety and double adaptation (Table 3). In these 496 

situations a decreasing impact of RCP, GCM, variety group and time frame on simulated yields was 497 

observed, whereas with sowing adaptation the effect of variety was higher than GCM, RCP and 498 

time frame. 499 

The crop model factor had a significant impact (p<0.05) on yields only with variety adaptation, with 500 

STICS leading to higher yields than WARM (0.3 t ha-1 on average, Appendix G). The variability 501 

explained with no and with double adaptation was higher (R2=0.33 and 0.34, respectively; Table F) 502 

and led to lower errors of prediction (~0.95 t ha-1) as compared to the ones with sowing and variety 503 

adaptation (~1.4 t ha-1) (Table F). 504 
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 505 

Figure 6. Effects of the different factors on simulated yields in future weather scenarios. Results are 506 
presented for simulations with no adaptation (in black) and with double adaptation (i.e., sowing 507 
dates and variety, in white). The bars represent the yield difference between the two modalities, in 508 
the order presented in the Modality column. The significance of the effects are indicated on the 509 
right size (***: p<0.001; **: p<0.01; *: p<0.05; NS: not significant, i.e., p>0.05) 510 
 511 

The ranking of the factors’ modalities was stable when considering no adaptation and double 512 

adaptation strategies (Figure 6). For these strategies, the highest difference between simulated 513 

yields was due to the GCM modality, with GISS leading to higher yields than HADGEM of about 514 

1.1 t ha-1. GISS and MIROC provided the closest yield estimation (0.2-0.3 t ha-1), although their 515 

difference was significant (p<0.001). RCP 2.6 always provided higher yields than RCP 8.5 of about 516 

0.5 t ha-1 (Figure 6). The ranking of variety groups was stable for no and double adaptation, with 517 

yields of longer-cycle varieties higher than shorter-cycle varieties of about 0.4 t ha-1. 518 

 519 
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4. Discussion 520 

4.1. Lower yields in the future, except with adapted varieties 521 

Our main objective was to assess the future rice yield trends in Mediterranean producing countries 522 

in the context of climate change, in order to provide information to be used by stakeholders in the 523 

EU rice sector. The results indicated that, without the implementation of adaptation strategies as 524 

anticipated sowing dates and adoption of varieties with longer crop cycle, average potential rice 525 

yield in the study areas would decrease by 8% in 2030 and 12% in 2070 time frame with respect to 526 

current conditions. Such yield reduction under climate change was already highlighted on other 527 

crops in France, e.g., maize and wheat (Delecolle et al., 1995). Potential rice yields in the future 528 

would be lower than average current yield in 69% and 67% of 2030 and 2070 simulations in 529 

Camargue, and in 83% and in 84% of 2030 and 2070 simulations in Lomellina. The main factors 530 

associated with these trends are the shortening of the crop phenological phases due to temperature 531 

increase and the rising occurrence of heat stress during flowering and ripening due to temperature 532 

extremes, especially in Lomellina. The latter represents a shift of paradigm with respect to cold 533 

stress, considered as one of the major yield-limiting factor in current conditions. In our simulations, 534 

the two models consistently simulated a low average number of days with heat stress in the baseline 535 

weather (0.52 days), and an increasing trend in 2030 (1.48 days in Camargue, 3.1 days in 536 

Lomellina) and 2070 (3.4 days in Camargue, 5.9 days in Lomellina), considering together no 537 

adaptation and adaptation strategies (Appendix D, tables D1-D4). 538 

However, our results strictly depend on the two modelling approaches used to simulate this process, 539 

which do not represent the whole range of available models (Krishnan et al., 2007; van Oort et al., 540 

2014). Moreover, the only model in this study simulating the percentage of heat sterility (WARM) 541 

did not implement a heat balance at canopy level, therefore it used hourly air temperature as the 542 

driving variable for heat sterility damage. This could potentially lead to its overestimation because 543 

of the lack of consideration of transpirational cooling at canopy level, which can smooth the effects 544 

of extreme hot temperatures during flowering (Hasegawa et al., 2011; Julia and Dingkuhn, 2013; 545 
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Matsui et al., 2014).  The emerging risk of heat stress in Lomellina is however proved by local rice 546 

growers and magazines (RisoItaliano, 2016), reporting yield losses due to spikelet sterility in 2015. 547 

Moreover, both the length of the crop cycle and the number of days with heat stress were largely 548 

correlated with simulated yields (e.g., R2 = 0.472 and R2 = 0.327 for simulations with no adaptation 549 

and with double adaptation respectively). We can then infer that these factors will be major 550 

determinants of rice yield variability in the future, in accordance with findings of Muller et al. 551 

(2015) for wheat and maize – for the length of the growing season – and of Deryng et al. (2014) for 552 

maize, wheat and soybean – for the impact of heat stress. 553 

Another source of uncertainty in crop model applications in climate change scenarios is due to the 554 

model formalization for simulating the CO2 response, as CO2 atmospheric fertilization effect could 555 

deeply affect yield predictions (Li et al., 2015). The CO2 response functions implemented in the 556 

crop models used in this study (see section 2.3.1) act on the same process (i.e., RUE) and produce 557 

very similar outputs in the considered CO2 range (380-660 ppm), starting to diverge at extreme high 558 

or low concentrations. This represents a limit of this study, given the simplistic and empirical 559 

representation of the CO2 effect on yield as compared to more process-based Farquhar-type 560 

photosynthesis models, implemented in some rice crop simulators (e.g., Li et al., 2015; Confalonieri 561 

et al., 2016). 562 

Despite these limitations, a major finding of our study is that climate change, rather than being a 563 

threat, represents an opportunity for European rice growers, as the implementation of adaptation 564 

strategies could overturn the situation, leading to an average increase of 28% in 2030 and 25% in 565 

2070 with respect to baseline mean yield levels. With the adoption of longer-cycle varieties, yields 566 

would be higher than baseline mean in the majority of cases (>76%), with however a larger 567 

frequency of lower yields in 2070, as compared to 2030, and in Lomellina, as compared to 568 

Camargue. The large differences in the yield frequency patterns in the two study areas can be 569 

explained by their climatic heterogeneity even in current conditions (Metzger et al., 2005), with 570 

Lomellina presenting more temperature extremes leading to cold (baseline) and heat (future) stress 571 



 27 

than in Camargue.  Such site effect, even for close locations, was already highlighted in future yield 572 

studies on rice crop (e.g., in India, Krishnan et al., 2007; in China, Xiong et al., 2009), and on other 573 

crops grown in EU, e.g. winter wheat (in Denmark and Spain, Olesen et al., 2007).  574 

 575 

4.1.1. Factors of uncertainty for future yield predictions 576 

In this study, the sources of uncertainty were ranked according to their impact on simulated yields, 577 

aiming at evaluating their importance on models predictions. This is considered an essential step to 578 

increase the reliability of the results of climate change studies for stakeholders and policy makers 579 

(Ruiz-Ramos and Minquez, 2010). 580 

The site yielded as the most important source of variability in our analysis, even if the two 581 

Mediterranean rice growing areas considered here are very close in terms of distance, and similar in 582 

average climatic pattern. However, the field of validity of our results is limited to the narrow range 583 

of the explored climatic conditions, therefore the inclusion of additional sites would certainly affect 584 

our specific results and possibly change the ranking of the sources of uncertainty. The same 585 

considerations could be done for all the other factors, even if including the two extremes of RCPs 586 

and four different GCMs strengthen our findings. A limit of this study is represented by the 587 

application of only two crop growth simulators as impact models, as it is demonstrated that they can 588 

explore a limited part of the possible variation in yield prediction (Li et al., 2015).  589 

Besides the expected predominant effect of study site, RCP and GCM were found to be high 590 

sources of uncertainty for yields simulated with the different strategies. The strong effect of RCP 591 

was expected, given the use of the two IPCC extremes scenarios, whereas the importance of GCM 592 

in explaining yield variability supports the need to adopt a multi-GCM approach to manage their 593 

difference to produce input data for crop modelling studies. The effect of these two factors on 594 

potential rice yield was much higher than the one of time frame and crop model in almost all cases. 595 

While the site effect was also found by Olesen et al. (2007) as one of the main factors explaining 596 

winter wheat yields, other studies demonstrated a high effect of the crop model on future rice yield 597 
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quantification (e.g. Aggarwall and Mall, 2002; Matthews et al., 2003), which was however not 598 

found in our study. Olesen et al. (2007) also highlighted the magnitude of the effect of the method 599 

for scenario application, i.e., the adjustment or not of future climate series to past observed climate 600 

series. However, all these studies used different factors to simulate future yields with climate 601 

change (e.g., GCM, RCP, crop model, etc.), together with different modalities for these factors, 602 

making between-studies comparison not straightforward.  603 

 604 

4.1.2. Effects of adaptation strategies 605 

The consideration of adaptation strategies in climate change impact studies is mandatory, as it is 606 

proved that societies, organizations and individuals will autonomously react to in response to 607 

climatic changes in the same way they have adjusted their behavior in the past (Adger et al., 2005). 608 

This study reports that without adaptation, future yields are expected to be more variable, mainly 609 

due to the higher frequency of extreme weather events (Olesen and Bindi, 2002; Xiong et al., 2009). 610 

In our study, crop-model simulations with adaptation strategies led to higher yields and yield 611 

variability, as compared to no adaptation and to baseline yields. A large increase in rice yields 612 

subsequent to variety adaptation was already shown in previous studies, e.g., in Matthews et al. 613 

(1995) with variety change towards no spikelet sterility; Krishnan et al. (2007) with variety 614 

displaying higher spikelet temperature tolerance. This last study also highlighted higher yield 615 

variability according to GCM with variety adaptation as compared to no adaptation. In our study, 616 

we showed that the variety adaptation was more efficient than the sowing one. Such results are in 617 

line with previous studies on rice and maize (e.g., Krishnan et al., 2007; Tingem et al., 209; Rotter 618 

et al., 2015). There is a wide consensus on the need to evaluate the potential benefits of the 619 

implementation of adaptation strategies even in current climate, in order not to overestimate their 620 

impact in future conditions (Lobell, 2014). We performed this test by simulating the performances 621 

of the new varieties in the period 1991-2010 while keeping the original sowing date (May, 1st). We 622 

discovered that using adapted varieties in current climate lead to a major problem, which is the high 623 
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number of cropping seasons in which physiological maturity is not reached. The application of the 624 

new parameter sets with the thermal requirements for adapted japonica medium varieties leads to 625 

the completion of the crop cycle in only 47.5% and 57.5% of the years in current conditions in 626 

Camargue and Lomellina, respectively (average of the two models). This situation is even worse 627 

with the new japonica late varieties, as the number of years in which physiological maturity is 628 

reached is even less (2 years out of 20) in both study areas. We can thus conclude that the adoption 629 

of longer cycle varieties is beneficial in light of the rising temperature associated to climate change 630 

projections. Regarding the sowing date anticipation per se, thus adaptation was not tested in current 631 

conditions. Indeed, we derived future sowing dates basing on current climate, considering the 632 

number of times when the weekly average of average temperature is above 10°C from March 1st to 633 

May 1st. Therefore, applying this rule in current climate leads to the sowing date already used to 634 

perform baseline simulations. 635 

 636 

4.2. Methodological choices  637 

The reported ranges of variation between future and current yields strongly vary in literature and are 638 

affected by many sources of uncertainty, including the choice of the crop models, the climate 639 

change scenario, the study period and the study region (Hawkins and Sutton, 2009). In their review 640 

on the impacts of climate change on rice production, Matthews and Wassman (2003) reported that, 641 

according to the results of the IRRI/EPA project, future yield levels in Asia would range from -642 

12.8% to +6.5% depending on the considered combination of the rice model and of the GCM. 643 

These findings support the adoption of a multi-crop model and multi-scenario approach to quantify 644 

the uncertainty associated to the assessment of the climate change impacts on crop production. In 645 

this context, our methodological choices focused on the adoption of two crop models, which were 646 

already used to reproduce rice growth and development in the study areas, and on the use of the two 647 

extreme IPCC-RCP scenarios (IPCC's Fifth Assessment Report), as projected by four GCM in the 648 

short and long terms, using the methodology developed by Cappelli et al. (2015).  649 
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The choice of using four GCMs out of the 39 available in the study area (Zubler et al., 2016) could 650 

represent a limit of this study, because we do not explore the whole range of variability in climate 651 

predictions. However, the extensive review performed by Burke et al. (2012), including nearly 200 652 

published papers in peer-reviewed and working paper series, reports three as the median number of 653 

GCMs applied to take into account the uncertainty in climate predictions on agricultural impact 654 

studies. Even if the GCMs’ selection in our study was based on a random criterion, Zubler et al. 655 

(2016) demonstrated via hierarchical cluster analysis that the four GCMs we chose fall in separate 656 

clusters based on their temperature and precipitation outputs (corresponding to our study area), with 657 

GISS and NorESM presenting the largest dissimilarity. Moreover, Burke et al. (2012) showed that 658 

the GCMs developed by the Hadley Centre (HADgem) is the most used in available literature (more 659 

than 50% of the papers), and we included it in our analysis. Therefore, our sampling of available 660 

GCMs to only four well-separated GCMs can be considered a reasonable choice, although we do 661 

not explore the whole range of available variability. 662 

The biophysical adaptation strategies developed here – the anticipation of the sowing dates and the 663 

adoption of varieties with a longer cycle – are commonly tested in crop simulation studies aiming at 664 

assessing climate change impacts on crop production (e.g., Deryng et al., 2011; Wang et al., 2012). 665 

They can be considered autonomous adaptations (Olesen et al., 2011), as they represent short-term 666 

adjustments that are commonly implemented by farmers. We based our adaptation strategies on 667 

specific rules derived from the future climate projections used in our study, rather than applying a 668 

fixed number of days to shift sowing dates (e.g., Moradi et al., 2013) or a fixed increase of thermal 669 

time requirements to develop adapted varieties (e.g., Tingem and Rivington, 2009; Tao and Zhang, 670 

2010). Our rationale was conservative, because we defined the future sowing dates basing on the 671 

relationships between the sowing period adopted by rice growers in the study areas and the current 672 

weather conditions. This led to a biophysical meaningful and literature derived rule, which was then 673 

applied to determine the new sowing dates to initialize crop model simulations in the future climate. 674 

The same logic was followed to plausibly determine the possible adapted varieties to be included in 675 
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the simulation experiment. We started from expert knowledge of rice cropping systems in the two 676 

study areas to derive a standard duration of the crop cycle for medium and late varieties (140 and 677 

160 days, respectively). The modification of model parameters to simulate adapted varieties 678 

involved only the thermal requirements to reach flowering and maturity stage, which were set to 679 

1180 and 453 growing degree days (GDD, °C d-1) for WARM, and to 1170 and 610 GDD for 680 

STICS. The coherence of these new values with available genetic material is proved by the very 681 

similar values calibrated by Confalonieri et al. (2009) for Italian indica varieties with the WOFOST 682 

model (1170 °C d-1 from emergence to anthesis and 370 °C d-1 from anthesis to maturity). Similar 683 

thermal time requirements were also set by Li et al. (2015) for the crop models SAMARA 684 

(Dingkuhn et al., 2011) and STICS, which were calibrated using reference data collected on indica 685 

varieties in four sentinel datasets in Asian countries. The ratio between the duration of the 686 

emergence-flowering and flowering-maturity periods in our new varieties was kept as in current 687 

varieties, and it was on average 38% for WARM and 34% for STICS. This is also consistent with 688 

the above-cited studies, in which it ranged between 34% and 46%. Then, the varieties designed in 689 

this study toward the use in the near- and medium future could already be available for such 690 

adaptation, making it possible to improve future rice yields in the Mediterranean areas. 691 

 692 

Conclusions 693 

The variability of global rice production in a changing climate is a hot and controversial topic, and 694 

it still needs further investigation because of its prominence as a staple food in Asian top producing 695 

countries. Despite the huge number of crop modelling studies dealing with the impact of global 696 

warming on rice in tropical climates, the future trends of rice productions in Mediterranean areas is 697 

scarcely investigated and even more uncertain. Our findings indicate that the European rice sector 698 

has the potential to enhance current production levels, taking advantage of the increase of ambient 699 

CO2 concentration and air temperature during the growing season associated with climate change 700 

conditions. The anticipation of rice sowing dates and even more the adoption of varieties with a 701 



 32 

longer crop cycle then represent effective adaptation strategies to increase rice yields and in turn 702 

farmers’ income in the considered European rice areas in the short and long term.  703 
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