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WKB solutions of difference equations and reconstruction by the topological recursion

The purpose of this article is to analyze the connection between Eynard-Orantin topological recursion and formal WKB solutions of a -difference equation:

In particular, we extend the notion of determinantal formulas and topological type property proposed for formal WKB solutions of -differential systems to this setting. We apply our results to a specific -difference system associated to the quantum curve of the Gromov-Witten invariants of P 1 for which we are able to prove that the correlation functions are reconstructed from the Eynard-Orantin differentials computed from the topological recursion applied to the spectral curve y = cosh -1 x 2 . Finally, identifying the large x expansion of the correlation functions, proves a recent conjecture made by B. Dubrovin and D. Yang regarding a new generating series for Gromov-Witten invariants of P 1 .

Introduction 1.General context

In the last decade, many interesting relations have been proved between integrable systems and Eynard-Orantin topological recursion. In particular, in a series of papers [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF], the authors proved that starting from a linear differential system of the form:

d dx Ψ(x; ) = D(x; )Ψ(x; ) with D(x; ) = ∞ k=0 D k (x) k ∈ M d (C(x)) (1-1)
where Ψ(x; ) are some formal WKB solutions, we may define, using appropriate determinantal formulas, correlation functions W n (x 1 , . . . , x n ) that satisfy the same set of loop equations as those arising in the theory of the topological recursion and Hermitian random matrix models. Moreover, under some additional conditions on the differential system known as the topological type property, it was proved that these correlation functions identify with the corresponding Eynard-Orantin differentials ω (g) n (x 1 , . . . , x n ) computed from the application of the topological recursion to the classical spectral curve defined by E(x, y) {textdef = det(yI d -D 0 (x)) = 0. For a given differential system, proving the topological type property remains challenging, and only a few specific differential systems have been shown to satisfy it so far. For example, this strategy has been successfully used for Lax pairs associated to the six Painlevé equations [START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF]. In particular, in the Painlevé context, the existence of an additional time differential system is crucial to prove the topological type property. Thus, the topological type property seems deeply related with some kind of integrability conditions. Recently, the general setup has been extended to general connections on Lie algebras [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF] and the reconstruction of formal WKB solutions via the topological recursion has been proved for a wide class of rational matrices D(x; ) in [START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF]. The connection between formal WKB expansion and Eynard-Orantin topological recursion is particularly interesting for the issue of "quantizing" the classical spectral curve. Indeed, under certain conditions, we expect that if we define the functions (F g,n ) g≥0,n≥1 :

F g,n (z 1 , . . . , z n ) = z 1 . . . zn ω (g) n (z 1 , . . . , z n ) (1-2)
then the formal wave function:

ψ(x; ) = exp   1 F 0,1 (x) + 1 2! F 0,2 (x, x) + 2g-2+n>0 2g-2+n
n! F g,n (x, . . . , x)  

(1-3) satisfy a "quantized" version of the classical spectral curve: E x, d dx ψ(x; ) = 0 (1-4)

Note that the quantization procedure requires to decide where to insert the operators k d k dx k since they do not commute with functions of x, and also to choose the lower bounds in (1-2) correctly (See [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF] for the P 1 case and [START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF] for general results). Details about relations between quantum curves and the topological recursion can be found in the review [START_REF] Norbury | Quantum curves and topological recursion[END_REF] or in [START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF] that covers a wide range of spectral curves. Since E(x, y) is a monic polynomial of degree d in the variable y, the corresponding quantum curve [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] is an ordinary linear differential equation of degree d. Thus, ψ(x; ) may be seen as an entry of a d × d linear differential system of type (1-1) for which we expect that the topological type property holds. In other words, we have the following picture:

In the previous picture, the two dashed arrows represent the two steps for which the correspondence is not perfectly understood. For example, it is not known at the moment if the topological type property is a necessary condition or if it is only a sufficient condition to obtain the identification between the correlation functions and Eynard-Orantin differentials. Moreover, for a given linear scalar differential equation, there exist many compatible matrix differential systems and it is unclear if only one of them is compatible with the global picture presented above. The main purpose of this article is to prove that a similar picture holds in the case of Gromov-Witten invariants of P 1 for which the starting point is no longer a linear differential equation (1-4) but rather a linear -difference equation:

E x, exp d dx ψ(x; ) = 0 , E(x, y) polynomial in y (1-5)
Consequently, we would like to extend the previous picture in the following way:

More precisely, the paper focuses on the simpler case of a degree twodifference system of the form: where:

L(x; ) = ∞ k=0 L k (x) k ∈ GL 2 (C(x)) (1-7)
In this article, we will use the notation "; " to stress that the quantity has to be understood as a formal WKB (or Taylor expansion is the term in e 1 is vanishing) in . In this setting, the operator δ (which does not obey Leibniz rule and thus is not a derivation operator) may be seen as a -difference operator:

δ f (x; ) = ∞ k=0 k k! d k dx k f (x; ) = f (x + ; ) (1-8)
Note in particular that the setting (1-6) may be seen as the exponentiated version of a standard linear differential system and therefore results presented in this article are likely to extend to general connections on some Lie groups G (in the case of P 1 , the Lie group is G = SL 2 (C)). Therefore, the article may also be seen as a first step to generalize results of [START_REF] Belliard | Loop equations from differential systems[END_REF] to problems directly defined on the Lie group rather than on the associated Lie algebra.

The main steps and results of the article are:

• In section 2.1, we start from the -difference equation satisfied by the wave function arising in the enumeration of Gromov-Witten invariants of P 1 (proved in [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF]) to build an adapted 2 × 2 -difference system. Though this step may appear straightforward, the linear system has to be selected properly in order to satisfy the parity property of the topological type property.

• In section 2.2, for a general 2×2 -difference system δ Ψ(x; ) = L(x; )Ψ(x; ), we provide the explicit relations with its associated compatible differential system d dx Ψ(x; ) = D(x; )Ψ(x; ). The connection is made in both ways, i.e. we explain how to derive L(x; ) from D(x; ) and vice versa how to obtain D(x; ) from L(x; ). The formulas are applied to the case of P 1 in section 2.5.

• In section 3, we remind the definition of the matrix M (x; ) used in the definition of the determinantal formulas. In particular, we show how the matrix M (x; ) may be constructed directly from the matrix L(x; ). Explicit formulas are provided for the leading order M 0 (x) as well as a recursion to get all higher orders of the -expansion of M (x; ). We finally apply these formulas in the case of P 1 and obtain a control over the singularities of the correlation functions in section 2.5.

• In section 4, we remind the definitions of determinantal formulas (in the case of 2 × 2 differential systems) and of the topological type property. We prove that the latter property is satisfied in the case of P 1 in section 4.3.

• In section 5, we compare the matrix M (x; ) defined in section 3 with the conjecture proposed by Dubrovin and Yang in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF]. Both matrices are shown to be identical and thus we obtain a proof of their conjecture.

Known results about Gromov-Witten invariants of P 1

In this section, we briefly review the known results about Gromov-Witten invariants of P 1 and present the conjecture of Dubrovin and Yang that we will prove in this article.

Quantum curve associated to Gromov-Witten invariants of P 1

Let M g,n (P 1 , d) denote the moduli space of stable maps of degree d from a npointed genus g curve to P 1 and define the descendant Gromov-Witten invariants of P 1 by:

n i=1 τ b i (α i ) d g,n = [Mg,n(P 1 ,d)] vir n i=1 ψ b i i ev * i (α) i (1-9)
where M g,n (P 1 , d) vir is the virtual fundamental class of the moduli space as defined in [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF]. Using a formal parameter , we can regroup the Gromov-Witten invariants in a generating series:

τ k 1 (ω) . . . τ kn (ω) = 2g-2+2d=k 1 +•••+kn 2g-2+n τ k 1 (ω) . . . τ kn (ω) d g,n (1-10) 
The main result of [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF] proves that if we define the following formal series expansions in 1 x :

S 0 (x) = x -x log x + ∞ i=1 - (2d -2)!τ 2d-2 (ω) x 2d-1 d 0,1 S 1 (x) = - 1 2 log x + 1 2 ∞ d=0 - τ 0 (1) 2 - ∞ b=0 b!τ b (ω) x b+1 2 d 0,2 F g,n (x 1 , . . . , x n ) = n i=1 - τ 0 (1) 2 - ∞ b=0 b!τ b (ω) x b+1 i d g,n , for 2g -2 + n > 0 (1-11)
then the formal WKB wave function:

ψ(x; ) = exp   1 S 0 (x) + S 1 (x) + 2g-2+n>0 2g-2+n n! F g,n (x, . . . , x)   (1-12)
satisfies the -difference equation:

exp d dx + exp - d dx -x ψ(x, ) = 0 (1-13)
where the operator exp d dx is defined by:

δ def = exp d dx def = ∞ k=0 k k! d k dx k (1-14)
Moreover, the functions (F g,n (x 1 , . . . , x n )) g≥0,n≥1,2g+2-n>0 identify with the Eynard-

Orantin differentials ω (g)

n computed from the application of the topological recursion [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] on the genus 0 classical spectral curve:

∀ z ∈ C : x(z) = z + 1 z , y(z) = ln(z) (i.e. y(x) = cosh -1 x 2 ) (1-15)
via the relations:

F g,n (z 1 , . . . , z n ) = z 1 0 . . . zn 0 ω (g) n (z 1 , . . . , z n ) (1-16)
In other words, the Eynard-Orantin differentials are related to the Gromov-Witten invariants of P 1 by (see equation 2.9 of [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF]):

ω (g) n (x 1 , . . . , x n ) = k 1 ,...,kn≥0 (k 1 + 1)! . . . (k n + 1)! x k 1 +2 1 . . . x kn+2 n τ k 1 (ω) . . . τ kn (ω) d g,n dx 1 . . . dx n (1-17)
Remark 1.1 Note that the operator exp d dx formally acts on functions via the Taylor formula:

exp d dx f (x) = ∞ k=0 f (k) (x) k! k = f (x + ) (1-18)
Hence the "quantum curve" (1-13) is often seen as a -difference equation:

ψ(x + ) + ψ(x -) -xψ(x) = 0 (1-19)

Dubrovin and Yang's conjecture

Recently, B. Dubrovin and D. Yang conjectured in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] that the functions:

C n (x 1 , . . . , x n ; ) = k 1 ,...,kn≥0 (k 1 + 1)! . . . (k n + 1)! x k 1 +2 1 . . . x kn+2 n τ k 1 (ω) . . . τ kn (ω) d = ∞ g=0 n-2-2g k 1 ,...,kn≥0 (k 1 + 1)! . . . (k n + 1)! x k 1 +2 1 . . . x kn+2 n τ k 1 (ω) . . . τ kn (ω) d g,n = ∞ g=0 n-2-2g ω (g) n (x 1 , . . . , x n ) dx 1 . . . dx n
(where ω (g) n are the Eynard-Orantin differentials associated to the classical spectral curve [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF])

(1-20) may be formally reconstructed for n ≥ 2 by:

C 2 (x 1 , x 2 ; ) = Tr M (x 1 ; ) M (x 2 ; ) -1 (x 1 -x 2 ) 2 C n (x 1 , . . . , x n ; ) = (-1) n+1 n σ∈Sn Tr M (x σ(1) ; ) . . . M (x σ(n) ; ) (x σ(1) -x σ(2) ) . . . (x σ(n-1) -x σ(n) )(x σ(n) -x σ(1) ) (1-21) 
where M (x; ) is a 2 × 2 matrix given by:

M (x; ) = 1 0 0 0 + α(x; ) β(x; ) γ(x; ) -α(x; ) (1-22) with α(x; ) = ∞ j=0 1 4 j x 2j+2 j i=0 2(j-i) 1 i!(i + 1)! i l=0 (-1) l (2i + 1 -2l) 2j+1 2i + 1 l γ(x; ) = Q(x; ) + P (x; ) β(x; ) = Q(x; ) -P (x; ) P (x; ) = ∞ j=0 1 4 j x 2j+1 j i=0 2(j-i) 1 (i!) 2 i l=0 (-1) l (2i + 1 -2l) 2j 2i l - 2i l -1 Q(x; ) = 1 2 ∞ j=0 1 4 j x 2j+2 j i=0 2(j-i)+1 2i + 1 (i!) 2 i l=0 (-1) l (2i + 1 -2l) 2j 2i l - 2i l -1 (1-23)
Remark 1.2 Note that we have set the parameters (λ, ) used in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] to (x, ) in the previous formulas in order to match with the notations of [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF] and [START_REF] Bergère | Determinantal formulae and loop equations[END_REF]. Moreover, we also followed the convention of [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF] and included a power n in the definition of τ k 1 (ω) . . . τ kn (ω) d . We also slightly modified the conjecture and added a factor (-1) n in the conjectured formula of C n (x 1 , . . . , x n ) in order to match with the formalism of determinantal formulas of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF]. Consequently, we also modified the sign of Q(x; ).

We observe that the form of the conjecture is in perfect agreement with the determinantal formulas presented in [START_REF] Bergère | Determinantal formulae and loop equations[END_REF] (that were extended later in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] for d × d systems). Consequently, as explained above, the strategy of this article to prove the conjecture is the following:

1. Find a suitable 2 × 2 differential systems d dx Ψ(x; ) = D(x; )Ψ(x; ) adapted to the problem.

2. Show that this system satisfies the topological type property. This implies that the functions C n (x 1 , . . . , x n ) are indeed reconstructed by determinantal formulas similar to (1-21) but with a 2 × 2 matrix M (x; ) defined from the differential system.

3. Show that the matrix M (x; ) is the same as the one proposed by Dubrovin and Yang.

WKB solutions of difference/differential systems

In this section, we first show how to build a 2 × 2 -difference system adapted to the formal WKB solution of the quantum curve [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dumitrescu | The spectral curve of the Eynard-Orantin recursion via the Laplace transform[END_REF][START_REF] Norbury | Quantum curves and topological recursion[END_REF][START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF] arising in the enumeration of Gromov-Witten invariants of P 1 . Then, we propose to establish the connection between a general 2 × 2 -difference system and its associated compatible 2 × 2 -differential system. Finally, we apply the formulas to the P 1 case.

2.1 WKB solutions and matrix L(x; ): the case of P 1

Let us start from the quantum spectral curve (1-13):

(δ + δ --x) f (x) = 0 ⇔ f (x + ) + f (x -) -xf (x) = 0 (2-1)
where we have noted

δ the operator δ = ∞ k=0 k k! d k dx k .
From the main theorem of [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF], we know that ψ(x; ) (given by equation [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF]) is a formal WKB solution of equation (2-1). Moreover, since the quantum curve (2-1) is invariant under the change → -, we immediately get that

φ(x; ) = exp - 1 S 0 (x) + S 1 (x) + 2g-2+n>0 (-1) n 2g-2+n n! F g,n (x, . . . , x)
(2-2) is also another linearly independent WKB solution of (2-1). Eventually, it is straightforward to observe that the matrix: Ψ(x; ) = ψ(x + 2 ; ) φ(x + 2 ; ) ψ(x -2 ; ) φ(x -2 ; ) [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF] where ψ(x ± 2 ) and φ(x ± 2 ) are to be understood as formal -WKB expansions:

ψ x + 2 ; = ∞ k=0 k 2 k k! d k dx k ψ(x; ) = exp 1 S 0 (x) ∞ k=1 Ŝk,+ (x) k ψ x - 2 ; = ∞ k=0 (-1) k k 2 k k! d k dx k ψ(x; ) = exp 1 S 0 (x) ∞ k=1 Ŝk,-(x) k φ x - 2 ; = ∞ k=0 (-1) k k 2 k k! d k dx k φ(x; ) = exp - 1 S 0 (x) ∞ k=1 Sk,-(x) k φ x + 2 ; = ∞ k=0 k 2 k k! d k dx k φ(x; ) = exp - 1 S 0 (x) ∞ k=1 Sk,+ (x) k (2-4)
is a formal solution of the difference system:

δ Ψ(x; ) = Ψ(x+ ) = L(x; )Ψ(x; ) with L(x; ) = x + 2 -1 1 0 (2-5)
Note in particular that the matrix L(x; ) does depend on the parameter and that det L(x; ) = 1.

Remark 2.1 Since the space of solutions of (2-1) is a vector space of dimension 2, one may choose any linear combinations of ψ(x; ) and φ(x; ) as building blocks of the matrix Ψ(x; ). This is equivalent to perform a transformation of the form Ψ(x; ) → Ψ(x; )C with a constant matrix C ∈ GL 2 (C[ ]). However, we chose in (2-3) very specific solutions of (2-1) since ψ(x; ) and φ(x; ) involve only one of the exponential terms exp ± S 0 (x) whereas a generic linear combination would involve both in each entry of Ψ(x; ). Note that even if we impose the previous condition, the functions ψ(x; ) and φ(x; ) are not uniquely determined since one could transform

(ψ(x; )), φ(x; )) to (c 1 (ψ(x; )), c 2 φ(x; )) with (c 1 , c 2 ) ∈ C[ ] 2
. This is equivalent to act on Ψ(x; ) by Ψ(x; ) → Ψ(x; )diag(c 1 , c 2 ). As we will see below, all interesting quantities (D(x; ), M (x; ), correlation functions, etc.) do not depend on the normalization of the matrix Ψ(x; ).

Remark 2.2 Another natural choice of combinations of wave functions ψ(x; ) and φ(x; ) may have been:

Ψ 0 (x; ) = ψ(x; ) φ(x; ) ψ(x -; ) φ(x -; )
or more generally for any λ ∈ C:

Ψ λ (x; ) = ψ(x + λ ; ) φ(x + λ ; ) ψ(x + (λ -1) ; ) φ(x + (λ -1) ; )
In particular, this choice is equivalent to a -difference system given by:

L λ (x; ) = x + λ -1 1 0
However, as we will see in section 4.3.3, only λ = 1 2 provides a system satisfying the parity property required for the topological type property. In other words, it is the only choice for which the determinantal formulas give rise to correlation functions W n (x 1 , . . . , x n ) that may only involve even (resp. odd) powers of when n is even (resp. odd). Since this property is absolutely necessary to match with the Eynard-Orantin differentials (that always satisfy this property), then the only choice for Ψ(x; ) is precisely (2-3).

Generalization to arbitrary 2 × 2 difference systems

The previous situation and most of the forthcoming results may be extended to some general 2 × 2 -difference systems. Indeed, we first observe that the -difference system:

δ Ψ(x; ) = L(x; )Ψ(x; ) (2-6) 
with L(x; ) a formal series in is equivalent to say that the entries of Ψ(x; ) satisfy the seculiar equations:

0 = L 1,2 (x -)Ψ 1,1 (x + ; ) + L 1,2 (x; )(det L(x; ))Ψ 1,1 (x -; ) -(L 1,1 (x; )L 1,2 (x -; ) + L 1,2 (x; )L 2,2 (x -; )) Ψ 1,1 (x; ) 0 = L 1,2 (x -)Ψ 1,2 (x + ; ) + L 1,2 (x; )(det L(x; ))Ψ 1,2 (x -; ) -(L 1,1 (x; )L 1,2 (x -; ) + L 1,2 (x; )L 2,2 (x -; )) Ψ 1,2 (x; ) Ψ 2,1 (x; ) = 1 L 1,2 (x; ) [Ψ 1,1 (x + ; ) -L 1,1 (x; )Ψ 1,1 (x; )] Ψ 2,2 (x; ) = 1 L 1,2 (x; ) [Ψ 1,2 (x + ; ) -L 1,1 (x; )Ψ 1,2 (x; )] (2-7)
Therefore, if we define two independent WKB solutions (ψ(x; ), φ(x; ) of the -difference equation:

0 = L 1,2 (x -; )δ + L 1,2 (x; )(det L(x; ))δ - +L 1,1 (x; )L 1,2 (x -; ) + L 1,2 (x; )L 2,2 (x -; ) y = 0 (2-8)
with:

ψ(x; ) = exp 1 R 0 (x) + ∞ k=1 R k (x) k φ(x; ) = exp - 1 R 0 (x) + ∞ k=1 R k (x) k (2-9)
then, for any λ ∈ C, the matrix:

Ψ λ (x; ) = ψ(x + λ ; ) φ(x + λ ; ) ψ(x+(λ+1) ; )-L1,1(x+λ ; )ψ(x+λ ; ) L1,2(x+λ ; ) φ(x+(λ+1) ; )-L1,1(x+λ ; )φ(x+λ ; ) L1,2(x+λ ; ) (2-10)
satisfies:

δ Ψ λ (x; ) = L(x + λ ; )Ψ λ (x; ) def = L λ (x; )Ψ λ (x; ) (2-11)
Note that so far the choice of λ ∈ C is arbitrary. However, ss in the P 1 case, λ may be used to impose some extra conditions on Ψ λ (x; ), for example regarding the change ↔ -.

Definition 2.1 ( -difference system associated to a matrix L(x; )) Let L(x; ) ∈ C(x)[ ] be a given matrix with det L(x; ) = 1. Let ψ(x; ) and φ(x; ) be two linearly independent formal WKB solutions of thedifference equation:

0 = L 1,2 (x -; )δ + L 1,2 (x; )δ - +L 1,1 (x; )L 1,2 (x -; ) + L 1,2 (x; )L 2,2 (x -; ) y
Then, for any λ ∈ C, we define the formal wave matrix: that formally satisfies the 2 × 2 -difference system:

Ψ λ (x; ) = ψ(x + λ ; ) φ(x + λ ; ) ψ(x+ ( 
δ Ψ λ (x; ) = L(x + λ ; )Ψ λ (x; ) def = L λ (x; )Ψ λ (x; )
Though the article focuses on the case of the specific system (2-5), results of sections 2.3 and 2.4, are sufficiently general to apply for any system defined in 2.1. Eventually, we note that the -difference system:

δ Ψ(x; ) = L(x; )Ψ(x; ) (2-13)
may be seen as a special case of a linear differential system ∇ Ψ = 0 satisfied by a flat section Ψ in a principal G-bundle over a complex curve equipped with a connection ∇ . In our setting the Lie group G is SL 2 (C) (since det L(x; ) = 1) and the connection ∇ is the operator is δ = exp d d . In particular, in contrast with [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF], the operator δ = exp( d dx ) directly comes in its exponentiated form while in [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF], the starting point was the operator d dx defined on the corresponding Lie algebra g (in our case g = sl 2 (C)). In fact, a by-product of this article is also to show, on a simple example, that the reconstruction of the determinantal formulas via the topological recursion developed in [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] in the Lie algebra setting may be adapted to similar problems defined directly on a Lie group.

Properties of det Ψ(x; )

Let us first observe that at the algebraic level, the operator δ does not act as a derivation operator. Indeed, it satisfies the following algebraic rules: for any analytic function f and g and any complex number γ:

δ (γ) = γ δ (f g)(x) = δ (f )(x)δ (g)(x) (⇔ (f g)(x + ) = f (x + )g(x + )) δ (γf + g)(x) = γδ (f )(x) + δ (g)(x) (⇔ (γf + g)(x + ) = γf (x + ) + g(x + ))
Therefore, from the fact that det L(x; ) = 1, we obtain by denoting s(x; ) = det Ψ(x; ) that:

s(x + ; ) = s(x; ) ⇔ ∞ j=1 ∞ i=0 1 j! d j dx j s i (x) i+j = 0 (2-14)
By definition, s(x; ) has to be understood as a formal WKB expansion in . However, from the definition of the matrix Ψ(x; ), it is obvious that the determinant does not contain term prorportional to e

1 . Thus, it is simply a formal Taylor expansion in :

s(x; ) = ∞ k=0 s k (x) k (2-15)
In particular, identifying the coefficient of order 1 in (2-14) implies that s 0 (x) = 0, i.e. that s 0 (x) does not depend on x. For k ≥ 1, identifying the coefficient in k+1 in [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF] shows that s k (x) equals a linear combination of derivatives of the (s i ) i≤k-1 . Therefore a trivial induction shows that:

∀ k ≥ 0 : s k (x) = 0 (2-16)
Consequently we obtain that det Ψ(x; ) does not depend on x. Since ψ(x; ) and φ(x; ) are determined up to a multiplicative constant (Cf. remark 2.1), we may normalize them so that det Ψ(x; ) = 1.

Proposition 2.1 We may choose the solutions ψ(x; ) and φ(x; ) so that det Ψ(x; ) = 1.

From now on, we will always assume that the solutions ψ(x; ) and φ(x; ) have been chosen so that det Ψ(x; ) = 1.

Remark 2.3 Note that the determinant condition and the condition of having only one diverging (when → 0) exponential term in each entry of Ψ(x; ) do not uniquely determine the matrix Ψ(x; ) yet (or equivalently the solutions ψ(x; ) and φ(x; )). Indeed, normalizing the determinant uses only one degree of freedom in the transformations Ψ(x; ) → Ψ(x; )diag(c 1 , c 2 ). Therefore, one could impose an additional normalizing condition on Ψ(x; ) (or equivalently on ψ(x; ) or φ(x; )) in order to obtain uniqueness of the Ψ(x; ) matrix. For example, we may impose that ψ(x; ) take a specific value at a given point x 0 ∈ C. However, as mentioned earlier these normalization issues are irrelevant for our purpose since all interesting quantities (D(x; ), M (x; ), correlation functions, etc.) defined below do not depend on these normalizations. Hence for simplicity, we choose not to impose any additional artificial normalizing condition.

The corresponding differential operator D(x; )

As explained earlier, the main difference with the setting of [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] is that the -difference system (2-5) is defined on the Lie group SL 2 (C) with an exponential operator δ = exp( d dx ) rather than on the corresponding Lie algebra sl 2 (C). At the level of representation matrices L(x; ), we would like to find a 2 × 2 matrix D(x; ) ∈ sl 2 (C) such that:

d dx Ψ(x; ) = D(x; )Ψ(x; ) ⇔ δ Ψ(x; ) = Ψ(x + ) = L(x; )Ψ(x; ) (2-17) with D(x; ) = ∞ k=0 D k (x) k (i.
e. a formal series expansion in ). Then, we observe that by definition:

D(x; ) = d dx Ψ(x; ) Ψ(x; ) -1 (2-18)
so that:

Tr D(x; ) = 1 det Ψ(x; ) d dx (det Ψ(x; )) = d dx (ln det Ψ(x; )) = 0
(2-19) since det(Ψ(x; )) does not depend on x (proposition 2.1).

General connection between

L 0 (x) and D 0 (x)
The compatibility of the two systems [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dumitrescu | The spectral curve of the Eynard-Orantin recursion via the Laplace transform[END_REF] and the fact that δ , d dx = 0 is equivalent to say that:

0 = L (x; ) + L(x; )D(x; ) -(δ D(x; ))L(x; ) δ D(x; ) = ∞ i=0 i j=0 d j dx j D (i-j) (x; ) j! i (2-20)
Projecting at 0 the last system of equations provides:

∞ k=0 d k dx k D 0 (x) k! = exp(D 0 (x)) = L 0 (x) (2-21)
Note that if we are given D(x; ), we may always reconstruct L 0 (x) uniquely. On the contrary, when we are given L(x; ), the reconstruction of D 0 (x) requires to take the logarithm of the matrix L 0 that may be ambiguous. From equation [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dumitrescu | The spectral curve of the Eynard-Orantin recursion via the Laplace transform[END_REF][START_REF] Norbury | Quantum curves and topological recursion[END_REF][START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF], we must have D(x; ) ∈ sl 2 (C), so that we must have Tr(D 0 (x)) = 0. Note also that when L(x; ) ∈ SL 2 (C) and D(x; ) ∈ sl 2 (C), we always have:

det(yI 2 -D 0 (x)) = y 2 -cosh -1 Tr L 0 (x) 2 = y 2 -ln Tr L 0 (x) 2 + 1 2 (Tr L 0 (x)) 2 -4 (2-22)
In particular, in the setting of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], the characteristic polynomial of D 0 provides the classical spectral curve and we recover that in the P 1 case, the classical spectral curve is given by [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF]. Note that the correspondence between L 0 and D 0 is not affected by the choice of λ in the general setting of definition 2.1.

General reconstruction of L(x;

) from D(x; ) Reconstructing L(x; ) from the knowledge of D(x; ) can be done by induction and the knowledge that L 0 (x) = exp(D 0 (x)). Indeed we have:

L(x; )Ψ(x; ) = ∞ k=0 k k! d k dx k Ψ(x; ) (2-23)
Let us define the sequence of functions (A k (x; )) k≥0 by:

A 0 (x; ) = 1 A 1 (x; ) = D(x; ) A k (x; ) = k-1 i=0 k -1 i d k-1-i dx k-1-i D(x; ) A i (x; ) k-1-i , ∀ k ≥ 2 (2-24)
Then, from the chain rule, we have for all k ≥ 0:

k d k dx k Ψ(x; ) = A k (x; )Ψ(x; ) (2-25)
Thus, we find:

L(x; ) = ∞ k=0 1 k! A k (x; ) (2-26)
Note that the functions (A k (x; )) k≥0 are (non-commutative) polynomials of (D j (x)) j≤k and their derivatives.

General reconstruction of D(x;

) from L(x; )

In this section, we propose to show how we can reconstruct the matrix D λ (x; ) from the knowledge of the matrix L(x + λ ; ) introduced in the general setting of definition 2.1. We first observe that similarly to [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dumitrescu | The spectral curve of the Eynard-Orantin recursion via the Laplace transform[END_REF][START_REF] Norbury | Quantum curves and topological recursion[END_REF][START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF] we have:

D λ (x; ) = d dx Ψ λ (x; ) Ψ λ (x; ) -1 (2-27)
so that:

Tr D λ (x; ) = 1 det Ψ λ (x; ) d dx (det Ψ λ (x; )) = d dx (ln det Ψ λ (x; )) = 0
(2-28) since the det(Ψ λ (x; )) does not depend on x (proposition 2.1). Then, we observe that the entry (1, 2) of (2-27) provides:

D λ (x; ) 1,2 = 1 det Ψ λ (x; ) ψ(x + λ ; )φ (x + λ ; ) -φ(x + λ ; )ψ (x + λ ; ) = 1 det Ψ λ (x; ) Wronskian(ψ(x + λ ; ), φ(x + λ ; )) def = 1 det Ψ(x; ) W λ (x; ) (2-29) Since d dx Ψ λ (x; ) = D λ (x; )Ψ λ (x;
) and Tr D λ (x; ) = 0, the evolution of the Wronskian is given by:

d dx W λ (x; ) = (Tr D λ (x; ))W λ (x; ) = 0 (2-30)
Hence, from (2-29) we end up with (remember that det Ψ λ (x; ) does not depend on x):

d dx D λ (x; ) 1,2 = 0 (2-31)
One has to be careful with the meaning of the previous equation. Indeed, since by definition we are interested only in formal series in , the previous equation does not mean that D(x+λ ; ) 1,2 = Cste, which would contradict the definition of D 0 (x + λ ) = D 0 (x) (whose exponential must be L 0 (x), hence dependent on x). In the context of formal series expansion in , equation (2-31) is equivalent to say that:

∀ k ≥ 1 : (D λ ) k (x) 1,2 is constant, i.e. ∃ d k ∈ C / (D λ ) k (x) 1,2 = d k (2-32)
Determining the other two entries of the matrices D λ ) k (x) can be done using the compatibility equation:

(D λ (x + ; )) L λ (x + ; ) = L λ (x ; ) + L λ (x; )D λ (x; ) (2-33)
Observing from (2-31) that we have δ D 1,2 (x + λ ; ) = 0 entries (1, 2) and (1, 1) of the previous relation gives:

((D λ ) 1,1 (x + ; ) + (D λ ) 1,1 (x; )) L 1,2 (x + λ ; ) = (L 1,1 (x + λ ; ) -L 2,2 (x + λ ; )) (D λ ) 1,2 (x; ) + L 1,2 (x + λ ; ) L 1,2 (x + λ ; )(D λ ) 2,1 (x; ) = L 1,1 (x + λ ; ) ((D λ ) 1,1 (x + ; ) -(D λ ) 1,1 (x; )) +L 2,1 (x + λ ; )(D λ ) 1,2 (x; ) -L 1,1 (x + λ ; )
Projecting at order k with k ≥ 1 provides:

2L 0 (x) 1,2 (D λ (x) k ) 1,1 = - i+j+m=k,m<k (L(x + λ ; ) i ) 1,2 1 j! d j dx j (D λ (x) m ) 1,1 - k j=1 (L(x + λ ) j ) 1,2 (D λ ) k-j (x) 1,1 + L (x + λ ) k-1 +D 0 (x) 1,2 ((L(x + λ ) k ) 1,1 -(L(x + λ ) k ) 2,2 ) + k j=1 d k-j ((L(x + λ ) j ) 1,1 -(L(x + λ ) j ) 2,2 ) L 0 (x) 1,2 (D λ (x) k ) 2,1 = - k j=1 (D λ ) k-j (x) 1,1 (L(x + λ ) j ) 1,2 + i+j+m=k,j≥1 (L(x + λ ) i ) 1,1 1 j! d j dx j (D λ ) m (x) 1,1 +D 0 (x) 1,2 (L(x + λ ) k ) 2,1 + k j=1 d k-j (L(x + λ ) j ) 2,1 -(L (x + λ ) k-1 ) 1,1 (2-34) 
Equations (2-34), as well as the knowledge of D 0 (x) and the fact that Tr D λ (x) = 0, allow to construct recursively the matrices ((D λ ) k (x)) k≥1 . In particular, note that we only need to divide by (L 0 (x)) 1,2 , so that it is relatively easy to track the possible singularities of the matrices ((D λ ) k (x)) k≥1 by induction.

Application to P 1

General formulas (2-34) simplify a lot in the case of the system (2-5). Indeed, from the specific expression of the matrix L(x; ) in this case, it is straightforward to observe that D 1,1

(x; ) = D(x+ ; ) 2,2 -(x+ 2 )D(x; ) 1,2 .
Hence, we end up with the following recursive relations:

(D 0 (x)) 2,1 = -(D 0 (x)) 1,2 (D 0 (x)) 2,2 = - x 2 (D 0 (x)) 1,2 (D 0 (x)) 1,1 = x 2 (D 0 (x)) 1,2 (D k (x)) 2,1 = -d k + (-1) k+1 d k dx k (D 0 (x)) 1,2 , ∀ k ≥ 1 (D k (x)) 2,2 = - x 2 d k - 1 2 k j=1 1 j! d j dx j (D k-j (x)) 2,2 , ∀ k ≥ 1 (D k (x)) 1,1 = x 2 d k - 1 2 k j=1 1 j! d j dx j (D k-j (x)) 1,1 , ∀ k ≥ 1 (2-35)
Eventually, the only remaining computation is to determine (D 0 (x)) 1,2 from the relation exp(D 0 (x)) = L 0 (x). We obtain the following theorem: Theorem 2.1 By induction (2-35), we construct all matrices (D k (x)) k≥0 so that the -differencr system δ Ψ(x; ) = L(x; )Ψ(x; ) with L(x; ) given by (2-5) is compatible with the differential system d dx Ψ(x; ) = D(x; )Ψ(x, ). Initialization is made by (2-21):

D 0 (x) =   -x -x 2 √ x 2 -4 ln x- √ x 2 -4 x+ √ x 2 -4   D 0 (z) def = D 0 (x(z)) = -z 2 +1 2(z 2 -1) ln(z 2 ) -z z 2 -1 ln(z 2 ) z z 2 -1 ln(z 2 ) z 2 +1 2(z 2 -1) ln(z 2 ) with x(z) = z + 1 z
In particular, we observe that z → D 0 (z) is regular at the branchpoints z = ±1 (or equivalently x → D 0 (x) is regular at x = ±2). By induction (2-35), we obtain that for all k ≥ 0: z → D k (z) may only have singularities at z = 0 or z = ∞.

Remark 2.4

The fact that the matrix D(x; ) is regular at the branchpoints may appear surprising since the functions (S k (z)) k≥0 appearing in the expansions of the wave functions ψ(x; ) and φ(x; ) have singularities at these points. Thus, it may appear as a surprise that the combinations appearing in D(x; ) are precisely those for which the singularities cancel. However, at the level of operators, this aspect appears quite natural. Indeed, at the level of operator, we formally have δ = exp( d dx ). Hence L(x; ) may be seen as the exponentiated counterpart of D(x; ).Equivalently, D(x; ) may be seen as the logarithmic version of L(x; ). In particular, this point of view is correct for L 0 (x) and D 0 (x). By induction ( (2-35) in our case) it seems legitimate that the next orders (D k (x)) k≥1 should have the same singularities as D 0 (x) (at least when the singularities of (L k (x)) k≥1 belong to those of L 0 (x)). However, for a given x ∈ C, defining ln L 0 (x) may not be possible. Indeed, the logarithm of a matrix is well-defined only if the matrix is invertible. Usually, in order to compute the logarithm, one diagonalizes the matrix and take the complex logarithm of the eigenvalues. Thus, two distinct problems may arise during the procedure:

• At some values x ∈ C, some eigenvalues may coincide in such a way that the matrix cannot be diagonalized. This may only happen at the branchpoints of the classical spectral curve. However, note that if the eigenvalues are non-zero, then the logarithm remains well-defined. In fact, theorem 2.1 shows that D 0 (x) and more generally all (D k (x)) k≥0 are perfectly well-defined and regular at these points.

• At some values x ∈ C, some eigenvalues may vanish, and thus the matrix is no longer invertible. In that case, the logarithm is ill-defined and we expect D(x; ) to be singular at those points. In our case, the eigenvalues of L 0 (x) are given by 1 2 -x ± √ x 2 -4 , i.e. 1 z or z in the z-variable. In other words, z = 0 and z = ∞ (i.e. x = ∞) are the values for which D 0 (x) is likely to be singular. In fact, this is precisely the result of theorem 2.1.

3 Constructing the matrix M (x; )

General case

Following the works of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], the natural next step is to define the M (x; ) matrix that is used in the determinantal formulas of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF]. Thus, we introduce (we omit the index λ but the general setting with a generic λ applies everywhere in this section if one replace (Ψ, L, M, D)

→ (Ψ λ , L λ , M λ , D λ )): M (x; ) = Ψ(x; ) 1 0 0 0 Ψ -1 (x, ) (3-1) 
Using the two compatible systems [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dumitrescu | The spectral curve of the Eynard-Orantin recursion via the Laplace transform[END_REF], we obtain that it must satisfy the equations:

d dx M (x; ) = [D(x; ), M (x; )] δ M (x; ) = M (x + ; ) = L(x; )M (x; )L(x; ) -1 (3-2)
The first equation is standard in the theory of differential systems while the second one is just the exponentiated form of the first one. Technically, since L(x; ) and D(x; ) can be reconstructed from one another, the former two equations are completely equivalent. In the theory of integrable systems developed in [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], one usually has access only to the first equation which is in general not sufficient to prove the topological type property. For example, in the context of Painlevé equations, an additional time-differential equation defining the Lax pair is crucial to prove the topological type property. As we will see below, in our case, the second equation involving L(x; ) is also of great importance since it allows to determine M (x; ) recursively in a very simple way. We first observe that by definition of Ψ(x; ) (whose determinant is set to 1 from proposition 2.1), the matrix M (x; ) admits a formal series expansion in :

M (x; ) = ∞ k=0 M k (x) k (3-3)
Moreover, from its definition we have:

M (x; ) 2 = M (x; ) , Tr M (x; ) = 1 , det M (x; ) = 0 (3-4) Using the fact that M (x + ) = ∞ k=0 1 k! d k dx k M (x;
) k , the second equation of (3-2) is reduced to: 0 = [M 0 (x), L 0 (x)] and for all k ≥ 0 :

[M k+1 (x), L 0 (x)] = k m=0 L k+1-m (x)M m (x) - i+j+m=k+1 m≤k 1 j! d j dx j M m (x) L i (x) (3-5)
In particular, if L(x; ) = L 0 (x) + L 1 (x) , the previous equations simplify into:

0 = [M 0 (x), L 0 (x)] [M k+1 (x), L 0 (x)] = [L 1 (x), M k (x)] - k+1 j=1 1 j! d j dx j M k+1-j (x) L 0 (x) - k j=1 1 j! d j dx j M k-j (x) L 1 (x) , ∀ k ≥ 0 (3-6)
Similarly to the differential case, expressing the commutator [M k+1 (x), L 0 (x)] in terms of lower orders from (3-5) only provides two linearly independent equations on the entries of M k+1 (x). Nevertheless, conditions Tr M (x; ) = 1 and det M (x; ) = 0 (or in higher dimensions, the fact that M (x; ) 2 = M (x; )) are sufficient to provide enough linearly independent equations on the entries. We find: Theorem 3.1 The first order M 0 (x) is given by:

M 0 (x) =   1 2 + (L 0 (x)) 1,1 -(L 0 (x)) 2,2 √ (Tr L 0 (x)) 2 -4 det L 0 (x) (L 0 (x)) 1,2 √ (Tr L 0 (x)) 2 -4 det L 0 (x) (L 0 (x)) 2,1 √ (Tr L 0 (x)) 2 -4 det L 0 (x) 1 2 -(L 0 (x)) 1,1 -(L 0 (x)) 2,2 √ (Tr L 0 (x)) 2 -4 det L 0 (x)  
Higher orders may be obtained by recursion from the resolution of the linear system (along with

(M k+1 (x)) 2,2 = -(M k+1 (x)) 1,1 ) for k ≥ 0:   0 (L 0 (x)) 2,1 -(L 0 (x)) 1,2 2(L 0 (x)) 1,2 (L 0 (x)) 2,2 -(L 0 (x)) 1,1 0 (L 0 (x)) 2,2 -(L 0 (x)) 1,1 -(L 0 (x)) 2,1 -(L 0 (x)) 1,2     (M k+1 (x)) 1,1 (M k+1 (x)) 1,2 (M k+1 (x)) 2,1   =                   k m=0 L k+1-m (x)M m (x) - i+j+m=k+1 m≤k 1 j! d j dx j M m (x) L i (x)    1,1    k m=0 L k+1-m (x)M m (x) - i+j+m=k+1 m≤k 1 j! d j dx j M m (x) L i (x)    1,2 (Tr L 0 (x)) 2 -4 det L 0 (x) k j=1 ((M j (x)) 1,1 (M k+1-j (x)) 1,1 + (M j (x)) 1,2 (M k+1-j (x)) 2,1 )               
Note that the determinant of the recursion matrix is given by

(L 0 (x)) 1,2 (x) (Tr L 0 (x)) 2 -4 det L 0 (x)
Therefore, we can invert the matrix and obtain:

  (M k+1 ) 1,1 (M k+1 ) 1,2 (M k+1 ) 1,2   = 1 (Tr L 0 ) 2 -4 det L 0    (L 0 ) 1,1 -(L 0 ) 2,2 2(L 0 ) 2,1 (L 0 ) 2,2 -(L 0 ) 1,1 2(L 0 ) 1,2 (L 0 ) 2,2 -(L 0 ) 1,1 -2(L 0 ) 1,2 2(L 0 (x)) 2,1 -(Tr L0) 2 -4 det L0 (L0)1,2 ((L0)2,2-(L0)1,1)(L0)2,1 (L0)1,2 -2(L 0 ) 2,1                      k m=0 L k+1-m (x)M m (x) - i+j+m=k+1 m≤k 1 j! d j dx j M m (x) L i (x)    1,1    k m=0 L k+1-m (x)M m (x) - i+j+m=k+1 m≤k 1 j! d j dx j M m (x) L i (x)    1,2 (Tr L 0 (x)) 2 -4 det L 0 (x) k j=1 ((M j (x)) 1,1 (M k+1-j (x)) 1,1 + (M j (x)) 1,2 (M k+1-j (x)) 2,1 )                Remark 3.1
We observe that the recursive construction of the matrix M (x; ) may only be performed using the matrix L(x; ) but not directly the matrix D(x; ). Moreover, we note that the reconstruction formulas given in theorem 3.1 appear simpler than the reconstruction formulas obtained from the differential system d dx M (x; ) = D(x; )M (x; ) (see [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] for the explicit formulas). As we have seen above, both systems are equivalent but, depending on the problem, one of the formulations may be easier to handle than the other one (in particular if one the matrices D(x; ) or L(x; ) has a simple dependence in x).

Application to P 1

Applying the general formulas of theorem 3.1 in the P 1 case gives: Corollary 3.1 For the -difference system given by (2-5), we have:

M 0 (x) = 1 2 + x 2 √ x 2 -4 -1 √ x 2 -4 1 √ x 2 -4 1 2 -x 2 √ x 2 -4 (3-7)
and the recursion ∀ k ≥ 0:

  (M k+1 (x)) 1,1 (M k+1 (x)) 1,2 (M k+1 (x)) 2,1   = 1 x 2 -4   x 2 -x -2 -x 2 x 2 -2 x -2            - k+1 j=1 1 j! x d j dx j (M k+1-j (x)) 1,1 + d j dx j (M k+1-j (x)) 1,2 -1 2 k j=1 1 j! d j dx j (M k-j (x)) 1,1 1 2 (M k ) 1,2 + k+1 j=1 1 j! d j dx j (M k+1-j (x)) 1,1 √ x 2 -4 k j=1 ((M j (x)) 1,1 (M k+1-j (x)) 1,1 + (M j (x)) 1,2 (M k+1-j (x)) 2,1 )          (3-8)
Hence, we obtain the following proposition regarding the singularities structure of the matrices (M k (x)) k≥0 in the P 1 case: Proposition 3.1 For all k ≥ 0, the functions z → M k (x(z)) are rational functions that may only have poles at the branchpoints z = ±1 or at z = ∞. Moreover, at x → ∞ we have:

M 0 (x) = 1 0 0 0 + O 1 x 2 and M k (x) = O 1 x 2 for k ≥ 1 proof:
The proof is straightforward from (3-7) and [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF]. We first observe that M 0 (x) has indeed the correct behavior and that the claim is also correct for M 1 (x) that is given by:

M 1 (x) = 1 (x 2 -4) 3 2 1 0 x -1 (3-9)
Then by induction, if we assume the proposition to be correct for all j ≤ k, we may use [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF] to prove the right behavior of M k+1 (x). Indeed, we first observe that M 0 is only involved through its derivatives, hence the factor diag(1, 0) will not play any role. Then the result is obvious from a direct analysis of the various quantities at infinity.

Computations of the first orders of M (x; )

Implementing the recursion to determine (M k (x)) k≥0 is straightforward. In order to compare the formal expansion at x → ∞ with those proposed in conjecture (1-22), we provide below the first orders of the matrix M (x; ):

M 0 (x) = 1 2 + x 2 √ x 2 -4 -1 √ x 2 -4 1 √ x 2 -4 1 2 - x 2 √ x 2 -4 M 1 (x) =   0 x 2(x 2 -4) 3/2 x 2(x 2 -4) 3/2 0   M 2 (x) =    x(x 2 +16) 4(x 2 -4) 7/2 - x 2 (x 2 +6) 4(x 2 -4) 7/2 x 2 (x 2 +6) 4(x 2 -4) 7/2 - x(x 2 +16) 4(x 2 -4) 7/2    M 3 (x) =    0 x(x 4 +42 x 2 +96) 8(x 2 -4) 9/2 x(x 4 +42 x 2 +96) 8(x 2 -4) 9/2 0    M 4 (x) =    x(x 6 +247 x 4 +2848 x 2 +3072) 16(x 2 -4) 13/2 - x 2 (x 6 +156 x 4 +1350 x 2 +1280) 16(x 2 -4) 13/2 x 2 (x 6 +156 x 4 +1350 x 2 +1280) 16(x 2 -4) 13/2 - x(x 6 +247 x 4 +2848 x 2 +3072) 16(x 2 -4) 13/2    M 5 (x) =    0 x(30720+52160 x 2 +12990 x 4 +x 8 +516 x 6 ) 32(x 2 -4) 15/2 x(30720+52160 x 2 +12990 x 4 +x 8 +516 x 6 ) 32(x 2 -4) 15/2 0    3.2.
2 Some symmetries for the entries of M (x; )

A direct computation from the definition shows that:

M (x; ) = ψ(x + 2 ; )φ(x -2 ; ) -ψ(x + 2 ; )φ(x + 2 ; ) ψ(x -2 ; )φ(x -2 ; ) -φ(x + 2 ; )ψ(x -2 ; ) (3-10)

Thus, since ψ(x; )φ(x; ) admits a WKB expansion with only even powers of , we get that:

(M k (x; )) 2,1 = (-1) k+1 (M k (x)) 1,2 (3-11) 
A similar observation for ψ(x + 1 2 ; )φ(x -1 2 ; ) shows that it WKB expansion may only involve even powers of so that: (M 2k+1 ) 1,1 = 0 for all k ≥ 0. Moreover, from Tr M k (x) = 0 for k ≥ 1, we conclude that the only non-trivial entries of (M k (x)) k≥1 are:

(M 2k ) 1,1 , (M 2k ) 1,2 and (M 2k+1 ) 1,2
Eventually, we note that these symmetries correspond exactly to those proposed in conjecture (1-22).

Reduced system for

(M 2k ) 1,1 , (M 2k ) 1,2 and (M 2k+1 ) 1,2
Using the symmetries presented in section 3.2.2, we may rewrite a reduced recursive system for the entries (M 2k ) 1,1 , (M 2k ) 1,2 and (M 2k+1 ) 1,2 from corollary 3.1. We find:

(M 2k+1 ) 1,1 = 1 x 2 -4 (2 -x) 2 k l=0 1 (2l + 1)! d 2l+1 dx 2l+1 (M 2k-2l ) 1,1 - x 2 k l=1 1 (2l)! d 2l dx 2l (M 2k-2l ) 1,1 -x k l=1 1 (2l)! d 2l dx 2l (M 2k-2l+1 ) 1,2 -x k l=0 1 (2l + 1)! d 2l+1 dx 2l+1 (M 2k-2l ) 1,2 (M 2k ) 1,1 = 1 x 2 -4 (2 -x 2 ) k l=1 1 (2l)! d 2l dx 2l (M 2k-2l ) 1,1 - x 2 k l=1 1 (2l -1)! d 2l-1 dx 2l-1 (M 2k-2l ) 1,1 -x k l=1 1 (2l)! d 2l dx 2l (M 2k-2l ) 1,2 -x k l=1 1 (2l -1)! d 2l-1 dx 2l-1 (M 2k-2l+1 ) 1,2 +(M 2k-1 ) 1,2 -x x 2 -4 k-1 l=1 ((M 2l ) 1,1 (M 2k-2l ) 1,1 -(M 2l ) 1,2 (M 2k-2l ) 1,2 ) + k l=1 (M 2l-1 ) 1,2 (M 2k-2l+1 ) 1,2 (M 2k ) 1,2 = 1 x 2 -4 x k l=1 1 (2l)! d 2l dx 2l (M 2k-2l ) 1,1 + k l=1 1 (2l -1)! d 2l-1 dx 2l-1 (M 2k-2l ) 1,1 +2 k l=1 1 (2l)! d 2l dx 2l (M 2k-2l ) 1,2 + 2 k l=1 1 (2l -1)! d 2l-1 dx 2l-1 (M 2k-2l+1 ) 1,2 - x 2 (M 2k-1 ) 1,2 + 2 √ x 2 -4 k-1 l=1 ((M 2l ) 1,1 (M 2k-2l ) 1,1 -(M 2l ) 1,2 (M 2k-2l ) 1,2 ) + k l=1 (M 2l-1 ) 1,2 (M 2k-2l+1 ) 1,2 (3-12) 
By induction, it is then straightforward to prove that:

(M 2k ) 1,1 = xQ 4k-2 (x) (x 2 -4) 6k+1 2 , (M 2k ) 1,2 = x 2 R 4k-2 (x) (x -4) 6k+1 2 (M 2k-1 ) 1,2 = xT 4k-4 (x) (x 2 -4) 6k-3 2 , ∀ k ≥ 1 (3-13)
where Q 2k-2 , R 2k-2 and T 4k are polynomials of degree 2k -2, 2k -2 and 4k respectively.

4 Determinantal formulas

Definition of the correlation functions

In [START_REF] Bergère | Determinantal formulae and loop equations[END_REF], the authors proposed to associate to any 2 × 2 differential system of the form d dx Ψ(x; ) = D(x; )Ψ(x; ) some correlation functions W n (x 1 , . . . , x n ; ) (with n ≥ 1) through determinantal formulas. This construction was later extended to arbitrary dimension in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] but since we will only need the case d = 2 in this article, we will only review the simpler presentation of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF]. As explained in [START_REF] Bergère | Determinantal formulae and loop equations[END_REF], there exist two equivalent ways to define the correlation functions. The first definition is obtained from the Christoffel-Darboux kernel which is defined from the entries of the matrix Ψ(x; ) (given in (2-3)). In our case, it is given by: K(x 1 , x 2 ; ) = ψ(x 1 + 2 ; )φ(x 2 -2 ; ) -ψ(x 1 -2 ; )φ(x 2 + + 2 ; ) x 1 -x 2 (4-1) Then the correlation functions are defined by: Definition 4.1 (Definition 2.3 of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF]) The (connected) correlation functions are defined by:

W 1 (x; ) = d dx ψ(x + 2 ; ) φ(x - 2 ; ) - d dx ψ(x - 2 ; ) φ(x + 2 ; ), W n (x 1 , . . . , x n ; ) = - δ n,2 (x 1 -x 2 ) 2 + (-1) n+1 σ:n-cycles n i=1 K(x i , x σ i (1) ; ) for n ≥ 2
where σ is a n-cycle permutation.

For our purpose, it is important to mention that there exists an alternative definition (the equivalence of the two definitions can be found in [START_REF] Bergère | Determinantal formulae and loop equations[END_REF]) in terms of the matrix M (x; ).

Definition 4.2

The correlation functions may also be defined with the following formulas:

W 1 (x; ) = - 1 Tr(D(x; )M (x; )), W 2 (x 1 , x 2 ; ) = Tr(M (x 1 ; )M (x 2 ; )) -1 (x 1 -x 2 ) 2 , W n (x 1 , . . . , x n ; ) = (-1) n+1 Tr σ:n-cycles n i=1 M (x σ i (1) ; ) x σ i (1) -x σ i+1 (1) = (-1) n+1 n σ∈Sn Tr M (x σ(1) ; ) . . . M (x σ(n) ; ) (x σ(1) -x σ(2) ) . . . (x σ(n-1) -x σ(n) )(x σ(n) -x σ(1) ) for n ≥ 3.
The second definition makes the connection with the conjecture of [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] obvious. Therefore we need to prove that the correlation functions defined from the determinantal formulas identify with the Eynard-Orantin differentials computed from the topological recursion. This can be done using a sufficient set of conditions known as the topological type property [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF].

The topological type property

In this section, we review the topological type property. We restrict ourselves to the case of genus 0 classical spectral curve det(yI d -D 0 (x)) = 0 for which the topological type property is simpler but we mention that a more general version can be found in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] when the genus is not vanishing. 

D(x; ) = ∞ k=0 D k (x) k ∈ M d (C(x))
with det(yI d -D 0 (x)) = 0 a genus 0 curve is said to be of topological type if the following conditions are met:

(1) Existence of a series expansion in : The correlation functions admit a formal series expansion in of the form:

W 1 (x; ) = ∞ k=-1 W (k) 1 (x) k W n (x 1 , . . . , x n ; ) = ∞ k=0 W (k) n (x 1 , . . . , x n ) k ∀ n ≥ 2 (2) Parity property: W n | →-= (-1) n W n holds for n ≥ 1.
This is equivalent to say that the previous series expansion is even (resp. odd) when n is even (resp. odd).

(3) Pole structure: The functions (z 1 , . . . , z n ) → W

n (x(z 1 ), . . . , x(z n ); ) are rational functions that may only have poles at the branchpoints when (g, n) = (0, 1), (0, 2). Moreover:

W (0) 2 (x 1 , x 2 ) + 1 (x 1 -x 2 ) 2 dx 1 dx 2 = Tr(M 0 (x 1 )M 0 (x 2 )) -1 (x 1 -x 2 ) 2 dx 1 dx 2
should identify with the normalized bi-differential ω (0) 2 associated to the classical spectral curve.

(4) Leading order: The leading order of the series expansion of the correlation function W n is at least of order n-2 .

In fact, combining conditions 1, 2 and 3 is equivalent to require that:

W n (x 1 , . . . , x n ; ) = ∞ g=0 W (n-2-2g) n (x 1 , . . . , x n ) n-2+2g
The topological type property is particularly useful since we have the following theorem: 

W (n-2+2g) n (x(z 1 ), . . . , x(z n ))dx(z 1 ) . . . dx(z n ) = ω (g) n (z 1 , . . . , z n ) for g ≥ 0, n ≥ 1
where x(z) is a parametrization of the spectral curve. This is also equivalent to say that:

∀ n ≥ 1 : W n (x(z 1 ), . . . , x(z n ))dx(z 1 ) . . . dx(z n ) = ∞ g=0 ω (g) n (z 1 , . . . , z n ) n-2+2g
Therefore, a natural strategy is to prove the topological type property to obtain the identification of the correlation functions defined from the determinantal formulas with the Eynard-Orantin differentials arising from the topological recursion.

Proving the topological type property for P 1

In this section we prove that the differential system [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Belliard | Loop equations from differential systems[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF][START_REF] Marchal | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dumitrescu | The spectral curve of the Eynard-Orantin recursion via the Laplace transform[END_REF] arising in the Gromov-Witten invariants of P 1 satisfies the topological type property.

Existence of a formal series in

In the P 1 case, the first point of definition 4.3 is obvious. Indeed, as we have seen above, the matrix M (x; ) admits a formal series expansion in given by (3-3) (which is a consequence of the fact that we have taken formal WKB solutions in Ψ(x; )). Consequently, from the alternative definition of the correlation functions (4-2), we immediately get that all correlation functions W n (x 1 , . . . , x n ) admit a formal series expansion in . Note that this also holds for W 1 (x) from either (4-2) (where one can see that the exp(± 1 S 0 (x)) terms cancel) or from (4-2) (and the fact that D(x; ) also admit a formal series expansion in ).

Pole structure

In the P 1 case, proving the third point of definition 4.3 is also straightforward. Indeed, from proposition 3.1 we know that for all k ≥ 0, z → M k (x(z)) is a rational function that may only have singularities at z ∈ {-1, 1, ∞}. Hence by the alternative definition (4-2), this property also holds for the correlation functions W n (x(z 1 ), . . . , x(z n )) with n ≥ 2. Moreover, for n ≥ 2, the behavior at x → ∞ of the matrices (M k (x)) k≥0 given by proposition 3.1, combined with the denominators (where each x i 's appears twice) proves that W n (x(z 1 ), . . . , x(z n )) is O 1 z 2 i for all 1 ≤ i ≤ n. In particular, it has no pole at z i → ∞ and thus may only have poles at z i = ±1 as requested. Proving the behavior of W 1 (x) is more complicated. Indeed, its definition involves the matrix D(x; ) whose construction by recursion is rather complicated. We prefer instead use the following observation: from its definition (4-2), the application of the operator δ on W 1 (x; ) gives:

δ W 1 (x; ) = W 1 (x; ) -M 1,1 (x; ) (4-2) Reminding that W 1 (x) = ∞ k=-1 W (k)
1 (x) k (i.e. the series expansion starts at O( -1 )), equation (4-2) is equivalent to:

∞ k=-1 ∞ j=0 1 j! d j dx j W (k) 1 (x) k+j = ∞ k=-1 W (k) 1 (x) k - ∞ k=0 (M k (x)) 1,1 (4-3)
This system can be solved order by order in :

d dx W (-1) 1 (x) = -(M 0 (x)) 1,1 d dx W (0) 1 (x) = 0 d dx W (k) 1 (x) = - k+1 j=2 1 j! d j dx j W (k+1-j) 1 (x) -(M k+1 (x)) 1,1 , ∀k ≥ 1 (4-4)
Using the properties on the matrices (M k (x)) k≥0 of section 3.2, we find by taking

W (k) 1 (x) = x ∞ d dx W (k)
1 (x )dx with a trivial recursion that:

∀ k ≥ 0 : W (k) 1 (x) = x→∞ O 1 x 2 (4-5)
Therefore, from proposition 3.1, we obtain that for all k ≥ 1, the one-form z → W (k)

1 (x(z))dz may only have singularities at the branchpoints and that these singularities may only be poles. Hence we finally have the following theorem: Theorem 4.2 The correlation functions (z 1 , . . . , z n ) → (W (k) n (x(z 1 ), . . . , x(z n ))) n≥1,k≥0 with (n, k) = (0, 1) defined from the -difference system (2-5) are rational functions that may only have poles at the branchpoints z i = ±1. In particular we have for all (n, k) = (1, 0):

∀ 1 ≤ i ≤ n : W (k) n (x 1 , . . . , x n ) x i →∞ = O 1 x 2 i
Moreover, from an explicit computation we have using (3-7):

W (0) 2 (x(z 1 ), x(z 2 )) + 1 (x(z 1 ) -x(z 2 )) 2 dx(z 1 )dx(z 2 ) = Tr(M 0 (x(z 1 ))M 0 (x(z 2 ))) (x(z 1 ) -x(z 1 )) 2 dx(z 1 )dx(z 2 ) = dz 1 dz 2 (z 1 -z 2 ) 2
which is the standard normalized bi-differential ω (0) 2 associated to a genus 0 spectral curve.

Parity property

In order to prove the second property of the topological type property, we use a sufficient condition proposed in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF]: Proposition 4.1 (Proposition 3.3 of [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF]) Let us denote by † the operator switching into -. If there exists an invertible matrix Γ independent of x such that Γ -1 D t (x; )Γ = D † (x; ), then the correlation functions W n (x 1 , . . . , x n ; ) satisfy

∀ n ≥ 1 : W † n = (-1
) n W n . This sufficient condition was used successfully in [START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF]. To our knowledge, there is no known case that satisfy the parity property but that does not satisfy proposition 4.1. As one can see, the main difficulty compared to [START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] is that the previous condition involves the matrix D(x; ) rather than the matrix L(x; ) that would have been more natural in our context. The key element in the last proposition is to correctly understand the action of the operator † changing → -. Since our quantum curve (1-13) is our starting point and is invariant under this transformation, the action of the operator † on the matrix Ψ(x; ) is simple: it roughly exchanges the role of ψ(x; ) and φ(x; ). More precisely, if we take into account that we have imposed det Ψ(x; ) = 1 (proposition 2.1), we have (we omit to write ; in all quantities for clarity):

Ψ(x) = ψ(x -2 ) φ(x -2 ) ψ(x + 2 ) φ(x + 2 ) ⇒ Ψ † (x) = φ(x -2 ) -ψ(x -2 ) φ(x + 2 ) -ψ(x + 2 ) (4-6)
Observe in particular that the last identity is equivalent to say that:

Ψ † (x) = 0 -1 1 0 Ψ(x) -1 t def = A Ψ(x) -1 t (4-7)
It is then a simple computation to prove that the last identity implies:

D † (x) = - d dx Ψ † (x) Ψ † (x) -1 = AD(x) t A -1 (4-8)
Thus, we take:

Γ = A -1 = 0 1 -1 0 (4-9)
to satisfy proposition 4.1. For completeness, we now compute L † (x). Acting on Ψ † with the operator δ -gives:

L † (x) = AL t (x -)A -1 = Γ -1 (4-10)
Hence we have:

L † (x) = Γ -1 x -2 1 -1 0 Γ (4-11)
We now combine the pole structure of the correlation functions (W n (x 1 , . . . , x n )) n≥1 with the pole structure of the matrices (D k (x)) k≥0 using theorems 2.1 and 4.2. The second theorem and the loop equations ((4-13) and (4-14)) shows that for n ≥ 0, the functions z → P n+1 (x(z); x 1 , . . . , x n ) may only have poles at the branchpoints z = ±1. On the contrary, proposition 4.2 combined with theorem 2.1 shows that z → P n+1 (x(z); x 1 , . . . , x n ) may only have singularity at z ∈ {0, ∞}. Consequently, the functions z → P n+1 (x(z); x 1 , . . . , x n ) are regular on C. Since the spectral curve is of genus 0, this implies that they are constant.

Theorem 4.4 The functions x → P n+1 (x; L n ) do not depend on x. In other words, for all n ≥ 0 we have:

P n+1 (x; x 1 , . . . , x n ) = Rn (x 1 , . . . , x n )
The end of the proof of the leading order property is then similar to the one developed in [START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] for Painlevé equations that involves a clever induction. For completeness, we reproduce it in appendix A. We end up with the following theorem: Theorem 4.5 For any n ≥ 1, the correlation function W n (x 1 , . . . , x n ) defined from the system (2-5) has a formal expansion in starting at least at n-2 .

Conclusion

The results of the previous four sections prove that the differential system d dx Ψ(x; ) = D(x; )Ψ(x; ) arising from (2-5) satisfy the topological type property. Consequently the correlation functions (W n (x 1 , . . . , x n )) n≥1 defined by the determinantal formulas (definition 4-2) have a series expansion of the form:

W n (x 1 , . . . , x n ) = ∞ g=0 W (n-2+2g) n (x 1 , . . . , x n ) n-2+2g
where:

W (n-2+2g) n (x 1 , . . . , x n )dx 1 . . . dx n = ω (g) n (x 1 
, . . . , x n ) are the Eynard-Orantin differentials of the classical spectral curve (1-15).

Comparing M (x; ) with the Dubrovin and Yang's conjecture

From the previous section, we know that the determinantal formulas defined from the system (2-5) identify to the Eynard-Orantin differentials that enumerates the Gromov-Witten invariants of P 1 . Thus, in order to prove Dubrovin and Yang conjecture, the last step is to compare the matrix M (x; ) defined in corollary 3.1 with the formulas proposed in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF]. The main difficulty here is that the conjecture of [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] only provides the series expansions of the matrices (M k (x)) k≥0 at x → ∞. These large x formal series have some interests in combinatorics since the coefficients usually happen to have some nice combinatorial interpretations. However, from the topological recursion point of view, they are useless since they do not provide any information on the analytic structure that are required to take residues (in fact from the knowledge of the series, it is not obvious how to determine the radius of convergence and thus the location of the branchpoints). In order to bypass this difficulty, we propose first to identify the matrix M 0 (x) with M0 (x). Then, we shall prove that the conjectured matrix M (x; ) satisfy the equation δ M (x; ) = L(x; ) M (x; ) so that it must identify with M (x; ). We also mention that we could verify numerically the identification up to order 6 using results of section (3.2.1).

The M 0 (x) case

The first step is to compare our expression of M 0 (x) with the one conjectured in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF]. The expression proposed in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] 

is: M0 (x) 1,1 = 1 + α 0 (x) = 1 + ∞ j=0 1 4 j x 2j+2 j!(j + 1)! j l=0 (-1) l (2j + 1 -2l) 2j+1 2j + 1 l M0 (x) 1,2 = -P 0 (x) = - ∞ j=0 1 4 j x 2j+1 (j!) 2 j l=0 (-1) l (2j + 1 -2l) 2j 2j l - 2j l -1 M0 (x) 2,1 = P 0 (x) M0 (x) 2,2 = -α 0 (x) (5-1)
Note in particular that the former expression satisfies α 0 (x) = 1 2 (x-1)P 0 (x). This is compatible with the structure of M 0 (x) given in corollary (3.1). Therefore, the only remaining point is to prove that the asymptotic expansion at x → ∞ of 1 √ x 2 -4 equals P 0 (x). We have:

1 √ x 2 -4 = ∞ k=0 (2k)! (k!) 2 x 2k+1
(5-2)

Eventually, the final step is to we observe that the following identity holds (easily proven by induction on j ≥ 0):

∀ j ≥ 0 : j l=0 (-1) l (2j + 1 -2l) 2j+1 (2j)! l!(2j -l + 1)! = 4 j (5-3) + 1 2 P (x + ) 2p-1 -α(x + ) 2p α(x) 2p+1 = xQ(x + ) 2p+1 + xP (x + ) 2p+1 + 1 2 Q(x + ) 2p + 1 2 P (x + ) 2p -α(x + ) 2p+1 (5-14) 
Using (5-5) and (5-7), we get:

• Equation α(x + ) 2p+1 = -xQ(x) 2p + 1 2 P (x) 2p is equivalent to: s-1 l=0 p m=0 (-1) l 4 m+1 (2s -1 -2l) 2s+2p-2m-1 2s -1 l 2s + 2p 2m + 1 = 1 2s + 1 s l=0 (-1) l (2s + 1 -2l) 2s+2p+1 2s + 1 l (5-15) • Equation α(x + ) 2p = -1 2 Q 2p-1 (x) + xP 2p (x) -α(x) 2p is equivalent to: s l=0 p m=0 (-1) l 4 m (2s + 1 -2l) 2s+1+2p-2m 2s + 1 l 2s + 1 + 2p 2m = + s+1 l=0 (-1) l (2s + 3 -2l) 2s+2p+1 4(s + 1) (2s + 3 -2l) 2 2s + 3 -1 2s + 3 l - s l=0
(-1) l (2s + 1 -2l) 2s+2p+1 2s + 1 l (5-16) All six identities can easily been proved using standard relations on binomial coefficients and hypergeometric functions [START_REF] Gould | Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations[END_REF]. Therefore, we conclude that conjecture (1-22) adapted from [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] is verified. We could also verify with formal numeric computations that the correlation functions identify with the corresponding Eynard-Orantin differentials up to n + 2g -2 ≤ 4. In particualr, the first Eynard-Orantin differentials are: 

• Equation P (x) 2p = Q(x + ) 2p + P (x + ) 2p is equivalent to: s l=0 ( - 

Conclusion and outlooks

The purpose of this article was to prove on the simple example of the quantum curve arising in the enumeration of Gromov-Witten invariants of P 1 that the determinantal formulas and the topological type property may be used in the context of -difference systems rather than -differential systems. However, as presented in this paper, it seems that the construction might be adapted for more general situations. In particular, it raises the following questions:

• Formulas presented in section 2.4 are valid for any 2 × 2 -difference systems. Therefore it seems that the topological type property might be proven for a wide class of 2 × 2 matrices L(x; ) that are rational in x. This would be the generalization of [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF] for 2 × 2 -difference systems.

• As mentioned in the article, the present situation may be seen as a specific connection on the Lie group G = SL 2 (C) described by the rational matrix L(x; ). From the results of [START_REF] Belliard | Loop equations from differential systems[END_REF], it seems reasonable to believe that the present strategy might be extended to other Lie groups and other connections.

• At the level of operators, δ is the exponentiated version of the operator ∂ x , but at the level of matrices (local representations), the relation is only correct for the leading order (L 0 (x) = exp(D 0 (x))). For higher orders, the situation seems more involved and would deserve algebraic investigations.

• There are many examples of hyperbolic classical spectral curves arising in the context of enumerative geometry (like for example Gromov-Witten invariants on toric Calabi-Yau manifolds) [START_REF] Bouchard | The Remodeling Conjecture and the Faber-Pandharipande Formula[END_REF][START_REF] Do | Topological recursion for irregular spectral curves[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dumitrescu | The spectral curve of the Eynard-Orantin recursion via the Laplace transform[END_REF] for which the present situation might be of interest. In particular, it would be interesting to build the associated -difference systems associated and check if the topological type property holds.

• In this article, we only considered formal WKB series expansion in . Though this perspective is sufficient for enumerative geometry (where formal series are perfectly adapted), the issue of the convergence of the series and the connection with so-called exact WKB expansions [START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF][START_REF] Iwaki | Exact WKB Analysis and Cluster Algebras II: Simple Poles, Orbifold Points, and Generalized Cluster Algebras[END_REF] would deserve investigations.

• From the topological recursion point of view, we observe that the spectral curve arising in the P 

  k Ψ(x; ) = L(x; )Ψ(x; )[START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Bergère | Universal scaling limits of matrix models, and (p, q) Liouville gravity[END_REF][START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF] 

  λ+1) ; )-L1,1(x+λ ; )ψ(x+λ ; ) L1,2(x+λ ; ) φ(x+(λ+1) ; )-L1,1(x+λ ; )φ(x+λ ; ) L1,2(x+λ ; ) (2-12)

Definition 4 . 3 [

 43 Topological type property for genus 0 curves] A differential system d dx Ψ(x; ) = D(x; )Ψ(x; ) where D(x; ) admits a formal series expansion in of the form

Theorem 4 . 1 (

 41 Theorem 2.1 of [3], Theorem 3.1 and Corollary 4.2 of [4]) If the differential system d dx Ψ(x; ) = D(x; )Ψ(x; ) satisfies the topological type property 4.3, then the differentials W (n-2-2g) n (x 1 , . . . , x n )dx 1 . . . dx n appearing in the formal expansion of the correlation functions W n (x 1 , . . . , x n ; )dx 1 . . . dx n are identical to the Eynard-Orantin differentials ω (g) n obtained from the application of the topological recursion to the spectral curve det(yI d -D 0 (x)) = 0. In other words:

(- 1 )(- 1 )•(- 1 )(- 1 )•- 1 l=0(- 1 )(- 1 )(- 1 )(- 1 )• 1 2P(- 1 )(- 1 )(- 1 )(- 1 )

 11111111111111 1) l (2s + 1 -2l) 2s+2p+1 2s + l 4 m (2s + 1 -2l) 2s-1+2p-2m (2s + 1l 4 m (2s + 1 -2l) 2s+1+2p-2m 2s + 1 l Equation -Q(x) 2p+1 = Q(x + ) 2p+1 + P (x + ) 2p+1 is equivalent to: s l=0 (-1) l (2s + 1 -2l) 2s+2p+1 2s + 1 l = -l 4 m (2s + 1 -2l) 2s+1+2p-2m 2s + 1 l l 4 m (2s + 1 -2l) 2s-1+2p-2m Equation α(x) 2p = xQ(x+ ) 2p +xP (x+ ) 2p + 1 2 Q(x+ ) 2p-1 + 1 2 P (x+ ) 2p-1 -α(x + ) 2p is equivalent to: 4s sl (2s -1 -2l) 2s+2p-1 2sl 4 m (2s + 1 -2l) 2s-1+2p-2m 2s + 1 l l 4 m (2s + 1 -2l) 2s-1+2p+2m 2s + 1 l 2s + 2pl 4 m (2s -1 -2l) 2s+2p-2m-1 2s -Equation α(x) 2p+1 = xQ(x + ) 2p+1 + xP (x + ) 2p+1 + 1 2 Q(x + ) 2p + (x + ) 2p -α(x + ) 2p+1 is equivalent to: l 4 m (2s + 1 -2l) 2s+1+2p-2m 2s + 1 l l 4 m (2s + 1 -2l) 2s+1+2p-2ml 4 m (2s + 1 -2l) 2s-1+2p-2m 2s + 1 l l 4 m (2s -1 -2l) 2s-1+2p-2m 2s -

2 ωz 2

 22 1 , z 2 , z 3 ) = dz 1 dz 2 dz 3 2(z 1 -1) 2 (z 2 -1) 2 (z 3 -1) 2 + dz 1 dz 2 dz 3 2(z 1 + 1) 2 (z 2 + 1) 2 (z 3 + 1) (z 2 + 1)(7z12 -52z 10 + 7985z 8 + 34520z 6 + 7985z 4 -52z 2 + 7) 960(z -1) 10 (z + 1)10 dz

= x2 4 -

 4 z) = ln z is obtained from the curve ỹ -x 2 1 with the change of variables (x, ỹ) = (x, e y ) whose quantization is a Schrödinger differential equation. It would be interesting to see if any relation between the two sets of Eynard-Orantin differentials exists and if the previous change of variables may be used for other spectral curves.
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Theorem 4. [START_REF] Bergère | Determinantal formulae and loop equations[END_REF] The correlation functions (z 1 , . . . , z n ) → (W n (x(z 1 ), . . . , x(z n ))) n≥1 defined from the system (2-5) satisfy the parity property.

Remark 4.1 Ψ(x; ) = ψ(x; ) φ(x; ) ψ(x -; ) φ(x -; ) , i.e. L(x; ) = x -1 1 0 , does not satisfy the parity property. Therefore, the choice of the constant λ in the general setting of section 2.4.3 appears essential to obtain this property. However, the right choice may be hard to guess when L 1,2 (x; ) has a series expansion in involving even and odd powers.

The leading order property

In this section we prove the leading order condition of the topological type property. Following the idea of [START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF], we use the loop equations satisfied by the correlation functions:

Proposition 4.2 (Theorem 2.9 of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF]) Let us define the following functions (we denote by L n the set of variables {x 1 , . . . , x n }):

Then the correlation functions satisfy

and for n ≥ 1:

Moreover x → P n+1 (x; L n ) may only have singularities at the singularities of D(x; ). so that P 0 (x) corresponds to the expansion of 1 √ x 2 -4 at x → ∞. Therefore, our matrix M 0 (x) matches the one conjectured in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF].

The (M k (x)) k≥1 cases

In order to compare our matrix with the one proposed in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF], we rewrite the formulas of conjecture . We first observe:

with the convention that n -1 = 0 for all n ≥ 0. Thus we get:

We now use the fact that:

to compute α(x + ; ), P (x + ; ) and Q(x + ; ):

(5-7)

The strategy is then to verify that the matrix conjectured in [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] satisfy the identities:

) and det M (x; ) = 0 and Tr M (x; ) = 1 (5-8)

We first note that M (x : ) defined in (1-22) obviously satisfies the trace condition. The condition on the determinant can be deduced from the first condition. Indeed, if M (x; ) satisfies the identity M (x + ; ) = L(x; ) M (x; )L -1 (x; ), then the determinant d(x; ) def = det M (x; ) satisfies the equation:

Projecting the last identity at order k with k ≥ 1 gives:

Thus, we obtain:

From section 5.1, we know that the matrix of [START_REF] Dubrovin | On Gromov-Witten invariants on P 1[END_REF] is the same as (3-7). In particular, we have d 0 (x) = 0. This implies from (5-11) that d 1 (x) = 0.

Then by a straightforward induction, we obtain d k (x) = 0 for all k ≥ 1.

Eventually, from definition (1-23), we get that:

Combining the last identity with the fact that d k (x) = 0 for all k ≥ 1 implies that:

Therefore, the only remaining issue is to prove that the matrix M (x; ) proposed in equation (1-22) satisfies M (x + ; )L(x; ) = L(x; ) M (x; ). Since the trace is fixed to 1, this is equivalent to verify that the relation holds for the entries (1, 1), (1, 2) and (2, 1). Using the specific form of the matrix (1-22), this is equivalent to prove that:

A Appendix: induction for the leading order property

In this appendix, we present the direct adaptation of the induction proof presented in [START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF] and [START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] that can be carried out from theorem 4.4.

Let us define the following statement:

The statement is obviously true for k = 1 and k = 2 from the definitions of the correlation functions. Let us assume that the statement P i is true for all i ≤ n. Now we look at the loop equations (4-14) that we recall for n ≥ 1:

By the induction assumption, we have that the last two terms are at least of order n-2 . Indeed, in the sum we have terms of order 1+|J|-2+1+n-|J|-2 = n-2 . Moreover, we also have from the same assumption that W n+2 (x, x, L n ) is also of order at least n-2 (since n + 2 ≥ n). Therefore, W n+1 (x, L n ) is at least of order n-2 , and by considering the coefficients of the n-3 we have:

is the spectral curve of the system by definition and P n+1 (x; L n ) does not depend on x (theorem 4.4), we obtain:

This would imply that x → W (n-2) n+1 (x, L n ) has a non-zero residue at x → ∞ in contradiction with its pole structure and its asymptotic at x → ∞ given by theorem 4.2. Consequently, we must have W (n-2) n+1 (x, L n ) = 0. This proves that W n+1 (x, L n ) is at least of order n-1 . We now need to prove the same statement for higher correlation functions. Let us prove it by a second induction by defining Pi : W i (x 1 , . . . , x i ) is of order at least n-1 . (A.6)

We prove Pi for all i ≥ n + 1 by induction. We just proved it for i = n + 1 so initialization is done. Let us assume that Pj is true for all j satisfying n + 1 ≤ j ≤ i 0 . We look at the loop equation:

By assumption on Pi 0 , the last sum with the derivatives contains terms of order at least n-1 . In the sum involving the subsets of L i 0 , it is straightforward to see that the terms are all of order at least n-1 . Indeed, as soon as one of the index is greater than n + 1, the assumption Pi for n + 1 ≤ i ≤ i 0 tells us that this term is already at order at least n-1 . Since the second factor of the product is at least of order 0 , it does not decrease the order. Now, if both factors have indexes strictly lower than n + 1, then the assumption of P j for all j ≤ n tell us that the order of the product is at least of |J|+1-2+1+i 0 -|J|-2 = i 0 -2 which is greater than n -1 since i 0 ≥ n + 1. Additionally, by induction on P n we know that W i 0 +1 (x, L i 0 ) is at least of order n-2 as well as W i 0 +2 (x, x, L i 0 ). Consequently, looking at order n-3 in (A.7) gives 0 = P (n-3)

We can apply a similar reasoning as the one developed for (A.3). If we assume W (n-2)

), then we have:

Again this would imply that x → W (n-2) i 0 +1 (x, L i 0 ) has a non-zero residue at x → ∞ in contradiction with its pole structure and its asymptotic at x → ∞ given by theorem 4.2. Consequently, we must have W (n-2) i 0 +1 (x, L i 0 ) = 0. In particular, it means that W i 0 +1 (x, L i 0 ) (which by assumption of P n was already known to be at least of order n-2 ) is at least of order n-1 , making the induction on Pi 0 . Hence, by induction, we have proved that, ∀ i ≥ n+1, Pi holds which proves that P n+1 is true. Then, by induction, we have just proved that P n holds for n ≥ 1. In other words, we have proved the leading order condition of the topological type property for the system defined by (2-5).