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ABSTRACT Polymorphisms and the overexpression of transporter genes, especially
of the ATP-binding cassette superfamily, have been involved in antimalarial drug re-
sistance. The objective of this study was to use 77 Senegalese Plasmodium falcipa-
rum isolates to evaluate the association between the number of Asn residues in the
polymorphic microsatellite region of the Plasmodium falciparum multidrug resistance
6 gene (Pfmdr6) and the ex vivo susceptibility to antimalarials. A significant associa-
tion was observed between the presence of 7 or 9 Asn repeats and reduced suscep-
tibility to quinine.

KEYWORDS malaria, Plasmodium falciparum, antimalarial drug, in vitro, resistance,
molecular marker

The resistance of malaria to most antimalarial drugs has developed in Southeast Asia
and has spread to Africa. The World Health Organization (WHO) has recommended

artemisinin-based combination therapy (ACT) as the first-line treatment for malaria
since 2005. As recently described in Southeast Asia, the emergence of Plasmodium
falciparum resistance to artemisinin and its derivatives manifests as delayed parasite
clearance following treatment with either artesunate (AS) monotherapy or ACT (1, 2). In
areas where artemisinin resistance is emerging, the partner drugs within the combi-
nation are under increasing pressure for the selection of resistance. In this context, the
identification of molecular markers of resistance to these partner drugs is urgently
needed to monitor the emergence and spread of resistance to antimalarial drugs.

Polymorphisms and the overexpression of transporter genes, especially of the
ATP-binding cassette (ABC) superfamily, have been involved in antimalarial drug resis-
tance (3). The N86Y mutation of the P. falciparum multidrug resistance 1 gene (Pfmdr1)
is associated with in vitro susceptibility to dihydroartemisinin (DHA), lumefantrine
(LMF), monodesethylamodiaquine (DQ), and mefloquine (MQ) (4). Field studies in East
Africa have also shown selection of the N86 allele in recurrent infections after treatment
with artemether plus lumefantrine (5, 6) or artesunate plus mefloquine (7). A single
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mutation (F423Y) in the heavy metal transporter Pfmdr2 was linked to in vitro resistance
to pyrimethamine (8). Additionally, deletion of Pfmdr2 in P. falciparum parasites re-
sulted in a minor decrease in susceptibility to mefloquine, quinine (QN), and atova-
quone (9). Repetitive amino acid motifs in Pfmdr5 were associated with reduced in vitro
susceptibility to lumefantrine (10). In another report, the presence of 9 Asn residues in
the polymorphic microsatellite region of Pfmdr6 (amino acid positions 103 to 109 in
3D7) appeared to modulate the in vitro dihydroartemisinin susceptibility of parasites
from the China-Myanmar border area (11). Further, the presence of 7 Asn repeats was
significantly associated with reduced susceptibility to lumefantrine. Another study on
16 reference strains from different sources worldwide and parasites collected in Kenya
showed that parasites with 6 Asn repeats were significantly less susceptible to lume-
fantrine, whereas those with 8 Asn repeats were less susceptible to piperaquine (PPQ)
(10). There was no association of 9 Asn repeats with reduced susceptibility to dihydro-
artemisinin.

The objective of this study was to evaluate the association between the Asn number
in Pfmdr6 (accession number PF3D7_1352100) from Senegalese isolates of P. falciparum
and ex vivo susceptibilities to chloroquine (CQ), quinine (QN), monodesethylamodi-
aquine (DQ), mefloquine (MQ), lumefantrine (LMF), piperaquine (PPQ), pyronaridine
(PND), dihydroartemisinin (DHA), artesunate (AS), and doxycycline (DOX).

Seventy-seven P. falciparum isolates from falciparum malaria patients attending the
Hôpital Principal de Dakar from November 2013 to January 2014, August 2014 to
December 2014, and September to November 2015 were successfully evaluated (13
from 2013, 32 from 2014, and 32 from 2015). Seventy-four percent of the patients were
recruited from the emergency department. The other patients were recruited from the
pediatric department (8%), the intensive care unit (5%), and other units (13%). There
was no information available on antimalarial treatment prior to admission. The patients
were treated with quinine or artesunate or artemether-lumefantrine, with or without
doxycycline, at the Hôpital Principal de Dakar. Informed verbal consent was obtained
from the patients or their parents/guardians before blood collection. The study was
approved by the ethical committee of the Hôpital Principal de Dakar.

Venous blood samples were collected in Vacutainer ACD tubes prior to patient
treatment. A malaria diagnosis was confirmed using a thin blood smear and a rapid
diagnostic test. Thin blood smears were stained using a RAL kit (Réactifs RAL, Paris,
France) based on eosin and methylene blue and were examined to determine P.
falciparum density and to confirm species monoinfection. The level of parasitemia
ranged from 0.06% to 14.1%.

The susceptibility of the isolates was assessed without culture adaptation. For the in
vitro MicroTests, 100 �l of parasitized red blood cells (final parasitemia, 0.5%; final
hematocrit, 1.5%) was aliquoted into 96-well plates predosed with antimalarial drugs
(CQ, QN, MQ, DQ, LMF, DHA, AS, PPQ, PND, and DOX). The plates were incubated in a
sealed bag for 72 h at 37°C with atmospheric generators for capnophilic bacteria using
Genbag CO2 at 5% CO2 and 15% O2 (bioMérieux, Marcy l’Etoile, France). The ex vivo
HRP2 enzyme-linked immunosorbent assay (ELISA) using the commercial Malaria Ag
competitive enzyme-linked immunosorbent assay (CELISA) kit (reference number
KM2159; Cellabs Pty Ltd., Brookvale, Australia) was previously described (12). The
batches of plates were tested and validated on the chloroquine-resistant W2 strain
(Indochina) (MR4, VA, USA) in three to six independent experiments using the same
conditions. The mean 50% inhibitory concentrations (IC50s) in the in vitro chemosus-
ceptibility assay for the chloroquine-resistant W2 strain for the different batches
used during the 3 years were 292 nM for CQ, 275 nM for QN, 72 nM for DQ, 13.7 nM
for LMF, 15.4 nM for MQ, 32.5 nM for PPQ, 26.4 nM for PND, 1.27 nM for DHA, 1.43
nM for AS, and 10.7 �M for DOX.

Pfmdr6 (accession number PF3D7_1352100) was amplified by PCR using the follow-
ing primer pair: 5=-GAG-AAG-TAA-TAG-AAT-AAG-CG-3= and 5=-CCC-ATA-CAT-AAA-ATC-
TTC-CT-3=. The reaction mixture consisted of 200 ng of genomic DNA, 0.32 �M of each
primer, 1� final concentration of the reaction buffer [750 mM Tris-HCl, 200 mM
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(NH4)2SO4, 0.1% (vol/vol) Tween 20, and stabilizer, pH 8.8], 2.5 mM MgCl2, 200 �M
deoxynucleoside triphosphate (dNTP) mixture, and 0.2 U of Red Diamond Taq poly-
merase (Eurogentec) in a final volume of 25 �l. The thermal cycler (T3 Biometra) was
programmed as follows: 10 min at 94°C followed by 40 cycles of 30 s at 95°C, 45 s at
52°C, and 1 min at 72°C and a final extension for 10 min at 72°C. The purified amplicons
were sequenced using the appropriate PCR primers on an ABI Prism 3100 analyzer
(Applied Biosystems) according to the manufacturer’s instructions. The sequences were
analyzed using Vector NTI Advance software (version 11; Invitrogen, Cergy-Pontoise,
France) to identify the number of asparagine repeats in Pfmdr6 and their association
with antimalarial drug resistance.

The IC50s in the ex vivo chemosusceptibility assay ranged from 6.3 to 954.9 nM for
CQ, 6.2 to 1,429.8 nM for QN, 1.9 to 227.3 nM for DQ, 0.6 to 45.0 nM for LMF, 3.4 to 123.0
nM for MQ, 3.9 to 241.9 nM for PPQ, 0.4 to 111.6 nM for PND, 0.1 to 17.3 nM for DHA,
0.1 to 18.1 nM for AS, and 0.9 to 121.6 �M for DOX. The distributions of the IC50s for
the 10 antimalarial drugs are shown in Fig. 1. Six different poly(Asn) repeat profiles, with
6 to 11 repeats, were detected in Pfmdr6 among the 77 P. falciparum isolates from
Dakar. The highest proportion of isolates in our study had 6 Asn repeats (41.6% of the
samples), contrary to results for Asian isolates, in which 8 repeats predominated (76.5%
of the samples) (11). The proportions of isolates with 8, 7, 9, 10, and 11 repeats were
31.1%, 14.3%, 10.4%, 1.3%, and 1.3%, respectively. There was no significant difference

FIG 1 Distribution of ex vivo responses of 77 P. falciparum clinical field isolates from Dakar to dihydroartemisinin (DHA), artesunate
(AS), lumefantrine (LMF), mefloquine (MQ), pyronaridine (PND), monodesethylamodiaquine (DQ), piperaquine (PPQ), chloroquine (CQ),
quinine (QN), and doxycycline (DOX).
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TABLE 1 Ex vivo susceptibility of 77 Plasmodium falciparum isolates to quinine, chloroquine, monodesethylamodiaquine, lumefantrine,
mefloquine, piperaquine, pyronaridine, dihydroartemisinin, artesunate, and doxycycline according to the number of Asn repeats in
Pfmdr6a

Drug

Values according to no. of repeats

P value6 repeats 7 repeats 8 repeats 9 repeats 10 repeats 11 repeats

Quinine
IC50 geometric mean (nM) (no.) 99.5 (32) 216.4 (11) 82.9 (24) 219.7 (8) 248.0 (1) 218.0 (1) 0.0291
Median (nM) 123.8 294.0 115.6 171.7
25 intercentile to 75 intercentile range 50.3–240.5 150.5–402.0 33.6–230.6 145.2–318.1
% of resistant parasites 9.4 9.1 4.2 12.5

Chloroquine
IC50 geometric mean (nM) (no.) 67.7 (32) 38.4 (11) 80.9 (24) 30.5 (8) 311.0 (1) 266.0 (1) 0.1230
Median (nM) 93.2 65.6 94.0 31.2
25 intercentile to 75 intercentile range 24.5–190.5 34.1–113.5 46.0–139.3 30.6–35.0
% of resistant parasites 56.3 36.4 58.3 12.5

Monodesethylamodiaquine
IC50 geometric mean (nM) (no.) 19.7 (32) 24.9 (11) 22.1 (24) 11.8 (8) 71.0 (1) 43.2 (1) 0.5857
Median (nM) 23.8 19.1 23.0 11.8
25 intercentile to 75 intercentile range 8.0–49.6 8.8–65.7 12.4–52.5 8.2–18.3
% of resistant parasites 21.9 27.3 25.0 12.5

Lumefantrine
IC50 geometric mean (nM) (no.) 3.9 (32) 6.1 (11) 5.3 (24) 2.4 (8) 13.9 (1) 4.6 (1) 0.5017
Median (nM) 4.3 4.7 6.2 2.4
25 intercentile to 75 intercentile range 1.4–12.4 2.3–23.0 2.4–9.5 0.6–7.8
% of resistant parasites 0 0 0 0

Mefloquine
IC50 geometric mean (nM) (no.) 24.9 (31) 22.4 (10) 31.9 (22) 19.4 (8) 46.6 (1) 43.9 (1) 0.6229
Median (nM) 29.1 25.1 33.0 28.8
25 intercentile to 75 intercentile range 13.8–41.1 15.6–40.8 10.4–36.4 10.4–36.4
% of resistant parasites 41.9 40.0 50.0 50.0

Piperaquine
IC50 geometric mean (nM) (no.) 42.7 (31) 24.2 (10) 38.7 (22) 44.1 (8) 51.5 (1) 51.7 (1) 0.4444
Median (nM) 50.4 33.6 37.5 47.1
25 intercentile to 75 intercentile range 34.9–91.1 8.8–57.7 20.8–72.9 30.9–64.1
% of resistant parasites 6.5 0 9.1 0

Pyronaridine
IC50 geometric mean (nM) (no.) 8.4 (30) 10.8 (10) 8.5 (22) 10.1 (8) 21.4 (1) 13.4 (1) 0.6135
Median (nM) 9.4 12.6 7.8 9.3
25 intercentile to 75 intercentile range 6.4–14.0 8.8–26.8 5.4–14.0 6.4–16.2
% of resistant parasites 0 10.0 4.5 0

Dihydroartemisinin
IC50 geometric mean (nM) (no.) 1.0 (30) 2.6 (10) 1.6 (22) 2.0 (8) 5.6 (1) 1.7 (1) 0.2913
Median (nM) 1.5 2.6 1.8 3.3
25 intercentile to 75 intercentile range 0.1–2.3 1.6–5.1 0.7–3.2 1.3–4.4
% of resistant parasites 3.3 0 4.5 0

Artesunate
IC50 geometric mean (nM) (no.) 1.8 (28) 2.1 (10) 2.8 (22) 3.8 (8) 4.5 (1) 4.2 (1) 0.4010
Median (nM) 2.2 2.8 3.1 4.4
25 intercentile to 75 intercentile range 0.8–3.9 2.2–3.7 1.4–5.9 2.9–6.8
% of resistant parasites 3.6 0 9.1 0

Doxycycline
IC50 geometric mean (�M) (no.) 16.5 (32) 17.0 (11) 13.1 (23) 18.3 (8) 121.6 (1) 21.9 (1) 0.8828
Median (�M) 20.5 17.9 14.7 22.9
25 intercentile to 75 intercentile range 8.8–36.1 9.8–29.9 6.0–40.6 15.3–38.4
% of resistant parasites 21.9 27.3 30.4 37.5

aThe threshold values for the reduced in vitro susceptibility or resistance were the following: 611 nM, 77 nM, 61 nM, 115 nM, 30 nM, 135 nM, 60 nM, 12 nM, 12 nM,
and 37 �M for quinine, chloroquine, monodesethylamodiaquine, lumefantrine, mefloquine, piperaquine, pyronaridine, dihydroartemisinin, artesunate, and
doxycycline, respectively (12, 13).
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in in vivo susceptibility among the four different poly(Asn) repeat profiles for CQ, PPQ,
PND, DQ, MQ, LMF, DHA, AS, and DOX (Table 1). We observed a significant association
between 7 or 9 Asn repeats and reduced susceptibility to QN (P � 0.0291, Kruskal-
Wallis) (Table 1 and Fig. 2). Six isolates were over the threshold of 611 nM for in vitro
resistance to QN (12), but they were distributed in each group. There was no significant
difference between the four groups (6, 7, 8, or 9 Asn repeats) in terms of percentage of
isolates resistant to QN (P � 0.849). However, the isolate with the higher IC50 for
quinine (1,429.8 nM) had 9 Asn repeats. This was the first observation of an association
between Pfmdr6 polymorphisms and reduced susceptibility to QN. The observations
reported by Okombo et al. linking 6 and 8 Asn repeats with reduced susceptibility to
LMF and PPQ, respectively (10), or by Wang et al. linking 7 and 9 Asn repeats with
reduced susceptibility to LMF and DHA, respectively (11), were not replicated in our P.
falciparum parasite population from Dakar. Additionally, the observations reported by
Wang et al. and Okombo et al. were not replicated: reduced susceptibility to LMF was
associated with 7 or 8 Asn repeats. A hypothesis explaining these differences is that Asn
variations were mostly parasite population markers. The susceptibility to QN was
associated with poly(Asn) repeat profiles of Pfmdr6. All of the patients treated with QN
during the 3 years of collection were successfully treated. All of the isolates from these
successfully treated patients contained 6 or 8 Asn repeats in the microsatellite region
of Pfmdr6, which were associated with a low IC50 to QN. QN susceptibility was
previously associated with microsatellite repeats in P. falciparum Na�/H� exchanger 1
(Pfnhe-1) (14, 15). However, this association was location specific and differed between
African and Asian P. falciparum isolates (15–17). The low number of P. falciparum
isolates and the modest association limited the interpretation of the present results. It
is difficult to extrapolate these findings to other parts of the world without new data
sets. Another limitation was the use of standard in vitro tests for exploring resistance to
artemisinin. The standard in vitro test is not adapted to follow resistance to artemisinin
derivatives. The clinical resistance to artemisinin was manifested by an increase in the
ring-stage survival rate after contact with artemisinin (ring survival test) (18). It is
imperative to further assess more isolates from different geographical areas, to asso-
ciate those results with functional biochemical studies, and to assess samples from
clinical failure with QN to ascertain the role of this repeat polymorphism in Pfmdr6.

FIG 2 Distribution of quinine IC50 of 77 P. falciparum isolates according to the number of Asn repeats in
Pfmdr6.
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