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Abstract

In this paper, we propose a framework for analyzing and understanding human

behavior from depth videos. The proposed solution first employs shape anal-

ysis of the human pose across time to decompose the full motion into short

temporal segments representing elementary motions. Then, each segment is

characterized by human motion and depth appearance around hand joints to

describe the change in pose of the body and the interaction with objects. Fi-

nally, the sequence of temporal segments is modeled through a Dynamic Naive

Bayes classifier, which captures the dynamics of elementary motions character-

izing human behavior. Experiments on four challenging datasets evaluate the

potential of the proposed approach in different contexts, including gesture or

activity recognition and online activity detection. Competitive results in com-

parison with state of the art methods are reported.
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1. Introduction

Visual recognition and understanding of human activity and behavior rep-

resent a task of interest for many multimedia applications, including entertain-

ment, medicine, sport, video surveillance, human-machine interfaces and active

assisted living. This wide spectrum of potential applications encouraged com-

puter vision community to address the issue of human behavior understanding

from 2D videos taken from standard RGB cameras [1, 2, 3, 4, 5]. However, most

of these methods suffer from some limitations, like the sensitivity to color and il-

lumination changes, background clutter and occlusions. Since the recent release

of RGB-D sensors, new opportunities have emerged in the field of human mo-

tion analysis and understanding. Hence, many research groups investigated data

provided by such cameras in order to benefit from some advantages compared to

RGB cameras [6, 7, 8, 9, 10]. Indeed, depth data allows a better understanding

of the 3D structure of the scene and thus makes background subtraction and

people detection easier. In addition, the technology behind such depth sensors

provides robustness to light variations as well as the capability to work in com-

plete darkness. Finally, the combination of such depth sensors and powerful

pattern recognition algorithms [11] enables the representation of human pose at

each frame as a set of 3D joints. In the past decades, human motion analysis

from 3D data provided by motion capture systems has been widely investi-

gated [12, 13, 14]. While these systems are very accurate, they present some

disadvantages. First, the cost of such technology may limit its use. Second,

it implies that the subject wears some physical markers so as to estimate the

3D pose. As a result, this technology is not convenient for the general public.

All these considerations motivated us to focus our study of human behavior on

RGB-D data. However, this task still faces some major challenges due to the

temporal variability and complexity of human actions and the large number of
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motion combinations that can characterize the human behavior. Motion anal-

ysis is further complicated by the fact that it should be invariant to geometric

transformations, such as translation, rotation and global scaling of the scene.

In addition, human behavior often involves interaction and manipulation of ob-

jects. While such information about the context may help the understanding

of what the human is doing, it also involves possible occlusions of parts of the

human body, resulting in missing or noisy data.

In order to face these challenges, we propose in this paper to locally investi-

gate the sequence by detecting short temporal segments representing elementary

motion, called Motion Segments (MS). Then, for each MS, we analyze human

motion and depth appearance around human hands to characterize the interac-

tion with objects. This provides a deeper analysis of the human behavior and

allows the recognition of human gestures, actions and activities. In particular,

in this paper, gestures indicate simple movements performed with only one part

of the body, actions represent a combination of gestures with different parts of

the body, and activities refer to more complex motion patterns possibly involv-

ing interaction with objects. The proposed solution can be adapted to realistic

scenarios, where several actions or activities are performed subsequently in a

continuous sequence. In that case, the sequence should be processed online in

order to detect the starting and ending time of actions or activities. That is, the

proposed approach can operate on the data stream directly, without assuming

the availability of a segmentation module that identifies the first and last frame

of each action/activity.

1.1. Previous Work

In recent years, recognition and understanding of human behavior by ana-

lyzing depth data has attracted the interest of several research groups [15, 16,

17, 18]. While some methods focus on the analysis of human motion in order to
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recognize human gestures or actions, other approaches try to model more com-

plex behaviors (activities) including object interaction. These solutions focus

on the analysis of short sequences, where one single behavior is performed along

the sequence. However, additional challenges appear when several different be-

haviors are executed one after another over a long sequence. In order to face

these challenges, methods based on online detection have been proposed. Such

methods can recognize behavior before the end of their execution by analyzing

short parts of the observed sequence. Thus, these methods are able to recog-

nize multiple behaviors within a long sequence, which may not be the case for

methods analyzing the entire sequence directly. Existing methods for human

behavior recognition using depth data are shortly reviewed below.

Methods analyzing human motion for the task of gesture / action recogni-

tion from RGB-D sensors can be grouped into three categories: skeleton-based,

depth map-based and hybrid approaches. Skeleton based approaches have be-

come popular thanks to the work of Shotton et al. [11]. This describes a real-

time method to accurately predict the 3D positions of body joints in individual

depth maps, without using any temporal information. In [19], Yang and Tian

performed human action recognition by extracting three features for each joint,

based on pair-wise differences of joint positions (initial, previous and current

frames). PCA is then used to obtain a compact EigenJoints representation of

each frame and a näıve-Bayes nearest-neighbor classifier is used for multi-class

action classification. Similar features are used by Luo et al. [20], but pairwise

differences are computed only in the current frame and with respect to only one

reference joint (the hip joint). To better represent these features, they propose

a dictionary learning method based on group sparsity and geometry constraints.

The classification of sequences is performed using SVM. Zanfir et al. [15] propose

the Moving Pose feature, capturing for each frame the human pose information
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as well as the speed and acceleration of body joints within a short temporal

window. A modified kNN classifier is employed to perform action recognition.

Hongzhao et al. [21] introduce a part-based feature vector to identify the most

relevant body parts in each action sequence. Other approaches use differen-

tial geometry to represent skeleton data. In [22], Vemulapalli and Chellappa

represented each skeleton as one element on the Lie-group, and the sequence

corresponds to a curve on this manifold. In [23], Slama et al. express the time

series of skeletons as one point on a Grassmann manifold, where the classifica-

tion is performed benefiting from Riemannian geometry of this manifold. In [24],

Anirudh et al. regard actions as trajectories on a Riemannian manifold, and

analysis of such trajectories using Transport Square-Root Velocity Function is

employed for action recognition.

Methods based on depth maps extract meaningful descriptors from the en-

tire set of points of depth images. In [25], Yang et al. described the action

dynamics using Depth Motion Maps, which highlight areas where some motion

takes place. Other methods, such as Spatio-Temporal Occupancy Pattern [26],

Random Occupancy Pattern [27] and Depth Cuboid Similarity Feature [16],

propose to work on the 4D space divided into spatio-temporal boxes to extract

features representing the depth appearance in each box. Such features are ex-

tracted from Spatio-Temporal Interest Points. A similar method is proposed

by Rahmani et al. [28], where keypoints are detected and the point cloud is de-

scribed within a volume using the Histogram of Principal Components. In [29],

Oreifej and Liu proposed a method to quantize the 4D space using vertices of

a polychoron, and then model the distribution of the normal vectors for each

cell. The idea of using surface normals to describe both local motion and shape

information characterizing human action is also used by Yang and Tian [30].

Althloothi et al. [31] represent 3D shape features based on spherical harmonics

5



representation and 3D motion features using kinematic structure from skele-

ton. Both features are then merged using a multi-kernel learning method. A

depth feature to describe shape geometry and motion, called Range-Sample, is

proposed by Lu and Tang [32].

Analyzing human motion, however, may not be sufficient to understand more

complex behaviors involving human interaction with the environment (i.e., what

we call activities). Hybrid solutions are often proposed, which use depth maps

for modeling scene objects and body skeleton for modeling human motion. For

example, Wang et al. [33] used Local Occupancy Patterns to represent the ob-

served depth values in correspondence to skeleton joints. Other methods propose

to describe and model spatio-temporal interaction between human and objects

characterizing the activities, using Markov Random Field [17]. A graphical

model is also employed by Wei et al. [34] to hierarchically define activities as

combination of sub-events including description of the human pose, the object

and interaction between them. Yu and Liu [35] propose to capture meaningful

skeleton and depth features using a middle level representation called orderlet.

Some of the works reviewed above have also online action recognition ca-

pabilities, as they compute their features within a short sliding window along

the sequence [35]. This challenge has recently been investigated for continuous

depth sequences, where several actions or activities are performed successively.

For example, Huang et al. [18] proposed and applied the Sequential Max-Margin

Event Detector algorithm on long sequences comprising many actions in order

to perform online detection by successively discarding not corresponding action

classes.

1.2. Overview of Our Approach

Human behavior is naturally characterized by the change of the human body

across time. Thanks to depth sensors, we are able to capture skeleton data con-
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taining the 3D position of different parts of the body. The skeleton and its

changes across time provide valuable information. However, understanding the

human behavior is still a difficult task due to the complexity of human mo-

tion and spatial/temporal variations in the way gestures, actions, or activities

are performed. These challenges motivated us to analyze locally the motion

sequences. First, we represent the skeleton of each frame by a 3D curve describ-

ing human pose. These curves are then interpreted in a Riemannian manifold,

which defines a shape space where shapes of the curves can be modeled and

compared using elastic registration and matching. Such shape analysis allows

the identification and grouping of the human poses. As a result, a motion

sequence is temporally segmented into a set of successive sub-sequences of ele-

mentary motions, called Motion Segments (MS). A MS is thus characterized by

a sequence of skeletons, each of which is modeled as a multi-dimensional vec-

tor by concatenating the three-dimensional coordinates of its joints. Then, the

trajectory described by this vector in the multi-dimensional space is regarded

as a signature of the temporal dynamics of all the joints. Similarly to pose

curves, the shape of such motion trajectories is studied in a Riemannian shape

space. The elastic metric provided in this framework allows us to compare mo-

tion trajectories independently to their elasticity, i.e., the execution speed of

motions. A statistical analysis on this manifold allows us to identify relevant

shapes characterizing a set of MSs. However, skeleton data is not sufficient to

describe human behavior in cases where objects are manipulated. This moti-

vated us to describe, in each MS, the depth appearance around subject hands

providing information about possible human-object interactions. Finally, the

sequence of MSs is modeled through a Dynamic Naive Bayes classifier, which

combines both skeleton and depth features and captures the dynamics of human

behavior. Figure 1 summarizes the proposed solution. The main contributions
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of the proposed approach are:

• A segmentation method based on the statistical shape analysis of human

pose variation along the sequence;

• A temporal description of a sequence, which combines elastic shape anal-

ysis of motion trajectories on a Riemannian manifold, and description of

depth appearance around subject hands.

Figure 1: Overview of our approach. Shape analysis of human poses allows us to identify
temporal segments of elementary motions (i.e., MS). Each MS is described using the trajectory
of the joints of the skeleton regarded as a multidimensional vector, and the depth appearance
around subject hands. A Dynamic Naive Bayes classifier is then used to model the sequence
of temporal segments and recognize human behavior.

The rest of the paper is organized as follows: Sect. 2.1 discusses the Rie-

mannian framework that we employ for shape analysis of both human pose and

human motion; Sect. 2 presents our method for characterizing a motion sequence

based on its segmentation into MSs, and their skeletal and depth description;

In Sect. 3, we describe the Dynamic Naive Bayes classifier and show how we

use it for classification and online detection; Sect. 4 describes the experimental
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settings, the datasets used and also reports results in terms of accuracy of ges-

ture, action and activity recognition in comparison to state of the art solutions;

Finally, in Sect. 5 conclusions and future research directions are drawn.

2. Description of Activity Sequences

Our proposed approach is based on the analysis of both human pose and

human motion. Using a shape analysis framework, an activity sequence is an-

alyzed and described through two steps: First, we locally regard it at the level

of human poses in order to segment the full human motion into a set of MSs;

Then, the analysis of these segments allows us to describe the sequence as a

combination of successive MSs.

2.1. Shape Analysis Framework

A pose of human body can be characterized by the spatial configuration of

body parts. So we propose to analyze the shape of such spatial configuration.

Human motion is characterized by the evolution of the human pose across time.

In order to capture the geometric deformation of the pose as well as the dynamics

of the motion, we propose to consider the motion as a trajectory of the human

pose and analyze its shape. As a result, we recast the problem of human pose

and human motion analysis to a problem of shape analysis by employing the

Shape Analysis framework, presented in [36]. In the following, we recall the

main idea of the framework and we refer the reader to [36] for more details.

In this framework, the shape of a n-dimensional curve β : I → Rn, normalized

in the interval I = [0,1], is captured through the Square-root Velocity Function

(SRVF) [37] defined as: q(t)
.
= β̇(t)/

√
‖β̇(t)‖. As a result, each q function can

be viewed as an element of a Riemannian manifold C and the distance between

two elements q1 and q2 is the length of the geodesic path connecting them on

C. Such geodesic path represents the elastic deformation of the shape q2 to
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correspond to the shape q1. As C is a hyper-sphere, the geodesic length between

two elements q1 and q2 is defined as θ = dC(q1, q2) = cos−1(〈q1, q2〉).

The SRVF representation is invariant to translation and scaling, but it is

not invariant to rotation and re-parametrization. To cope with this, we define

the equivalence class of q as [q] where elements of [q] are equivalent up to ro-

tation and re-parametrization. The set of all equivalence classes is called the

shape space denoted as S. To compute the geodesic distance between [q1] and

[q2] on S, we first need to find the optimal rotation and re-parametrization

that register the element q2 with respect to q1 resulting in q∗2 . Then, the dis-

tance dS([q1], [q2]) = dC(q1, q
∗
2) is invariant to translation, scale, rotation and

re-parametrization of curves. In practice, SVD is used to find the optimal rota-

tion, and Dynamic Programming is used to find the optimal re-parametrization.

2.2. Segmentation of Sequences

Due to the complexity of human motion characterizing activities, we propose

to decompose the full motion into shorter MSs, which are easier to analyze. The

idea of decomposing a motion sequence into a set of MSs has already been in-

vestigated in state-of-the-art. In [38] the ‘movelet’ is proposed on accelerometer

data by concatenating features within overlapping temporal intervals with fixed

length. However, as the length of each temporal interval is fixed, it may not

represent a relevant MS. Another idea called ‘dyneme’ is employed in [14], where

human poses are clustered to identify several temporal segments with similar

poses represented by one centroid pose. However, the use of pose information

only may lack of information about the dynamics of the MS. In addition, la-

beling successive poses independently may result in irrelevant intervals. In this

paper, we propose to identify relevant MSs including continuous elementary mo-

tions. This process is based on the analysis of the human pose at each frame of

the sequence.
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2.2.1. Pose Representation and Analysis

Human body is represented by a set of 3D joints located in correspondence

to different body parts. Thus, a human pose is characterized by a certain

spatial configuration of these 3D joints. In order to describe human poses,

we propose to analyze the shape of the spatial configuration of 3D joints. By

connecting the 3D joints, human pose can be viewed as a 3D curve representing

the shape of human body. As shown in Fig. 2, in order to keep the human

shape information associated to the limbs, we keep a coherent structure linking

together joints belonging to the same limb. Thus, a 3D curve representing

the human pose connects successively the spine joints, then the arms joints

(left/right) and finally the legs joints (left/right). In this way, a human pose

is represented by a 3D curve instead of a 3D skeleton. Thus, We can perform

shape analysis of curves using the shape analysis framework and the provided

distance (see Sect. 2.1) for n = 3 as each joint is represented by the x, y, z

coordinates. Note that, as we will explain later, we need to compare successive

human poses from a same sequence (same subject). Hence, we can assume

that the scale of skeletons as well as the orientation of the subject between

two successive poses are unchanged during a short time interval. Likewise, as

a 3D curve connects joints in a predefined order, the parametrization of curves

remains the same along a single sequence. Since it is not necessary to find the

optimal re-parametrization between two shapes, the analysis of the shape of the

3D curves is simplified. Figure 2 shows a geodesic path between two human

poses represented by their 3D curve.

2.2.2. Motion Segmentation

Once a distance measuring the similarity between the shape of two poses

is defined, we can use it to analyze the deformation of human body along an

activity sequence. Hence, in order to divide the continuous sequence into MSs,

11



(a) (b)

Figure 2: Shape analysis of human poses in the shape space. (a) Shape of 3D curves represent-
ing human poses are interpreted in the shape space where the distance between two shapes is
measured through the geodesic distance (length of the minimum path). (b) Visualization of
the geodesic path representing a natural deformation between shape of poses.

we detect when the motion is changing. We identify MSs by breaking the

sequence in correspondence to points where the speed of change of the 3D curve

has a local minimum. To compute the speed of change, we take advantage of

the shape analysis framework that enables the computation of statistics, like

the mean and the standard deviation, on the manifold. Hence, given the poses

p1, . . . , pn observed over a temporal window of predefined duration, the average

pose shape µ is computed as the Riemannian center of mass [39] of the pose

shapes q1, . . . , qn on the shape space. For this purpose, the distance dS described

in Sect. 2.1 is used according to the following expression:

µ = arg min
[q]

n∑
i=1

dS([q], [qi])
2 . (1)

Once the mean pose shape is computed, the standard deviation σ between

this mean shape and all the shapes within the window is estimated:

σ =

√√√√ 1

n

n∑
i=1

dS([µ], [qi])2 . (2)

Higher values of σ correspond to faster motion, while lower values corre-

spond to slower motion, i.e., transition intervals. By detecting local minima

along the sequence, we are able to temporally localize the motion transition,

and thus decompose the sequence into MSs. As an example, Fig. 3 shows the
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variation of σ along a sequence and the MSs identified by breaking the sequence

in correspondence to local minima of σ.
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Figure 3: Segmentation of a sequence based on minima of the standard deviation σ. Different
MSs and corresponding poses are displayed with different colors.

2.3. Segment Description

Once an activity sequence is segmented, we analyze the resulting MSs in

order to describe the whole sequence.

2.3.1. Human Motion Analysis

Here, we interpret the pose changes across a time interval corresponding to a

MS. For each frame included in a MS, we concatenate the xi, yi, zi coordinates

of each joint to build a feature vector. Let Nj be the number of joints of

the skeleton, the posture of the skeleton at frame t is represented by a 3Nj

dimensional tuple:

v(t) = [x1(t) y1(t) z1(t), . . . , xNj
(t) yNj

(t) zNj
(t)]T . (3)

For a MS composed of Nf frames, Nf feature vectors are extracted and
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arranged in columns to build a feature matrix M describing the whole segment:

M =

(
v(1) v(2) . . . v(Nf )

)
. (4)

This matrix captures the changes of the skeleton pose across time. Hence,

it can be viewed as a trajectory in R3Nj representing the motion in a 3Nj

dimensional space. The size of such feature matrix is 3Nj × Nf . Note that,

in order to guarantee invariance to MSs translation and rotation, we normalize

the position and the orientation of the subject before extracting the features.

We use the spine and hips joints to form the base representing the position and

orientation of the body. We align the initial pose of a segment with respect to a

reference posture by finding the best rigid transformation between corresponding

bases. The optimal transformation is then applied to all other poses of the

segment. This makes the representation invariant to the position and orientation

of the subject in the scene (see [36] for more details). With this representation,

an activity sequence can be viewed as a set of short spatio-temporal trajectories

in R3Nj representing MSs, as illustrated in Fig. 4.

Figure 4: An activity sequence can be viewed as a set of successive spatio-temporal trajectories
in R3Nj representing MSs performed by the subject.

In this paper, we propose to use the shape analysis framework described in

Sect. 2.1, with n = 3Nj , to capture and analyze the shape of trajectories of

MSs. Shapes are represented as elements on the shape space and the similarity

measure between two shapes is the elastic metric dS on this shape space. Our

idea here is to identify a codebook of exemplar shapes (symbols) to be used as

a reference dictionary in the classification. To learn the codebook, we perform

clustering of shapes using the k-means algorithm. First, k shapes are randomly
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selected as mean shapes of k clusters, and each sample shape is assigned to the

clusters using the dS distance. Then, the mean shapes are repeatedly updated

until convergence using the Riemannian center of mass (see Eq. (1)). Such

clustering provides a mapping between trajectory shapes represented on the

shape space and a finite set of symbols corresponding to clusters.

In order to describe each cluster by using its corresponding mean shape, we

learn a density function for each cluster. These density functions capture the

variability between shapes belonging to the same cluster and provide a deeper

modeling of each cluster. In so doing, we assume the distribution of shapes

within a cluster follows a multivariate normal model. Unfortunately, learning

such density functions on the shape space is not straightforward, mainly due to

the non-linearity and infinite-dimensionality of such manifold (i.e., shapes are

represented by functions, so they have infinite dimension). Different methods

have been proposed to deal with these two challenges [40, 41]. A common

way to circumvent the non-linearity of the manifold is to consider a hyper-

plane tangent to the manifold at the mean shape (i.e., tangent space). Such

tangent space is a linear vector space, where conventional statistics applies, like

the computation of density functions. We denote Tµk
S the tangent space at

the mean shape of the k-th cluster µk. For each shape qi ∈ S within the k-

th cluster, we compute its corresponding tangent vector vi ∈ Tµk
S using the

logarithm map. This approximation is valid because samples belong to the same

cluster. Thus, we can assume that they lie in a small neighborhood around the

mean shape µk. To deal with the problem of infinite-dimensionality, we assume

the variations in tangent vectors are restricted to an m-dimensional subspace.

Using tangent vectors of each cluster, we use PCA to learn a principal subspace

for each cluster. We denote n the dimension of such principal subspace. Tangent

vectors vi are then projected into the learned subspace. Let ṽi be such projected
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vectors, we compute the covariance matrix Σ between all projected vectors ṽi

belonging to the same cluster. Finally, we use the resulting mean shape µ and

covariance matrix Σ to learn a multivariate normal distribution for each cluster.

Its corresponding probability density function is defined as:

f(ṽ) =
1

(2π)n/2 |Σ|1/2
e−

1
2 ṽ

T Σ−1ṽ . (5)

The codebook is learned from MSs of training sequences. Such codebook is

then used to label MSs of the test sequence, characterized by its trajectory shape

in the shape space. The test shape is first projected into the learned subspace of

a cluster k. Then, using the corresponding covariance matrix, we can compute

the probability that the test shape is generated by the learned density function

corresponding to the cluster k. We do the same for each cluster and assign the

test shape to the cluster giving the highest probability.

2.3.2. Depth Appearance

Descriptors of human motion are complemented with descriptors of the ob-

jects the user is interacting with, if any. Such combination of motion and object

descriptors improves the robustness of the activity recognition, and is also nec-

essary to discriminate between actions that would be almost identical in terms

of motion patterns. For instance, discriminating between activities like Drink

and Phone call based on the analysis of the sole motion patterns would require

a description framework capable of accurately distinguishing whether the user

hand is closer to the mouth than to the ear. This level of accuracy is gener-

ally beyond the capability of commercial low-res scanners, unless the user is

very close to the sensor. Differently, two such actions can be much more easily

discriminated by considering the objects the user is interacting with.

In order to describe the distribution of depth pixels within a local region
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around subject hands, we adapt the Local Occupancy Pattern (LOP) [27] fea-

ture. In this approach, a depth image is viewed as a 3D point cloud, and the

local regions are represented by 3D bounding boxes centered at the hand joints.

As shown in Fig. 5a, each bounding box is partitioned into Nc = Nx×Ny ×Nz

3D cells, and the number of 3D points that fall in each cell is counted. In the

experiments, we empirically select a local region of size 0.3m × 0.3m × 0.3m

divided into 5× 5× 5 cells.

(a) (b)

Figure 5: LOP feature computation. (a) A 3D cuboid divided into 3D cells is extracted from
the depth image around the hand joint and the number of 3D points within each 3D cell is
counted. (b) Schema of the 4DLOP feature representing depth appearance evolution along a
MS in two time steps.

This local depth representation is combined with the motion description,

which represents an activity as a sequence of successive MSs. For each frame of a

MS, we compute the LOP feature for each hand joint (ll and lr) and concatenate

them to form one global LOP feature vector Lf = [ll, lr] for the frame f . The

length of such feature vector is 2×Nc. However, MSs can have different duration.

As a consequence, they are described with a different number of LOP features,

which is not convenient in the comparison. To deal with duration variability, we

propose a compact representation of the depth appearance, which is independent

from its duration. First, we assume the object held by the subject during

the time interval corresponding to a MS does not change considerably, and we
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compute the mean of the LOP features among frames of a MS. Thus, one single

feature, that we call Mean LOP (MLOP) is used to describe the average depth

appearance of a MS. Then, we consider changes of depth appearance around

hand joints, which can be induced by object manipulation during a MS. For

instance, for the activity Drink a MS would consist of bringing the container to

the mouth. In that case, the support where the object is located may appear

in the local region around the hand, in the first part of the MS, but the face

of the subject may be present in this local region at the end of the MS. To

represent this depth variation, we adopt an extension of LOP feature in four

dimensions called 4DLOP. The spatio-temporal volume representing the change

of the local region around hands along the MS is also partitioned in Nt divisions

across temporal dimension. Note that, differently to [26], which analyzes depth

variation in fixed 4D boxes, we consider depth variation in a moving spatio-

temporal region following the motion of human hands. This idea is illustrated

in Fig. 5b.

As a result, each MS is represented by a feature vector describing the depth

appearance independently to its duration (either MLOP or 4DLOP). To cluster

LOP features and build a codebook of exemplar LOP, we use the k-means

algorithm with Euclidean distance. Such clustering provides a mapping between

LOP feature vectors and a finite set of LOP symbols represented by the cluster

centroids. Similarly to human motion, the codebook is learned from MSs of

training sequences. For MSs of test sequences, we compute the distance between

the corresponding LOP feature and all the exemplar LOP and labeling is done

using the nearest rule.
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3. Modeling of Activity Sequences

As discussed in Sect. 2, a sequence is decomposed in MSs, and each MS

is described in terms of human motion and depth appearance around subject

hands. Thus, the dynamics of a sequence can be viewed as combination of two

sequences of successive symbols, one corresponding to human motion, and the

other corresponding to depth appearance around hands. In so doing, we assume

that sequences of the same class are represented by similar arrangements of MSs.

Conversely, different sequences of symbols should represent different classes.

Hence, we need a method to analyze the change of symbols across time, and

recognize different arrangements of MSs. To this end, we propose to use the

Dynamic Naive Bayes classifier (DNBC) [42] as statistical model.

3.1. Learning

In DNBC training, we only know the sequence of observations X = {Xa
t | t =

1, . . . , T , 1 ≤ a ≤ A}, being A the number of attributes, while the states

S = {St|t = 1, . . . , T} are not available. Thus, we need tools for estimating

the model parameters, i.e., the prior, transition and emission probabilities.

The prior probability represents the initial state of the process. The transition

probability is the probability to transit from one state to another state of the

process. The emission probability represents, for each state, the probability of

generating each attribute. Similarly to HMM, a common way to learn such

parameters from training sequences of observed symbols is to use the Baum-

Welch algorithm [43]. In the case of DNBC, parameters estimation is slightly

modified due to the model setting, which allows the emission of several attributes

per state (more details on this can be found in [44]). For our task, we assume

that each activity class is modeled with a different DNBC. Let the activity class

c ∈ {1, . . . , C} with C being the number of activity classes, we learn one DNBC

denoted λc for each class c using the training sequences of to the class c.
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3.2. Classification

The classification process of an observed sequence X is the performed as fol-

lows. First, the sequence is presented to each of the trained λc DNBC modeling

different activity classes. Then, the likelihood P (X|λc) that the sequence X

has been generated by the λc DNBC is computed using the Forward algorithm.

Finally, the sequence is classified as the activity whose corresponding DNBC

gives the highest log-likelihood: activity(X) = arg maxc P (X|λc).

The classification process is then extended to work in an online manner, so

that a classification decision can be taken before the end of a sequence. This is

particularly convenient for real-time applications, permitting natural interaction

with the system. In addition, it allows us to process a sequence as a continuous

stream, where several activities can be performed successively, which is often

the case in real-world contexts. As shown in Sect. 2.2, the segmentation process

is based on a sliding window technique. Hence, it can also be applied in an

online manner so as to detect MSs from a continuous stream. Each new frame

of the sequence is given as input to the segmentation process. When a MS is

detected, we compute the corresponding human motion and depth appearance

features and assign a symbol to each, as described in Sect. 2. The resulted

observation sequence of length-1 is then presented to each trained DNBC in or-

der to compute the corresponding log-likelihoods. This process is performed for

each new detected MS. Thus, the length of the observation sequence is increased

by one, and the log-likelihoods are updated. If the log-likelihood of a class falls

below a threshold, we discard the activity class. This allows us to gradually

reduce the set of possible classes. The process is repeated until all classes are

discarded. Among the remaining classes, we keep the class with the highest

log-probability as the detected activity. However, transitions between activities

are often smooth. Thus, when an activity is finished, its corresponding log-
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probability may not considerably decrease and directly fall below the threshold.

In order to consider this smooth transition, we select as the ending boundary

of the activity the time step when its corresponding log-probability starts to

decrease instead of the time step when it falls below the threshold. Finally, we

restart the detection process from the successive time step using all the classes.

This is repeated until the end of the sequence. As a result, we obtain the set of

detected activities along the sequence with corresponding starting and ending

boundaries. This online activity detection is illustrated in Fig. 6.

Figure 6: Online detection method. The Activity-2 and Activity-3 are discarded after the
fourth and second time step, respectively, as their log-probability fall below -80. The remaining
Activity-1 is discarded after the seventh time interval. As a result, the five first time intervals
are classified as Activity-1, and a new detection is started from the sixth time step.

4. Experimental Evaluation

We evaluate the proposed approach in comparison with state-of-the-art meth-

ods using four public benchmark datasets.

4.1. MSRC-12 dataset

First, we evaluate our method in the task of human gesture recognition.

The main goal of this experiment is to show how the proposed method deals

with actions characterized by repetitions of a single gesture. In particular, we
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want to evidence the proposed decomposition of a sequence into a set of MSs is

capable of managing such variability.

We perform this experiment on the Microsoft Research MSRC-12 dataset,

which includes 12 gestures performed by 30 subjects for a total of about 50

sequences per class, where a single gesture is performed several times along

a sequence (10 times in most of the cases, but this number may vary from

2 to 15). This variability is indeed important to show how it can affect the

recognition accuracy. Only skeleton data is provided in this dataset, so we

only use the motion features to describe each segment. Following the same

protocol as in Lehrmann et al. [45], only six gestures are considered and a 5-fold

cross validation protocol is applied. Results are reported in Table 1 as average

accuracy across folds in comparison to [45] and [36].

Table 1: MSRC-12. Comparison of the proposed approach with DFM [45] and [36]. Accuracy
is reported in percentage

Class DFM [45] Devanne et al. [36] Our

Duck 96.0 100 100

Goggles 88.0 82.0 91.6

Shoot 85.7 73.5 83.0

Throw 90.0 88.0 90.0

Change weapon 87.5 89.6 94.0

Kick 98.0 98.0 98.2

Mean 90.9 88.5 92.8

From Table 1, we can notice the proposed approach outperforms [45] for all

gesture classes except one (Shoot), with an overall accuracy of 92.8%, compared

to 90.9% reported in [45]. In addition, the accuracy of the proposed approach

increases of about 4% that reported in our previous work [36], where the de-

composition into MSs is not considered. Moreover, we computed the standard

deviation among the 5-folds and obtained a standard deviation of 0.9% for our

method compared to 3.1% for [36]. This shows that our method is more robust

to the variability of subjects used for training and test. Finally, by investi-
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gating the failure cases, we notice that the different number of repetitions in

the sequences affects the accuracy of [36] for the case of similar gestures, like

Shoot and Goggles. To emphasize this latter aspect, we run an experiment on

the sequences of these two classes only. In the training set, we include Goggles

sequences with exactly 10 repetitions of the gesture, plus all Shoot sequences

except those with exactly 10 repetitions of the gesture (these latter sequences

are included in the test set). We observe that the recognition accuracy of the

class Shoot is increased from 39.4% using [36] to 80.2% using the proposed

approach. This shows that our method is able to handle various repetitions

of a single gesture within a sequence. Indeed, as we use DNBC to model the

sequences, repetitions of gestures are characterized by repetitions of the pro-

cess without changing the structure of the model, thus allowing robustness to

repetition variability.

4.2. Cornell Activity dataset 120

We use the Cornell Activity dataset 120 (CAD120) to test our approach in

the context of human activity recognition. This dataset contains 120 RGB-D

sequences of ten high-level activities involving manipulation with objects, per-

formed by four different subjects three times each. The variability of performed

activities, the variability of subject orientation in the scene and the body part

occlusion caused by objects make this dataset quite challenging. For a fair com-

parison with state-of-the-art methods, the leave-one-person-out cross protocol

is used, and the average accuracy and standard deviation among the four folds

are finally computed. Table 2 reports results obtained by our method in com-

parison to state-of-the-art. Our best accuracy is obtained by using a codebook

size of 100 for both features. In particular, methods are compared by separating

the case in which only the human skeleton is used, from the case in which both

skeleton and depth data are considered.
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Table 2: Cornell Activity dataset 120. Comparison of our approach to state of the art methods

Method Accuracy (%)

Skeleton Only

Koppula et al. [17] 27.4

Devanne et al. [36] 48.3

Our 69.4 ± 4.1

Skeleton + Depth

Koppula et al. [17] 80.6

Koppula and Saxena [46] 83.1

Rybok et al. [47] 78.2

Our (Skel + MLOP) 79.0

Our (Skel + LOP4D) 82.3 ± 3.4

From the results, we can first notice that our method significantly outper-

forms the other approaches when only skeleton data is used. More specifically,

in comparison with [36], which represents each activity by spatio-temporal tra-

jectory only, the recognition accuracy is improved by more than 20%. This

shows that when activities involve complex motions, it is not sufficient to ana-

lyze the global motion. Indeed, local analysis and decomposition of the activity

into MSs provides a better representation of activities, thus allowing a better

understanding of the human behavior. In addition, the accuracy of 69.4% ob-

tained by our method shows that the decomposition of the sequence allows us

to quite well recognize activity sequences involving objects manipulation, even

without describing any explicit information about objects held by the subject.

However, results show that using only skeleton data is insufficient to be com-

petitive with state-of-the-art methods. As we can see in Table 2, using depth

appearance features in addition to skeleton in our DNBC allows us to improve

the recognition by about 13%. As a result, we obtain competitive accuracy in

comparison with other approaches. Indeed, only [46] is above by less than 1%.

Note that methods in [17] and [46] use ground truth object bounding box in the

training process. In our case, we do not need this information. Moreover, the

small value of standard deviation among the folds shows that our method has
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a low dependency on training data.

Finally, by comparing the results obtained with our two different depth ap-

pearance features, we can notice that the 4DLOP feature is more effective.

This observation is strengthened by the confusion matrices in Fig. 7, and par-

ticularly by the confusion obtained for the pair of opposite activities stacking

and unstacking objects. We can see that using the LOP4D feature results in

less confusion between the two activities than using the MLOP feature. Indeed,

in this particular case, the average depth appearance of putting and taking the

object may be very similar and represented by the same symbol from the code-

book. The 4DLOP feature capturing the variation of depth appearance is more

suitable to discriminate the two elementary motions, and thus the two activities.

(a) (b)

Figure 7: Confusion matrices obtained on CAD-120 using MLOP (a), and 4DLOP (b).

On this dataset, we also evaluate the effectiveness of our method when

the value of parameters (size of the codebook and number of DNBC states)

is changed. The evolution of the accuracy with respect to both parameters is

displayed in Fig. 8 for both MLOP and LOP4D features. First, it can be ob-

served that the proposed method obtains the best accuracy using both features,

when a DNBC with 10 states is trained. It can be also observed that the ac-
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curacy is relatively independent from the number of states (except when only

three states are used). Second, we can notice the best accuracy is obtained with

a codebook of size 50 for the MLOP feature, and a codebook of size 100 for the

LOP4D feature. In addition, if too much exemplar features (i.e., 200) are used,

the accuracy falls down. Indeed, learning a codebook with too much symbols

may result in similar activities represented by different symbols. Hence, symbols

represent more a particular sequence performed by one subject, than a generic

template of one activity class.
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Figure 8: Accuracy evolution of our method with respect to varying parameters: the number
of states of DNBC (a), and the size of the codebooks (b).

4.3. Multi-Modal Action database

The Multi-Modal Action Detection (MAD) database [18], has been used to

evalaute our method in the online detection task. This RGB-D database has the

advantage of including long sequences of 20 subjects performing successively 35

actions, like Running, Throw and Kicking. Since actions are performed without

objects, and for a fair comparison with state-of-the-art-methods, we only use

skeleton data in these experiments. A five-fold-cross-validation over the 20

subjects is used as evaluation protocol. In each iteration, the labeled sequences

of four folds are used to build the vocabulary of MSs and train the DNBCs.
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We used the ground truth segmentation in order to separate each action of the

training sequences and learn one DNBC per action. One model corresponding

to the null class is also learned from transition intervals when the human is

standing.

Our method is run in an online way as described in Sect. 3.2. As a result, we

obtain a segmented sequence with an action label for each AU corresponding to

the action we detected. In order to evaluate the method and compare it with

the state-of-the-art, we compute two measures: Precision, which corresponds

to the percentage of correctly detected actions over all the detected actions;

Recall, that is the percentage of correctly detected actions over all the ground

truth actions. An action is considered as correctly detected if it overlaps with

50% of the segments of the ground truth action. The ground truth provided by

the database authors is obtained by manual labeling of sequences. We compare

these two measures with the SMMED and MSO-SVM methods, both proposed

in [18]. The average and standard deviation values among the five folds are

reported in Table 3. We can see that our method outperforms the state-of-the-

art approaches for both the measures.

Table 3: MAD database. Comparison of the proposed online detection approach with
SMMED [18] and MSO-SVM [18]. The precision and recall measures are computed

Measure (%) MSO-SVM [18] SMMED [18] Our

Recall 51.4 57.4 79.7 ± 6.4

Precision 28.6 59.2 72.1 ± 5.8

Fig 9 also shows the detection results of one sequence in comparison with

the ground truth and the best state of the art method, SMMED, proposed

in [18]. We can see that while both our method and [18] are able to accurately

detect actions along the time, our method detects more efficiently the end of

actions, thus resulting in a duration of detected actions closer to the ground

truth. As an overlap of 50% with ground truth is considered as the criterion of
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good detection, our method obtains higher values of recall and precision.

Figure 9: Action detection result, for the sequence-1 of subject-1 from the MAD database, of
the SMMED method [18] (second row) and the proposed approach (third row) in comparison
to the ground truth (first row). Our method provides segments whose duration is closer to
ground truth compared to [18].

4.4. Online RGB-D dataset

The Online RGB-D dataset [35] proposes different types of sequences, which

allow evaluation in different contexts, like activity recognition and online ac-

tivity detection. The dataset contains RGB-D sequences of seven activities,

like drinking, eating or reading book. On this dataset, we first evaluate the ef-

fectiveness of our method for activity recognition. To this end, we follow the

same procedure as in [35] by employing a 2-fold cross validation. We compare

our approach with state-of-the-art methods according to the type of features

employed. When we use depth features in our method, we use the 4DLOP fea-

ture and learn codebooks of different sizes. The best accuracy is obtained for a

codebook of size 100. Results are reported in Table 4.

Table 4: Online RGB-D dataset. Comparison of our approach with state of the art methods
for the task of activity recognition

Method
Accuracy (%)

Depth Skeleton Depth + Skeleton

DCSF [16] 61.7 - -

Moving Pose [15] - 38.4 -

Actionlet [33] - - 66.0

DOM [35] 46.4 63.3 71.4

Our 64.5 ± 0.7 71.8 ± 1.8 80.9 ± 1.1

It can be noticed that the proposed approach outperforms the state-of-the-

art methods for every combination of features. It should also be noted that if
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only depth features are used, our method is not fairly comparable to the others.

Indeed, even if we only use depth features to describe MSs, our method still

needs skeleton data to identify MSs. Nevertheless, we can see that our segmen-

tation approach allows a good recognition of activities when each segment is only

described by depth appearance feature. Compared to skeleton-based methods,

our approach significantly outperforms other solutions. This shows that our

segmentation approach combined with shape analysis of human motion allows

us to efficiently recognize activities involving manipulation of objects. Even

without considering any information about objects held by the subject, we are

able to recognize 71.8% of the activities. This result is higher than that scored

by [33] and [35], which combine both skeleton and depth features. Finally, if

we add depth features to the skeleton, the recognition accuracy is increased to

80.9%, which is almost 10% above the best state-of-the-art method [35].

We evaluate also the latency of our approach by measuring the ability to rec-

ognize the activity without observing the whole sequence. Hence, the average

recognition accuracy is computed on different observed portions of the sequence,

as reported in Fig. 10 in comparison to state-of-the-art. We can notice that the

proposed approach outperforms the methods in [16] and [15] for every observa-

tion ratio. However, our method exceeds the method proposed in [35] from 40%

of observation. Indeed, when we observe less than 40% of the sequence, it often

results in activity sequences represented by one or two temporal segments. In

these cases, the dynamics of the activity is null (one observation) or very small

(two observations). Hence, the use of statistical models like DNBC is not appro-

priate and efficient for modeling short portions of the activity sequence. Finally,

our method allows efficient recognition when half of the sequence is observed

(accuracy of 75.6%). This shows that even if our method is not suitable for very

early detection of activities (less than 30% of observation), we guarantee a good
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recognition accuracy when only half of the sequence is observed.
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Figure 10: Latency analysis on Online RGB-D dataset. Accuracy obtained for different portion
of the sequences is compared to and state-of-the-art methods.

Finally, we propose to evaluate our approach for online activity detection.

The same set of activities as for activity recognition is used to train one DNBC

for each activity class. In addition, we use a set of background activities provided

by the dataset, so as to learn the null class. Finally, we run our detection method

on a new set of sequences. It includes 36 long sequences from 30sec to two

minutes, where 12 new subjects are successively performing different activities.

Manual labeling provided by the dataset is used as ground truth. Detection is

evaluated using a frame-level accuracy as in [35], computed by averaging the

number of well classified frames out the all set of frames in the test sequences.

Results are reported in Table 5. We can see that our method performs better

than state-of-the-art approaches to detect activity in an online manner. Using

an unoptimized Matlab implementation with an Intel Core i-5 2.6GHz CPU and

a 8GB RAM, we run our detection method at 7fps.

5. Conclusions

In this paper, we propose an effective method for modeling and understand-

ing human behavior, like gestures, actions and activities. Thanks to a pose-

based shape analysis, we decompose a sequence into relevant MSs. On the one
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Table 5: Online RGB-D Dataset. Comparison of our approach with state of the art methods
for the task of online activity detection

Method Accuracy (%)

DSTIP + DCSF [16] 32.1

Moving Pose [15] 50.0

DOM [35] 56.4

Our 60.9

hand, such MSs are represented as motion trajectories and interpreted in the

Riemannian shape space in order to capture the dynamics of human motion.

On another hand, we add depth appearance information in order to charac-

terize possible objects manipulation across MSs. The combination of skeleton

and depth data, as well as the modeling of the dynamics of the sequence of

MSs is done through a Dynamic Naive Bayes Classifier. Experiments on sev-

eral datasets show the potential of our method for the task of human behavior

recognition in comparison with state-of-the-art. Finally, we adapt our method

to allow online behavior detection in long sequences, which is an important chal-

lenge in real-world contexts. Evaluation on two datasets demonstrate that the

proposed approach outperforms state-of-the-art methods for online detection

of human behavior. As future work, we plan to investigate more in detail the

online detection problem and more specifically the early behavior detection.
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