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 ABSTRACT  

This paper is the following part of our project to predict the penetration rate for percussive 
drilling with rotary in very hard rock. As results in [1] have been shown that the rate of 
penetration was strong influent by Brazilian tensile strength and it was exist the correlation 
between the rate of penetration and the rock properties. Yet, the study was valid on six hard 
rocks in experimental result of test tricone and rotary with percussive. All relationships have 
been shown but the coefficient R2 is still very low. This paper will present a new relationship 
with high value of R2 based on previous data and also establish a mathematical relationship, 
numerical model to predict the penetration rate.  

Key words: Hard rocks, ROP, drilling, mathematical model, numerical model. 

1. INTRODUCTION TO STRESS WAVE THEORY 

1.1. Longitudinal elastic waves in a rod 

Consider one long rod, the cross-sectional area of which is equal to A. Let the Young’s 
modulus and the unit weight of the material that constitute the rod be equal to E and γ  (or 

density of the material, ρ , with g/γρ = ), g is the acceleration due to gravity and ν  is the 
Poisson’s ratio. Now, let the stress along section a-a of the rod increase byσ  Fig. 1. The stress 
increase along the section b-b can then give by xx ∆∂∂+ )/( σσ . Based on Newton’s second 

law: )()( onacceleratimassforce∑ = . 
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Figure 1. Longitudinal wave in a rod. 

Thus, summing the forces in the x direction, 
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where u is the displacement in the x-direction.   

Simplification of Eq. (1) gives equation of motion, 
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However, we can use the stress-strain relationship, xx Eεσ .= and strain-displacement 

relationship, xux ∂∂= /ε , or, 
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Substitution of Eq.(3) into Eq.(2) yields, 
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where, 

ρ
E

ve =                                                                  (6) 

The equation (5) called longitudinal wave equation, and the ve is the velocity of the 
longitudinal stress wave propagation, ve sometimes noted c.  

•  If the rod described above is confined, so that no lateral expansion is possible, then 
above equation can be modified as, 
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where, 

ρ
M

ve ='                                                               (8) 

M = constrained modulus =
)1)(21(

)1(

νν
ν

+−
−E

. 

 

1.2. Velocity of particles in the stressed zone 

It is important to differentiate between the velocity of the longitudinal wave propagation 

(ve) and the velocity of the particles in the stressed zone (
.

u ). In order to distinguish them, 

consider a compressive stress pulse of intensely xσ  and duration t’(Fig. 2a) be applied to the 

end of a rod (Fig. 2b). When this pulse is applied initially, a small zone of the rod will undergo 
compression. With time this compression will be transmitted to successive zones. During a time 
interval t∆  the stress will travel through a distance tvx e∆=∆ . 

At any time t>t’, a segment of the rod of length x will constitute the compressed zone. Note 
that, 

'tvx e=  

The elastic deformation of the rod then is, 
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Note that u is the displacement of the end of the rod. Now, the velocity of the end of the rod and, 
thus, the particle velocity is, 

E

v

t

u
u exσ

==
'

.

                                                            (10) 

Substitution of Eq. (6) into Eq.(10) yields, 
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Or 
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Equation (12) shows that the particle velocity is proportional to the axial stress in the rod. The 

coefficient of proportionality, ρev , is called the specific impedance of the material.    
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Figure 2. Velocity of wave propagation and velocity of particles. 

1.3. Compressive stress at impact contact 

Consider a cylindrical piston strikes on a rod drill with the blow velocity V0 (Fig. 3), 

corresponding to the cross-section A1, density 1ρ , longitudinal wave propagation c1, Young’s 

modulus E1, and A2, 2ρ , c2 and E2. 

 

Figure 3. Schematic picture of real rock drilling in particular representative for drop hammer testing. 

The mutual compressive force across the interface, F0, which is generated by the impact: 

pZVF .00 =                                                              (13) 

where Zp = Z1Z2/(Z1 + Z2). Z1 = A1 1ρ c1 and Z2 = A2 2ρ c2 are the respective characteristic 
impedances of bodies 1 and 2 at the impact interface.  

The amplitudes of the step-like compressive stress pulses that propagate away from the interface, 
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If the rock drill and the cylindrical piston are made of the same material ( 121 ρρρ == ; c1 = c2 = c; 
E1 = E2 = E) and the same cross section A, the amplitudes of stress pulses generated at contact 
impact are given by, 
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1.4. Bit motion equation and solution 

 As soon as the piston impacts on the rod with the velocity V0, there is a large contact force P on 
contact surfaces of piston and rod. If the bit is in contact with rock surface when the piston hits the 
rod, we assume that the impact force to rock surface equals P. During impacting, there is also the 
penetration force F acting on the interface of the rock/bit (Fig. 4), and the bit advance in the rock. 

In most theoretical treatments of percussive drilling the bit-rock interaction is described using 
empirical force-displacement relationships obtained for the actual bit-rock combination. Commonly, 
the force F/displacement u relationship is described as piece-wise linear [2, 3] (Fig. 5), this 
relationship show the force F is directly proportional to the displacement u, 

uKF .=                                                               (20) 

The equation of motion of the bit and rod is,  
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where M is the sum of bit and rod mass. 

From Eq.(12) we can derive the particle velocity = σ /(c. ρ ) with c = ve and according to the 
continuous condition of velocity at the impact end, we have the velocity of the bit and rod at a given 
time t and the impact force P, 
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AttP ).()( σ=                                                         (23) 

 

 

Figure 4. The motion of the bit and hammer. Figure 5. Idealized force/displacement relationship. 

From Eq.(22) and Eq.(23) the impact force P(t) can be derived, 
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Replacing Eq.(20) and (24) on Eq.(21) we have the equation of motion of bit and rod is, 
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With the initial condition is, 
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Equation (28) has two solutions: 
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Thus, Eq.(27) has two solutions: 
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and the solution of equation of motion of bit and rod, 
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where C1 and C2 are constants, can be determined from initial condition (*), 
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where C1 and C2 are constants, can be determined from initial condition (*), 
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where C1 and C2 are constants, can be determined from initial condition (*), 
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Note: After [3], in the Fig. 4, when the hammer impacts the rod, a compressive stress wave iσ  

is generated in the rod. The wave propagates towards the bit where it is denoted by iσ (t). At the 

bit a reflected stress wave rσ  is generated. At the rod-bit interface this wave is denoted by rσ  
(t). Under the combination action of the incident and reflected stress waves, the bit is accelerated 

towards the rock, and work W is performed. When the reflected stress wave rσ  arrives at the 
rod-hammer interface and the free end of the hammer, reflected stress waves are again 
generated. These waves form a second incident stress wave towards the bit which may or not 
cause further work to be done on the rock. From several points of view, for instance fatigue, it 
appears to be advantage to transfer a maximum of energy to the rock during the first stress wave 
interaction. From a series analysis of Lundberg, we found that more than 90% of the impact 
energy can be delivered to the rock during the first stress wave interaction, the effect of 
subsequent stress wave interactions has not be considered.  

1.5. Limitation of stress wave theory 

Stress wave theory is a mathematical model, from which the wave transmission is supposed 
to be along a slender bar with uniform section and mediums are full contact on the interface. We 
can derive from it that the full contact of bit front face with rock will result in the most efficient 
stress wave or impact energy transmission. However, this is completely contradictory with the 
fact that sharper bits drill faster or penetrate deeper and they have less contact area with rock 
surface in fact; example for a normal button bit, the practical contact area is about 10-20% of the 
bit front face area, and the sharper bits the less contact area [4]. 

2. NUMERICAL MODELING 

In fact, during the past few years, with the rapid development of computing power, 
interactive computer graphics and topological data structure, a large number of numerical 
methods and fracture models have been developed for research on the rock fracture process 
during percussive drilling [5]. Bruno and Gang Han 2005 [6] used one numerical tools “Finite 
Element Modeling code FLAC3D” to investigate drillbit penetration with compression, rotation 
and percussion. Their model simulation indicates that compressive failure due to high impact 
force may be dominant rock failure during bit-rock contact, while rock may fail in tension if 
there is not enough bottom hole pressure acting on the exposed rock surface. Because rock 
tensile strength is usually 1/5 to 1/10 of rock compressive strength, it may fail more easily in 
tension if conditions permit. For instance, tensile failure can account for up to 90% of rock 
penetration when there is no pressure acting on top of the rock at the hole bottom. We can derive 
from it that to achieve the maximum drilling efficiency, encouraging rock deforming in tension 
is recommended.  

Other interesting result is noted here that the optimum line spacing between the 
neighbouring button-bits has been proposed. This optimum line spacing is in fact a function of 
the drilled rock properties, the diameter and shape of the button-bit, as well as the drilling 
conditions: 
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where  

•  S is the optimum line spacing, 

•  F is the drilling force,  

•  Cσ is compressive strength, 

•  d is the size of the button-bit 

•  ν  is Poisson’s ratio, Young’s modulus E, 

•  GIC is the energy release rate,  

•  Ks is coefficient of the button-bit shape (Ks=0 for the sharp button-bit, Ks=0.8 for the 
spherical button-bit, and Ks=1.0 for the blunt button-bit), 

•  a is radius of the contact area  

3. RATE OF PENETRATION MODEL 

Predicting and interpreting the rate of penetration (ROP) of a drill bit is very importance and 
help well planning and optimization drilling operation. Based on the current understanding, a 
rate of penetration model is proposed. In this part, we will present one analytical model of 
penetration rate, ROP, to operating condition rock strength and bit parameters. 

3.1. Rock strength confinement 

There are accepted methods in the literature to calculate rock confined compressive strength 
(TCS) based on rock unconfined compressive strength (UCS) and confinement pressure (Pc). 

Φ−
Φ++=

sin1

sin1
cPUCSTCS                                                    (29) 

)1( sb
csPaUCSTCS +=                                                       (30) 

Eq.(29) called Mohr-Coulomb strength criterion and Eq.(30) was proposed by [7].  

where  

• φ  = Rock internal angle of friction,  

•  Pc = the pressure exerted on the rock matrix and is equal to difference of the applied 
external pressure (i.e. drilling mud dynamic or hydrostatic pressure) and the pore 
pressure of the fluid inside the rock. 

•  as and bs are coefficients dependent on rock 

3.2. ROP model 

We assume that the strain rates caused by a drill bit in percussive drilling are similar in the 
triaxial compression test. The confining pressure which is applied to the jacketed rock sample is 
interpreted as representing the bottom hole differential pressure in a wellbore. We should note 
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that there are four main components in percussive rock drilling feed, rotation, percussion and 
debris transportation [8]. The feed is used to keep the drill bit in contact with rock. The purpose 
of the rotation is to rotate the drill bit inserts in order to operate on new surface at the hole 
bottom at each blow and thus achieving a larger volume of crater per impact blown. Operational 
variables for a top hammer are defined in Fig. 5. Thus, we propose the following 
phenomenological model for the percussive penetration rate, ROP, caused only by percussion 
component.  

 

Figure 5. Schematic picture of real rock drilling. 
Drilling rate, R, equals, 

A
dt

dV
fROP /.=  (31) 

where, 

•  ROP: is the penetration rate (m/min), 
•  f: is the blow frequency (blow/min), 
•  dV/dt: is the volume rate of rock removal (m3/min), 
•  A: is the hole cross-section area (m2). 

The penetration rate for a given rock can be estimated from Eq. (31) by study the volume 
removed in impact tests. Because this volume is hard to determine, two useful formulas will be 
presented in the follow paragraphs.  

Theoretically, the penetration rate of a drill depends on the power output (power transmitted 
to the rock) and the drilling strength of the rock. A basic equation for penetration rate for all type 
of drills is given by, 

'.

'
.

EA

P
fROP=                                                               (32) 

where, 
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•  ROP: is the penetration rate (m/min), 

•  f: is the blow frequency (blow/min), 

•  P': is the power transmitted to the rock, 

•  A: is the hole cross-section area (m2), 

•  E’: is the specific energy (N m/m3), or the energy required to remove a unit volume of 
rock, 

An expression for the prediction of penetration rate derived by the senior author [9] is given 
below, 

'.

.
.

EA

E
fROP i η=                                                              (33) 

where, 

•  ROP: is the penetration rate (m/min), 

•  f: is the blow frequency (blow/min), 

•  Ei: is the energy per blow (N m), 

• η : is the efficiency of energy transmission from the drill bit to the rock, 

•  A: is the hole cross-section area (m2), 

•  E’: is the specific energy (N m/m3), or the energy required to remove a unit volume of 
rock. 

 

 

Figure 6. Test matrix for the Clauthal work. Dashed lines indicate options that were not fully tested [10]. 

The above equation shows that the penetration rate is proportional to blow energy and blow 
frequency, as well as being inversely proportional to the specific energy. The efficiency of 
energy transmissionη , denotes that proportion of energy per blow Ei, that goes into rock 
breaking. The obvious maximum (100 per cent energy transfer) and minimum (0 per cent energy 
transfer) limits on η  are respectively, 1.0 and 0.0.  
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It is well known from previously published works of [8] that specific energy in rock cutting 
is effected significantly by cutter geometry and rock properties. Ralf Luy 1992 [10] worked with 
4 rocks (Granit, Amphibolit, Gabbro, Diorit) and five different cutters were used. The shapes 
and dimensions of these cutters and rocks properties are presented in the Fig.6 and Table 1. 

Table 1. Compressive strength and densities of the rock specimens [10]. 

Rock type Compressive Strength, MPa Density, g/cm3 

Granite 167 2,593 

Diorite 180 2,959 

Gabbro 281 2,620 

Amphibolite 302 2,770 

We can derived from his results that the specific energy, E’, is a function linear of bottom hole 
pressure, Eq.(34).  

baPE b +='                                                               (34) 

where, 

Ei: is the energy per blow (N m), 

a,b: are the constants, depend on the rock properties and impact energy, 

Pb: is the bottom hole pressure. 

Substituting the Eq.(34) in Eq.(32), (33), the penetration rate can be determined by, 

).(

'
.

baPA

P
fROP

b +
=                                                  (32bis) 

Case 1 

In practice, we can estimate rapid the penetration rate, ROP, by using the Eq.(33bis). The 
energy transmission efficiency, η , defined in [11, 12]. 

Case 2 

In the general case, the penetration rate, ROP, determined by Eq.(32bis). The power 
transmitted to the rock, P’, equals the area under the curvature force F-displacement (Fig. 4). In 
the real case, the P’ value must be measured in dynamic test and P’ depends on impact velocity 
[2]. In the simplest case, we assume that the dynamic force-penetration curve is equivalent to the 
relationship between the stress-deformation in the triaxial test.  
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Figure 7. Idealized stress-deformation curve during percussive action ([3, 13]). 

In the Fig. 7, we present the idealized stress, Pm-deformation, u curve during percussive 
action. Here, PM is the maximum mean stress, and uM is the maximum deformation, correspond 
to the rock sample is fracture. The power transmitted to the rock, P’, can calculated by, 

)(
2

1
' MM uPP =                                                          (35) 

The maximum mean stress is defined by, 

3

2 b
M

PTCS
P

+
=                                                       (36) 

where, 

TCS: is the triaxial compressive strength, 

Pb: is the confining, corresponding to the bottom hole pressure. 

From Eq.(29) in Eq.(36), we have: 

bM P
UCS

P .
sin1

sin3

3 Φ−
Φ−+=                                                 (37) 

Substituting Eq.(35) and Eq.(37) in to Eq.(32bis), the formula of penetration rate becomes, 

m
b

b

u
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P
UCS

fROP .
)(2

sin1

sin3

3.
+

Φ−
Φ−+

=                                         (38) 

Our model proposed Eq. (38) shows that the penetration rate, ROP, relates to rock properties 
and drilling conditions. Yet, the bottom hole pressure has been account in to our model.   

4. EXPERIMENTAL MODEL 

In the previous paper [1], the experimental model has established following relationship: 

ROP=-0.0283UCS + 15.11, with R2=0.5632 

ROP = -0.0198TCS + 15.387, with R2=0.6635 
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ROP = -0.4316 Tσ  + 14.478, with R2=0.8001 

However, the linear correlation shown a coefficient R2 is not really high. In order to 
improve and optimize the best correlation we tested with other trend lines such as: exponential, 
logarithmic, polynomial and power. Finally, the polynomial correlation is taken with the highest 
value of R2 as shown in the Fig. 8, Fig. 9 and Fig. 10. The result can be resumed in these follow 
relationships: 

ROP = -0.0001UCS2 + 0.0246UCS+11.213, with R2 = 0.6247      (39) 

ROP = 1E-05TCS2 - 0.0274TCS + 16.402, with R² = 0.6655                 (40) 

ROP = -0.0292σT
2 + 0.201 σT + 12.059, with R² = 0.8989                     (41) 

From Eq.(39), (40), (41) we can consider that the Brazilian tensile strength has significant 
role with ROP. The Eq. (41) can be used to predict ROP for the very hard rocks.  

 
Figure 8. Penetration rate versus UCS. 

 
Figure 9. Penetration rate versus TCS. 
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Figure 10. Penetration rate versus Tσ . 

5. CONCLUSIONS 

The study was valid on six hard rocks in experimental result of test tricone and rotary with 
percussive. It has been shown that we can predict the rate of penetration by using the exponential 
relationship between ROP and Brazilian tensile strength.  

The mathematical model or numerical modeling can help to predict the rate of penetration 
in the case of rotary with percussive drilling technology, but it needs the test called “single 
cutter” to determine the parameters. 
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TÓM TẮT 

DỰ BÁO TỐC ĐỘ KHOAN CƠ HỌC ĐỐI VỚI CÔNG NGHỆ KHOAN ĐẬP KẾT HỢP 
XOAY TRONG TRƯỜNG HỢP KHOAN ĐÁ RẤT CỨNG 
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 Bài báo này là phần tiếp theo trong dự án xây dựng và dự báo tốc độ khoan cơ học của công 
nghệ khoan đập kết hợp xoay trong dầu khí đối với trường hợp đá rất cứng. Như kết quả đã chỉ 
ra trong [1] mô hình dự báo tốc độ khoan phụ thuộc nhiều vào độ bền kéo Brazilian và đồng thời 
cũng tồn tại mối liên hệ giữa tốc độ khoan và tính chất của đá. Ngoài ra, nghiên cứu đã dựa trên 
kết quả thực nghiệm của sáu loại đá cứng trên cơ sở thí nghiệm choòng ba chóp xoay và thí 
nghiệm khoan đập kết hợp xoay. Tất cả mối liên hệ chỉ ra mối liên hệ nhưng hệ số R2 khá nhỏ. 
Bài báo này sẽ giới thiệu mối liên hệ mới với hệ số R2 cao hơn dựa trên cơ sở kết quả thí nghiệm 
trước kia và đồng thời cũng giới thiệu mô hình toán học, mô hình số để dự báo tốc độ khoan. 

Từ khóa: đá cứng, ROP, khoan, mô hình toán học, mô hình số. 


