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Abstract: Huge maintenance costs in non-residential buildings weighted it down the overall 

costs allocated to HVAC (Heating, ventilation and air conditioning) system maintenance. 

Maintenance Management objective is to reduce or even avoid the corrective maintenance 

by proper planning and implementation of maintenance tasks at the right time. The aim of 

this paper is to early plan maintenance interventions for a multi-components system based 

on stoppages characteristics, system RUL (Remaining Useful Life) and components 

criticalities. This maintenance plan is made through a dynamic maintenance decision 

approach (DMDA) to help the maintenance expert in taking decision. Since combining 

maintenance activities is cheaper than performing maintenance on components separately, 

maintenance actions groupings are performed in the proposed approach by the mean of odds 

algorithm. This will allow optimizing system availability, reducing maintenance costs and 

delaying as late as possible maintenance interventions. Components criticalities are used for 

prioritizing components in the grouping process. Moreover, DMDA take into account 

predictive information such as system/components RUL, given by an existing prognostic 

process. At the end, a numerical example of a HVAC system with five components (Heat 

exchanger, filter, dampers, valve and fan) demonstrates the use and the advantages of the 

proposed DMDA. 

Keywords: maintenance decision making, prognostics, maintenance costs, non-residential 

buildings, HVAC system, maintenance grouping, odds algorithm, opportunity, stoppage, 

optimal stopping, availability. 


1. INTRODUCTION 

The objective of maintenance management is to reduce 

or even avoid the corrective maintenance by proper 

planning and implementation of maintenance tasks at 

the right time (Au-yong et al. 2014). One universal 

maintenance performance measurement, is 

maintenance cost. Indeed, a significant amount of the 

annual operational costs of facilities is attributed to 

maintenance costs. Maintenance costs are often used to 

compare maintenance performance between companies 

or between facilities within the same company.  Hence, 

the challenge is to find an efficient strategy in order to 

plan maintenance tasks since the system is multi-

components. A proactive maintenance decision has to 

be made based on predictive information such as RUL 

(Remaining Useful Life) estimate. Remaining Useful 

life impacts on the planning of maintenance activities, 

spare parts provision, operational performance and the 

profitability of the facility owner (Si et al. 2011).  

Over the last decades, a particular attention has been 

paid on grouping maintenance for multi-components 

facilities. The interest of the maintenance grouping is 

to take the advantages of positive economic 

dependence that implies that combining maintenance 

activities is cheaper than performing maintenance on 

components separately (Do et al. 2015). Hence, a 

proper maintenance actions grouping must rely on 

strong criteria. In literature, several criteria have been 

proposed. Authors in (Fitouri et al. 2016), (Vu et al. 

2014) proposed a maintenance grouping approach for 

multi-components facilities based on structural 

dependencies between those components. (Van 

Horenbeek & Pintelon 2013) present a method based 

on the updated failure probability distribution. 

Interested readers can see the following: (Lin & Wang 

2010; Bouvard et al. 2011). In the existing maintenance 

grouping approaches, maintenance durations are 

neglected. (Do et al. 2015) propose a maintenance 

grouping approach using genetic algorithm and 

MULTIFIT taking into account maintenance durations. 

Must of the works in literature are focusing on 

maintenance cost optimization for reducing 

maintenance costs. Nevertheless, in some application, 

one may want to optimize the availability of the system 

and delay as late as possible the maintenance 

intervention.  

This paper proposes a maintenance grouping approach 

based on the concept of opportunity developed by 

(Thomas et al. 2008) for production systems.  

In the present work, the application domain is Heating, 

ventilation and air conditioning (HVAC) in buildings 

and especially Non-residential buildings such as 



Airport, hostel, commercial and office buildings. 

HVAC system is responsible of thermal comfort and 

indoor air quality. Simply, a HVAC system is a set of 

components that work together to provide conditioned 

air to an occupied space to maintain the desired comfort 

level (Sugarman 2005) As depicted on (Fig.1), HVAC 

system consists of chillers, boilers, hot water pump, 

piping, pipes, valves, dampers, air handling unit (AHU) 

(ASHRAE 2012), (Handbook 2009). 

 
Fig. 1. HVAC system Overview 

HVAC maintenance, being a part of building 

maintenance (BM), is needed to keep HVAC running 

and prevent any sudden failure that can bring the whole 

system out of acceptable operating conditions. The 

reasons to properly maintain the HVAC system include 

energy savings, decreasing of maintenance costs, 

prevent hazardous conditions, increase the service 

lifetime of HVAC equipment and guarantee thermal 

comfort for building’s occupants. 

HVAC maintenance like others facilities is based 

usually on manufacturer’s guidelines and 

specifications. The interest in buildings maintenance is 

that the building operation is conditioned by the 

presence of people in building. This means that HVAC 

system can be also stopped because nobody is present 

in the building or a part of it (nobody in a room hotel or 

in an office). Hence, not only planned stoppages for 

maintenance tasks could be used (replacements, 

adjustments, major overhauls, inspections and 

lubrications, adjustment or calibrations, cleaning 

(Springer & Dakin 2013), but also stoppages out of 

maintenance (change in building occupancy). All these 

stoppages are the inputs of the proposed approach. 

Based on the remaining life of the system, some of 

stoppages will be selected to perform maintenance 

actions on HVAC components. In the rest of the paper, 

these stoppages are called opportunities for 

maintenance and are defined as the stoppages that start 

before the end of life of the system. According to the 

type of buildings, opportunities to perform 

maintenance on HVAC system are infrequent.  In this 

case, the grouping maintenance philosophy has to be 

introduced in HVAC maintenance for tactically build 

maintenance activities schedule. This will lead to time 

and maintenance costs savings and HVAC availability 

optimization as well. A mathematical tool known as 

“odds algorithm” applied for maintenance objectives in 

(Thomas et al. 2008), is used in the proposal. Odds 

algorithm provided a classification of 

stoppages/opportunities in a decreasing order of 

relevance for each components. 

Hence, this paper aims to develop an opportunity 

formalism based dynamic maintenance grouping 

approach for early maintenance planning. It contributes 

to take dynamic decision in predictive maintenance 

strategy. Moreover, components criticality and 

predictive information such as RULs 

components/system are used in order to give priority to 

one components within a group. This paper is organized 

as follows. The proposed DMDA is presented in section 

2 wherein every steps will be detailed. Section 3 is 

devoted to illustrate the use and the advantages of the 

proposed approach through a numerical example. 

Finally, section 4 concludes and highlights prospects 

works. 

2. DYNAMIC MAINTENANCE DECISION 

APROACH 

This section deals with the presentation of the dynamic 

maintenance grouping process (DMGP) proposed in 

this paper. The proposed model incorporates the 

predictive information, components criticality and 

stoppages characteristics to build the maintenance 

scheduling for decision taking. Figure 3 depicts the 

general architecture of the proposed approach. 

 

Fig. 2. Dynamic maintenance grouping architecture 

2.1. Inputs Data 

Three inputs are required for DMGP’s use: system 

RUL, components criticality, date and duration of 

stoppages. 

2.1.1. System RUL 

The remaining useful life (RUL) of a system is defined 

as the length from the current time to the end of the 

useful life (Fig.3). The RUL of a system is linked to the 

RUL of its components that are provided by a 

prognostic process. RUL is a random variable as it is 

influenced by the stochastic characteristics of the 

component degradation (Edwards et al. 2010), (Voisin 

et al. 2010). Indeed, it depends on the current age of the 

asset or component, the operating environment and the 

observed condition monitoring (CM) or health 

information. Thereby, the RUL is given as a 

probabilistic estimate bounded with confidence 

intervals (Sankararaman & Goebel 2013). Numerous 



methods and tools regarding failure prognostics have 

been proposed and reported in the literature (Medjaher 

et al. 2013; An et al. 2013; Wang et al. 2012; Kamran 

2014). These methods will be not developed in this 

paper. A prognostic process is assumed exist and ready 

to be used. 

 
Fig. 3. Remaining Useful Life illustration (Medjaher 

et al. 2013) 

2.1.2. Components Criticality 

The criticality of a component means how much the 

failure mechanism affects the system KPIs (Keys 

Performance Indicators). The criticality is determined 

through Failures Modes effects analysis (FMEA) by the 

product of frequency (FI), severity (SI) and detection 

(DI) indexes. 

𝐶𝑟𝑖𝑡 = 𝐹𝐼 ∗ 𝑆𝐼 ∗ 𝐷𝐼 (1) 

In this paper, criticality elaboration is not the focus and 

will not be developed. It is assumed that the criticality 

already exists. Components criticality will be used in 

the proposal for the grouping process. 

2.1.3. Stoppages characteristics 

For an observation horizon, the calendar of available 

facility stoppages is available. The stoppages include 

those scheduled for systematic maintenance and those 

out of maintenance reasons. Depending on the type of 

building, these stoppages are infrequent. 

A stoppage is defined by the couple (𝑆𝑡𝑖; 𝐿𝑖)1≤𝑖≤𝑛, 

respectively the starting time of a stoppage and its 

length and i = {1,2, … , n} 𝑛, the number of system 

stoppages. A stoppage exists if 𝐿𝑖 > 0. Then, the 

dynamic grouping process can be launched. 

2.2. Dynamic Grouping Process 

 

This part is the cornerstone of the proposal. It consists 

of two main sub-processes shown in Fig.4: To classify 

opportunities and to group components. More 

information about these processes are provided 

hereafter. 

2.2.1. To classify opportunities 

As stated before, an opportunity is a stoppage which 

appears (planned or not), before the RUL of the system. 

For a multi-components system, one needs to choose 

them among all the scheduled stoppages. Hence, this 

choice is based on the RUL estimate well defined 

earlier. 

 
Fig. 4. Architecture of Dynamic grouping process 

In figure 5, the probabilistic RUL is represented by a 

density of probability. It is obvious to see that the first 

three stoppages can be selected as opportunities without 

uncertainty. For the last three one, the decision is not so 

simple. Thus, the issue here can be formulated as 

follow: Do the last three stoppages could be used to 

perform maintenance intervention? If so, what is the 

risk associated with it? One can note that the decision 

to select a stoppage as an opportunity is associated with 

a risk, linked to the failure of the system to happen 

before. 

 
Fig. 5. Stoppages illustration and RUL effects 

We define an alpha level corresponding to the decision 

maker choice. This level allows setting a time, 

corresponding to the time where the cumulative density 

function associated with the RUL equals to alpha. The 

selection of opportunities will be based on this time 

noted 𝑇𝑎𝑙𝑝ℎ𝑎 that represent the failure time of the 

system (Fig.6). 

 

Fig. 6. Opportunities choice with deterministic RUL 

Next, the classification of opportunities is made 

through a tool so-called odds algorithm, based on Bruss 

theorem (Bruss 2003). The odd theorem gives a unified 

answer to a class of stopping problems on sequences of 

independent indicator functions (Bruss 2003). It is the 

elegance of simplicity, which makes the odds theorem 

attractive. This theorem was introduced by Thomas 

(Thomas et al. 2008) in maintenance area to answer the 

following question: Given a maintenance action, what 

is the most appropriate opportunity to perform it? In 



other words, is it possible to classify opportunities for 

each component of the system?  

Odds algorithm starts with definition of probabilities 

associated to events’ appearance, here related to 

opportunities. To apply it in maintenance, two 

characteristics of components, usually available in 

CMMS (Computerized Maintenance Management 

System), are used: reliability and maintainability.  

Reliability is assumed to be a Weibull distribution with 

the shape parameter β and the scale parameter η. 

Maintainability is supposed following an exponential 

law with parameter μ. Thereafter, we call ‘success’ a 

stoppage where the system is alive at time 𝑆𝑡𝑖 and 

maintainable during 𝐿𝑖 with now i = {1,2, … , m}, 𝑚 the 

number of opportunities. The probability to have a 

success is 𝑃𝑖. This probability of success is computed 

by the product of reliability and maintainability as 

follow. 

𝑃𝑖 = 𝑅(𝑆𝑡𝑖). 𝑀(𝐿𝑖),1≤𝑖≤𝑚 (2) 

Then, the odds are computed through the following 

equation. 

𝑟𝑖 =
𝑅(𝑆𝑡𝑖). 𝑀(𝐿𝑖)

1 − 𝑅(𝑆𝑡𝑖). 𝑀(𝐿𝑖)
⁄  (3) 

The next step consists in summing up the odds from the 

last opportunity until reaching the value 𝑠 ≤ 1.  Then, 

the first stoppage where the sum of odds will exceed 1 

is the optimal one and the next stoppages, called 

alternatives, are considered as sub-optimal. Then, it is 

removed from the opportunities list and the sum is 

recomputed, in order to get the second best success. The 

same operation has to be reiterated until the sum of 

odds is less than one. The result is a classification of all 

opportunities.  

Finally, the expert has at his disposal an ordered list of 

all opportunities ranking according to their pertinence 

order. This will help maintenance expert to plan a 

maintenance action in another stoppage if for example 

spares parts are not available during the first considered 

stoppage. The odds algorithm provides a reward for 

each opportunity in the classification. This reward is 

computed by the following expression: 

𝑉𝑠

= (∏ 1 − 𝑅(𝑆𝑡𝑧). 𝑀(𝐿𝑧)

𝑚

𝑧=𝑠

) . (∑
𝑅(𝑆𝑡𝑧). 𝑀(𝐿𝑧)

1 − 𝑅(𝑆𝑡𝑧). 𝑀(𝐿𝑧)

𝑚

𝑧=𝑠

) 
(4) 

Knowing the stoppages parameters, odds algorithm is 

used to develop the proposal. More details are given in 

the following section.  

The odds algorithm is run for each component of the 

given system. For each component, an ordered list of 

opportunities to perform maintenance (Table 1). Then, 

based on this classification (list), one has to decide for 

each stoppage the group of component to be 

maintained. 

Table 1: Opportunities classification 

Components 
 C2 … 

 

Opportunities 

classification 

S4 S5 … S4 

S2 S3 … S1 

 S1 …  

One property of the classification for a component is 

that the sequence of stoppages is always in reverse 

order. If 𝑆𝑞,1≤𝑞≤𝑚 is the first stoppage in the 

classification for a component, the following stoppages 

are 𝑆𝑞−1, 𝑆𝑞−2, …  For example in table 1, we have the 

sequence 𝑆5, 𝑆3 and 𝑆3. It means that considering a 

success for a component, the next success in the 

sequence is always earlier. Let note CS a matrix such 

that 

{
𝐶𝑆𝑖,𝑗 = 1 , 𝑖𝑓 𝑆𝑗  𝑖𝑠 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠 𝑓𝑜𝑟 𝐶𝑖

𝐶𝑆𝑖,𝑗 = 0 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
 

This matrix is useful in grouping process. 

2.2.2. To group components 

 

The grouping criterion is the optimal stoppage.  

For each stoppage, components with the same optimal 

stoppage are considered. Therefore, let G be set of sets 

such that 𝐺 = {𝐺1, … , 𝐺𝑘}1≤𝑘≤𝑝, with p the number of 

groups. p is less or equal to 𝑚, the number of 

opportunities, since some stoppages may not be optimal 

for any component. 𝐺𝑘 is a subset defined as follow: 

𝐺𝑘 = {𝐶𝑖 /max (𝑐𝑠𝑖,𝑗=1)=𝑘
 } (5) 

The grouping process starts with the greater stoppage 

in the classification. The sum of the Mean Time to 

Repair (MTTR) of components is computed for each 

group as follow. 

𝑆𝑢𝑚𝐺𝑘
= ∑ 𝑀𝑇𝑇𝑅𝑖

𝑐𝑛𝑘

𝑖=1

 (6) 

This sum has to be less or equal to the length of 

stoppage. 𝑐𝑛𝑘 is the number of components in 𝐺𝑘. 

𝑆𝑢𝑚𝐺𝑘
≤ 𝐿𝑘 (7) 

If (7) is satisfied, the whole component can be 

maintained during 𝑆𝑘. If the condition (7) is not 

satisfied, some maintenance action will not be 

performed during 𝑆𝑘, meaning some components have 

to be removed from 𝐺𝑘, such that (7) is satisfied.The 

maintenance action to be shift has to be performed 

earlier according to the ordered list obtained at stage 1 

(table 1). As we aim to maximize the usage of all 

1C
nC



components, the shift has to be minimized. Hence, we 

will consider as shifting candidate the component 

according to their next-suboptimal stoppages.  

Now let order the components according to the 

possibility to shift them: the first rank corresponds to 

the first candidate to shift. The ordering criteria are: 

a) The stoppage shift, noted 𝑙𝐶𝑖
. It represents the 

number of component shifting from a stoppage to the 

next where 𝑐𝑠𝑖,𝑗 = 1. The shifting has to be minimized 

since one looking in maintenance the longest usage. 

𝑚𝑖𝑛{𝑙𝐶𝑖,1≤𝑖≤𝑐𝑛𝑘
/𝑐𝑠𝑖,𝑘 = 1} (8) 

The smallest the stoppage shift, the better candidate is 

the component. 

b) The criticality of the component 𝐶𝑟𝑖𝑡(𝐶𝑗) is 

classified in decreasing order. The higher the criticity, 

the better candidate is the component. 

c) The RUL of the component 𝐶𝑗 is 𝑅𝑈𝐿(𝐶𝑗). 

Since we aim to optimize the usage of the components, 

the RULs are classified in decreasing order. The higher 

the RUL, the better candidate is the component. 

The output of the dynamic maintenance decision 

approach is the maintenance action planning in a 

tactical level. 

 

3. NUMERICAL EXAMPLE 

An example is given to validate the proposed dynamic 

maintenance decision approach. A study is performed 

on AHU (Air Handling Unit) system with five 

components: Heat exchanger, filter, valve, fan and 

damper. We assume that only one maintenance action 

has to be performed on each component. Their lengths 

(LMA) are given in table 1. The priority order is 

determined through components criticalities. Knowing 

that KPI (Key Performance Indicator) is energy 

efficiency, Heat exchanger (𝐶1) is more critical than 

other component. It is follow by filter (𝐶2), valve (𝐶3), 

fan (𝐶4) and damper (𝐶5). For each component, 

reliability follows a Weibull law with scale parameter 

β, shape parameter η (Table 1). Maintainability follows 

an exponential distribution with 𝜇 = 1
𝐿𝑀𝐴⁄ . It is 

assumed that prognostic process gave a RUL from 

which eighteen stoppages of AHU system have been 

selected. 

Table 2: Components and their characteristics 

Components 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝛽 6 1 3 2.5 2 

η 800 400 500 700 600 

𝑀𝑇𝑇𝑅 5 3 1 2 4 

Criticality 100 50 75 90 110 

Stoppages characteristics are like following: 

Starting Time : [150;300;350;400; 450; 

557;652;700;850;951;1050;1141;1228; 

1322;1410;1508;1612;1706;1803;1904] 

Stoppages length: 
[1;5;9;2;6;5;4;6;7;7;8;9;9;1;14;4;1;

6;10;7]. 

The table shows the results of odds algorithm for the 

aforementioned stoppages and components 

characteristics. 

Table 3: Odds Results 

Comp

onents 
Stoppages/opportunities classification 

C1 S8 S6 S5 S4 S3 S2 

 

C2 S6 S5 S3 S2    

C3 S5 S4 S3 S2 S1   

C4 S8 S7 S6 S5 S4 S3 S2 

C5 S6 S5 S3 S2    

In table 3, the optimal stoppage preconize by the odds 

algorithm is optimal for the considered component. The 

following stoppages are alternatives considered as sub-

optimal and are helpful to maintenance expert as stated 

earlier. The table 4 represents the matrix 𝐶𝑆. The red 

arrows show the number of shifting for each 

component. 

Table 4: Matrix 

Stoppage S1 S2 S3 S4 S5 S6 S7 S8 

C1 0 1 1 1 1 1 0 1 

C2 0 1 1 0 1 1 0 0 

C3 0 1 1 1 1 0 0 0 

C4 0 1 1 1 1 1 1 1 

C5 0 1 1 0 1 1 0 0 

The greater stoppage in the classification (Table 3) is 

𝑆8. Hence, the grouping process is like follow: 

 𝐺8 = {𝐶1, 𝐶4} with stoppage 𝑆8 

𝑆𝑢𝑚𝐺8
= 𝑀𝑇𝑇𝑅𝑐1 + 𝑀𝑇𝑇𝑅𝑐4 = 5 + 2 = 7ℎ 

𝑆𝑢𝑚𝐺8
> 𝐿𝑆8

= 6ℎ , Condition (7) is not satisfied. 

Then, min (𝑙𝑐1
= 2, 𝑙𝑐4

= 1) =   𝑙𝑐4
 That means 𝐶4 is 

removed from 𝐺8 and 𝐶1 will stay.  

𝐺8 = {𝐶1} and 𝐺7 = ∅ ∪ {𝐶4} 

 𝐺7 = {𝐶4}, with stoppage 𝑆7 

𝑆𝑢𝑚𝐺7
= 𝑀𝑇𝑇𝑅𝑐4 = 2ℎ < 𝐿𝑆7

= 4ℎ; Condition (7) is 

satisfied. 

 𝐺6 = {𝐶2, 𝐶5} with stoppage 𝑆6 



𝑆𝑢𝑚𝐺6
= 𝑀𝑇𝑇𝑅𝑐2 + 𝑀𝑇𝑇𝑅𝑐5 = 3 + 4 = 7ℎ 

𝑆𝑢𝑚𝐺6
> 𝐿𝑆6

= 5ℎ , Condition (7) is not satisfied 

Then, min (𝑙𝑐2
= 1, 𝑙𝑐5

= 1) =   ∅ . That means the 

next criterion that is criticality will be used. 

𝐶𝑟𝑖𝑡(𝐶2) = 50 𝑎𝑛𝑑 𝐶𝑟𝑖𝑡(𝐶5) = 110 

𝐶5 is removed from 𝐺6 and 𝐶2 will stay. 

𝐺6 = {𝐶2} and 𝐺4 = {𝐶3} ∪ {𝐶5} 

 𝐺5 = {𝐶3, 𝐶5} with stoppage 𝑆5 

𝑆𝑢𝑚𝐺5
= 𝑀𝑇𝑇𝑅𝑐3 + 𝑀𝑇𝑇𝑅𝑐5 = 1 + 4 = 5ℎ 

𝑆𝑢𝑚𝐺5
< 𝐿𝑆5

= 6ℎ , Condition (7) is satisfied 

Finally, the grouping process gives the following 

results shown in table 3. 

Table 5: Grouping process results 

Group 𝐺1 𝐺2 𝐺3 𝐺4 

{C1} {C2} {C3,C5} {C4} 

Sum 5h 3h 5h 2h 

Stoppage S8 S6 S5 S7 

Length S 6h 5h 6h 4h 

Now, the maintenance expert has at his disposal 

grouping process results. He is able to take decision 

with more confidence. 

 

4. CONCLUSION 

In this paper, a dynamic maintenance grouping 

approach is proposed to build a maintenance schedule 

for a multi-components system. The grouping criterion 

is the optimal stoppage provide by the mathematical 

tool so called odds algorithm. Hence, this contribution 

is original. Moreover, Criticality as well as prediction 

information such as system RUL are used. Indeed, the 

proposed approach is proved dynamic because of three 

aspects: 1- If the condition (7) is not satisfied, some 

components are reallocated to another group based on 

three criteria given above; 2- Any time, RUL of the 

system is recomputed and the maintenance expert can 

change the level alpha. The DMDA leads to optimize 

the availability of the system and delay as late as 

possible the maintenance intervention 

Our future work will be to applied the proposed 

approach in real system to prove its efficiency and 

compared its performance to several conventional 

maintenance policies. Moreover, the RUL 

uncertainties, spares parts and human resource will be 

considered in DMDA. The authors would like to 

acknowledge the financial support of the European 

Commission under the Seventh Framework Program 

titled Energy-In-Time that aims to develop Smart 

Energy Simulation Based Control method to reduce the 

energy consumption and energy bill in the operational 

stage of existing non-residential buildings. 

(https://www.energyintime.eu/). 
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