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Asymptotic consistency of the RS-IMEX scheme
for the low-Froude shallow water equations:
Analysis and numerics

Hamed Zakerzadeh

Abstract In the present work, we formally prove the asymptotic consistency of the
recently presented Reference Solution IMplicit-EXplicit (RS-IMEX) scheme for the
two-dimensional shallow water equations. The scheme has been analyzed exten-
sively for the low-Froude one-dimensional shallow water equations in [Zakerzadeh,
IGPM report 455 (2016)], and the present paper is going to discuss the asymptotic
consistency analysis for the two-dimensional case, with the aid of some numerical
experiments.

1 RS-IMEX schemes: an introduction

In the singular limits of conservation laws, characterized by the singular parameter
€ € (0, 1] approaching zero, the type of the equations changes, e.g., when the Mach
number, denoted by €, approaches zero for the Euler equations (the incompressible
limit), the sound speed goes to the infinity and the system changes to be hyperbolic-
elliptic. Such a singularity not only hinders the analysis (see [16]]), but also gives rise
to lots of issues for numerical schemes, e.g., schemes may lose their accuracy for
under-resolved mesh sizes (see [6]) for weakly compressible flows or the time step
gets very restrictive for explicit schemes, in virtue of the Courant—Friedrichs—-Lewy
(CFL) condition, i.e., At < € Ax, which leads to a huge computational cost.
Assuming that the “solution” of the singularly-perturbed problem converges to
the “solution” of the limit problem, we aim to discuss the counterpart of such a
convergence in the discrete level. This is the idea of Asymptotic Preserving (AP)
schemes [13]] for an e-dependent system converging to a limit for € — 0. The nu-
merical scheme is AP if it provides a stable, consistent, and efficient scheme for the
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continuous limit system. For the sake of simplicity, we only consider well-prepared
initial data to eliminate spurious initial layers.

The AP property has been studied extensively for conservation laws (as well
as kinetic equations, cf. [14]]), and several AP schemes have been developed and
analyzed; see [2, [17, 15, [12]] among others. Although most of these works present a
formal analysis, there are few results regarding the rigorous asymptotic consistency
or stability, e.g., [, 8 7,110, [19] for hyperbolic balance laws.

The bottom-line of these AP schemes is a mixed implicit-explicit (IMEX) ap-
proach to split the flux (or its Jacobian) into stiff and non-stiff parts and treat them
explicitly and implicitly in time. Such an approach is necessary for an €-uniform
CFL condition, but is not sufficient for asymptotic stability; see [L7] for instance,
where a CFL-stable IMEX scheme requires an e-dependent time step for stability.
This, in fact, gave the motivation for the RS-IMEX scheme, as we will review here.
The penalization method 9] for the kinetic equations, as well as [2] for the shallow
water equations are close to the RS-IMEX scheme, in essence.

The goal of this section is to provide a very brief introduction to the RS-IMEX
scheme; see also [[18, [LS]]. Then in the next section, we prove the asymptotic con-
sistency of the scheme followed by some numerical experiments in Section 4] The
reader is referred to [18]] for a rigorous asymptotic analysis for the one-dimensional
shallow water system, which is the backbone of the analysis in the present work.

Consider the general hyperbolic system of balance laws in 2 C R?

AU (x,t;€) +diveF(U,x,t;¢) = S(U,x,t;€), (1)

where Q := T is a d-dimensional torus, U € R? is the vector of unknowns,
F € R7*? is the flux matrix (in d space dimensions), € € (0, 1] is the singular pa-
rameter, and § € R is the source term. Note that we often suppress the dependence
of U, F and S on €. To have a hyperbolic system, we also assume that F has a real
diagonalizable Jacobian F' := dy F.

The main idea of the RS-IMEX scheme is to split the solution U of the balance
laws () into the (given) reference solution U and a perturbation U pert> 1.6, U =
U+U pert- The reference solution can be a steady state solution of (1), or the solution
of the asymptotic limit of (1)) as € — 0. Then, as in [18]], we use a Taylor expansion
around U to split the flux and source terms into reference (F,S), linear stiff (F ,§)
and non-linear non-stiff parts (f‘ , §):
+F+F,

+S+8.

~

F(U)=FU)+F (U)U e+ (FU)~F(U)~F' ({O)U pen) =
SW)=8U) +S'O)per + (SU)—SU)—S' O perr) =:

1]

We, then, scale the components of the perturbation (see [[18] for a discussion) by the
scaling matrix D := diag(e?,... &%), and define the scaled perturbation as V :=
DU perr t0 Obtain the corresponding scaled splitting:

G=G+G+G, Z=Z+Z+Z,
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with similar definitions as for the splittings of F and S. Defining R := —divyG +Z
(with analogous definitions for R,R and R), and also T as the (a priori-known) scaled
residual of the reference solution

T:=D '9U-R, 2)
one can reformulate the balance laws (T)) as
oV =-T+R+R, 3)

which is a system for the scaled perturbation V := (v, ... 7vq)T.

Solving this reformulated problem (3)), numerically, defines the RS-IMEX scheme.
We solve stiff R implicitly in time to avoid restrictive time steps in the limit (by us-
ing the implicit Euler method) while the (expected to be) non-stiff part R is treated
by the explicit Euler method. Moreover, T is computed independently, e.g., by an
incompressible solver if U is the solution of the incompressible Euler equations. We
use a Rusanov-type numerical flux, with numerical diffusion coefficients & and &
and an appropriate spatial discretization for the source term (to avoid well-balancing
issues). Note that & and & originally should be chosen as the maximum over the do-
main and all characteristic fields (of stiff or non-stiff parts). But here, not to add an
excessive diffusion to the implicit step, we pick o = 0.

Definition 1. Given the reference solution U, the RS-IMEX scheme for @]) is given
by

— ~n+l o~
DVi=-T\"'+R, +R,, )

with the Euler time integration D, when A stands for spatial discretization.

The advantages of the scheme are two-fold. Firstly, the implicit part of the
scheme is linear by construction, which is very advantageous in terms of compu-
tational cost. D Secondly, as we will see in Remark m it makes the asymptotic con-
sistency analysis easier as the scheme deals with the perturbations V directly.

To summarize, in the RS-IMEX algorithm two coupled systems should be solved
separately: with a given reference state at step n, one finds the scaled perturbation
VXH , while the reference state may evolve over time and should be computed inde-
pendently. This procedure is repeated in each step.

2 RS-IMEX scheme for the shallow water equations

In this section, we apply the RS-IMEX scheme to the two-dimensional shallow wa-
ter equations with bottom topography. Rather than the classical form of this system,

! The idea of such a linearization goes back to the so-called linearly-implicit methods for ODEs
and has been used later in [2}[11]].
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we consider its reformulation as [2] in the periodic domain Q = T?:
atZ + dime = 0,

. (mem 22Dz z ®)
o, d —_— ) =—=Vyb
tm+ 1Vx ( Z—b 282 2) 82 xs

where z is the surface elevation from the mean surface level Hyean, m := (z—b)u is
the momentum with the velocity # = (uj,u»), b is the water depth measured from
Hiean With a negative sign, and the singular parameter € € (0, 1] is called the Froude
number, cf. [18]. Using (@), one can identify U, F and S as

mi my

z m? 2 —2zb mimy 0
U=|m|, F=|;—p" 2 —b . S=|—zb/€
my mynmy m% 2 —2zb fzby/&‘z
i b b 2

(6)

Given the scaling matrix D = diag(e?,1,1), U = (z,m1,73)", and the scaled per-
turbation V := D! (U — U), the RS-IMEX splitting for (5) gives the reference and
stiff parts as

mi /e /€
| m? Z-22 )
G= |75 2e —b , (7a)
mymy m° +Zz—22b
z—b 7—b 2¢e2
V2/£2 V3/82
— 2 2 — 27 —
mi“vi€ 2mivy _ mimpVvi € miv3 mpvy
= _ |- + T2 z-by -
G— | Gopp Ty TEM e e e | aw
mymoviES  mivy | vy mpeviEr 23

+@EZ-b)v

C(Z-b)? "z-b z-b (Z-b?  z-b

0 B 0
Z=|-zb/€?|, Z=|—vib|. (7¢)
—Zby/82 7V1by

while Z =0 and G(U,V) = G(U +V) — G(U) — G(U,V). One can verify that
the Jacobian matrices (A'}/ and (~?I have complete sets of eigenvectors and that the

eigenvalues of 6’ are non-stiff. This can be readily seen from the expression of the
non-stiff flux G (and similarly G»)
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0
mi | 2-22h m’ -2 mivme  2mwn eb)
— = _ — — by
G = |z-b 2¢e2 z—b 2¢2 (z—b)2 z-b ,
mimy mimy m1m2v1£2 mIV3 m2v2

- +
:—b z—b (z-b? z—b Z—b

(7d)

as, after simplification, it does not contain any &'(1/€) term.
Denoting the central discretization of the first and second derivatives in the x-
direction by V,, , and Ay,  respectively, the RS-IMEX scheme can be written as

aAx
VnJrl/2 Vn At (Vh xGl ij +Vh)G2 Ij) +Ar—— 2 A XV?/’ (8)
Vl"le = an+1/2 At (Vh xGl ij +VhyG2 i ) —|—AtZ - T?J'-H’ (8b)

for each cell (i, j) € {1,2,...,N}? in the square computational domain Qy with
. . Sntl . . L
spatial steps Ax = Ay and the time step Az, where Z,r»lj is the central discretization

T . . .
of the source term (7c), and T?;r is the discretization of the scaled residual @])
computed as (with @ = 0)

—n+l =n
Fntl _ ij T Yij +1 +1 +1
T, =D IW+VMGT”+VMGZ,/ zZ; . ©)

The reference solution is chosen as the zero-Froude limit, which is the solution
of the so-called lake equations (cf. [3] for a formal derivation):

om — div, <"w§m) bV =0, 0

divym = 0.

So, considering the solution of (T0) as U with a constant (in time and space) Z and a
[ wnt+l mntl mntlyr

solenoidal 7, one can write T block-wise as Ty := [T} 4Ty T3, 1" with

] —n+1 2
T] ij = (thml,] +thm2 /8 ,
——n+1,2 +l—n+1
e v (™ v g g
2,ij — tmlu+ hx Z—bij +Vhy ﬁ ; (11)
Flontl 412
Tn+1 D v ml?j mZZ \v4 mlij
3ij — tm21j+ h.x Z*b,/ +Vhy Z*bij :

So far, the scheme for computing the scaled perturbation has been introduced.
The remaining point to be clarified is how to solve the equations for the reference
solution (1_115]} which is needed to compute T. In fact, there exist several numerical
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methods for the lake equations. Here, we employ the so-called Chorin’s projection
method [4] because of its simplicity and applicability to collocated grids. We wish to
mention that the Poisson problem (in the projection method) for a doubly-periodic
domain has an infinite number of solutions differed by a constant. To solve it numer-
ically we use the Discrete Fourier Transform (DFT) for the flat bottom case, while
for the non-flat bottom case, we regularize the problem by a time derivative in the
pseudo time T and seek the stationary solution.

3 Main result: asymptotic analysis of the scheme

Theorem 1. Consider the shallow water equations (B) with topography in a
periodic domain and with well-prepared initial data (2 ¢,mo ¢ ) such that

2(0,-) =20 = Z(()o) + EZZ(()Z),S’ m(0,-) = moe = m?o) i em(()l),g,

where Z?O) is a constant and m(()o) satisfies the lake equations (10). Then, the
RS-IMEX scheme (8a)—(8b) is solvable, i.e., it has a unique solution for all
€ > 0, if O is constant. Also, the scheme is consistent with the asymptotic limit
in the fully-discrete settings, i.e., it is asymptotically consistent.

3.1 Solvability

Assuming Ax = Ay and @ = 0 for simplicity, the linear system of the implicit step
(8B) with the companion matrix Jg can be written as Jg := I;y2 + S E¢, where § :=
% and Z; is a matrix not depending on f. It is plausible to conclude that for a
suitable choice of 8, none of the eigenvalues of =, is equal to —1; so J¢ is non-
singular, and the implicit step (so the whole scheme) is solvable. The proof for ¢ # 0

is likewise.

3.2 Asymptotic consistency

The asymptotic consistency analysis is often done formally in the literature, namely
by putting the Poincaré expansion ansatz into the scheme and balancing the equal
powers of €. For the present work, we adopt the same approach.

Firstly, we show that the explicit step is “€-stable”, i.e., ||VZ+'/2 || =&(1). Given

IVill = O(1), which is compatible with the well-prepared initial data, and since
G = 6271 = 0, one can immediately conclude that ||Vﬁzl/2\| = 0(1). For V4

(and similarly V3 ), one can simply confirm that
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. ~n ~n
lim (VhJCGl 2ij 1+ ViyGa 2Jj) =0(1), (12)
£—0 = =
since
2 2 — 2 2 Az 22 —
. m 72—2zb M 7°—2zb mi°vi€ 2mva
lim |V ( — - — - —(z—b
£ /,( 7o Ry M PSR Sy 3 Sy S )”)

=0(1).

P —_ 2 N N
mimy mimy mympvi € miv3 mpvy
\v4 — — —
- h’y(zb b Gob? b zb)

So, the explicit step does not change the leading order of V', (and V3',). This
concludes the e-stability proof of the explicit step. '
Completing the asymptotic consistency analysis, we show that the implicit step
is consistent with the limit. We assume that [[V!|| = &(1) to justify the use of
Poincaré expansion and will discuss this assumption somewhere else. From the v;-
update, (TT) and (7a)-(7d), the momentum field (up to & (€?)) is solenoidal, i.e.,

Vi (1 +v2)i 4 Vi (2 +v3) 7 = O(€7). (13)

Since the consistency of the evolution of the leading order of the momentum is
clear, the asymptotic consistency of the scheme is concluded, but only up to possible
oscillations for the momentum field in the null space of central difference operators
V.x and V, , which may lead to checker-board oscillations.

Remark 1. The equation (I3), combined with the v;-update, immediately implies
that possible checker-board oscillations for the surface perturbation z are small, i.e.,
O(€?). This seems to solve the problem in [13] regarding the checker-board oscilla-
tions in a periodic domain, and suggests that it may not be necessary to add a large
diffusion in order to preclude oscillations.

4 Numerical results

We discuss the traveling vortex example [2] to verify the quality of the solutions
computed by the RS-IMEX scheme. We consider a well-prepared initial condition
in the periodic domain Q = [0,1)2:

2
o) (elon—gm,
uy (x,9,0) = up + l[rgg]l"(l +cos(r)) (ye —y),

u(6,3,0) = 12 T (1 -+ cos(0r)) (x — x.),

Z(X,)G O) = l[rS%]

with Hyean = 110, ug = 0.6, x. = (0.5,0.5)7, ' = 1.4, 0 =47, r:= ||x — x.|| and
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1 3
g(r) :=2cosr+2rsinr+ §0052r+£sin2r+ Zrz.

We choose the time step as At := CFLAx/@. The exact solution is the ini-
tial condition advected by ug with time-periodicity T, = % such that w(x,y,t) =
w(x—upt,y,0) for w € {z,u;,uz}. Using this exact solution, Table 1| shows the ex-
perimental order of convergence (EOC) for the final time 7y = 1 and for different
€; it is clear that the EOC is close to one uniformly in € and the scheme is accurate
for all € > 0. We also illustrate this fact in Figure[I] where both exact and numerical

solutions are plotted on centerlines of the domain.

Table 1: Experimental order of convergence with CFL = 0.45 and for different €. Error e is defined with the exact
solution in £..-norm.

£=038 e=10"°
N | e.q, |E0C274m|| ey, L., |E0Cu1‘,ém N | e,y |EOCZ,gm” ey, L, |E0Cu1,£w
20 |2.61e-2 1.04e-1 20 |4.08e-14 1.04e-1

40 (2.00e-2| 0.38 |(6.80e-2| 0.61 |40 |3.13e-14| 0.38 |{6.80e-2| 0.61
80 (1.23e-2| 0.70 |[|3.63e-2| 091 |80 |1.92e-14| 0.71 |3.63e-2| 0.91
160(6.20e-3| 0.99 |[1.65e-3| 1.14 [160|9.69e-15| 0.99 ||1.65e-3| 1.14

Figureillustrates the computed solution for an small &, in particular € = 107°.
There is a very good agreement between the result of the RS-IMEX scheme and
the exact solution. It is also clear that there is no checker-board oscillation for the
momentum and surface perturbation. These suggest that the scheme is asymptoti-
cally consistent and stable. Moreover, Figure [2b] shows that the scaled perturbation
is bounded in terms of €; so, the formal asymptotic consistency analysis is justified.
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