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Towards sensor-based manipulation of flexible objects

Andrea Cherubini∗ and Peter I. Corke†

Abstract— This paper presents the FLEXBOT project, a
joint LIRMM-QUT effort to develop (in the near future)
novel methodologies for robotic manipulation of flexible and
deformable objects. To tackle this problem, and based on our
past experiences, we propose to merge vision and force for
manipulation control, and to rely on Model Predictive Control
(MPC) and constrained optimization to program the object
future shape.

Index Terms— Control for object manipulation, learning
from human demonstration, sensor fusion based on tactile, force
and vision feedback.

I. CONTEXT

This abstract does not present experimental results, but
aims at giving some preliminary hints on how flexible
robot manipulation should be realized in the near future,
particularly in the context of the FLEXBOT project, jointly
submitted to the PHC FASIC Program1 by LIRMM and QUT
researchers.

The objective of FLEXBOT is to solve one of the most
challenging open problems in robotics. In fact, we aim at
developing novel methodologies enabling robotic manipu-
lation of flexible and deformable objects. The motivation
comes from numerous applications, including the domestic,
industrial, and medical examples2 shown in Fig. 1.

Many difficulties emerge when dealing with flexible ma-
nipulation. In the first place, the object deformation model
(involving elasticity or plasticity) must be known, to derive
the robot control inputs required for reconfiguring its shape.
Ideally, this model should be derived online, while manipu-
lating, with a simultaneous estimation and control approach,
as commonly done in active perception and visual servoing.
Hence perception, particularly from vision and force, will
be indispensable. This leads to a second major difficulty:
deformable object visual tracking. In fact, most current visual
object tracking algorithms rely on rigidity, an assumption
that is not valid here. A third challenge will consist in
generating control inputs that comply with the shape the
object is expected to have in the near future.

In the next section, we provide a brief survey of the state
of art on flexible object manipulation. We then conclude
by proposing some novel methodologies for addressing the
problem.

∗CNRS-UM LIRMM, Interactive Digital Human group, 161 Rue Ada,
34090 Montpellier, France cherubini@lirmm.fr.
†Queensland University of Technology (QUT), 2 George Street, Brisbane,

4001 QLD Australia peter.corke@qut.edu.au.
1http://www.campusfrance.org/fr/fasic
2Sources: http://www.scuolanazionalepizza.it http://www.connectit-

europe.com and http://www.kinesiologycollege.edu.au

Fig. 1. Examples of flexible object manipulation.

II. STATE OF ART

One of the first works on flexible object assembly ad-
dresses insertion of a beam into a hole [1], by properly
designing the robot tool motion trajectory. Planning is also
used in [2] to compute paths among minimal energy configu-
rations, for deforming flexible wires, subject to manipulation
constraints. More recently [3] targeted the assembly of an o-
ring into a cylinder, using a heuristic approach to compute
key postures of the robot arms.

While the cited works focus on motion planning, other
researchers focused on the sensor feedback required to
manipulate deformable objects. In the following paragraphs,
we first review works relying on vision, then on force.

In [4], stereovision was exploited, to insert a flexible wire
into a hole. Vision is also used in [5] for assembling a
rubber belt and fixed pulleys. In the works of David Navarro-
Alarcon [6], [7], compliant objects are actively deformed
using a novel visual servoing scheme that explicitly deals
with elastic deformations, by adapting online the interaction
matrix relating tool velocities and optical flow. The controller
is model-free, but focuses mainly on shape control, i.e. on
manipulating the object to a desired configuration, without
dealing with its global deformation over a time window.

Instead of vision, force control is used by the authors
of [8] to design a strategy for dual manipulation of a flexible
sheet metal. Another approach for modeling the dynamics of
manipulators handling flexible objects, is proposed in [9] by
dividing the closed chain into two subsystems, one flexible
for the object, the other rigid, for the manipulators.

None of the cited works simultaneously exploits vision
and force feedback. The only exception is [10], although the
authors use the camera as a force sensor by visually tracking
object contour changes. Furthermore, no one has combined
sensor-based control with constrained optimization or with
model predictive control, as we plan to do in FLEXBOT.

III. PROPOSED METHODS

Within FLEXBOT, we will tackle flexible object manip-
ulation by exploiting the complementary skills of LIRMM
and QUT researchers. In particular, we will apply:



Fig. 2. QUT experiments on imaging for deformable object analysis [13].

• Multimodal (vision and force) sensor-based control for
manipulation (LIRMM [11], [12]).

• Active perception for deformable object modeling
(QUT [13], see Fig. 2).

• Teach-and-repeat generation of object configuration
waypoints (LIRMM [14]).

• Robust vision (QUT [15]).
• Constrained quadratic optimization and MPC

(LIRMM [16], [17]).

More specifically, FLEXBOT will focus on the four re-
search axes detailed below, in bottom-up order (perception,
control and finally planning).

• A1) Multimodal sensor-based control for deformable
object manipulation. We will draw inspiration from the
seminal work of David Navarro-Alarcon [6], [7] on
active visual deformation servoing of compliant objects.
That work will be extended by relying on admittance
control, a scheme that generates compliant motion in
response to measured and desired force signals [11],
[12]. Another extension will be the use of the optical
flow tracking algorithms developed at QUT [13], to
replace the fiducial markers used in [6], [7].

• A2) Constrained optimization for dual arm control.
The addition of a second arm for manipulation intro-
duces new problems, related to the system redundancy.
As shown in LIRMM’s works on humanoids [16],
constrained optimization is an effective solution for
controlling such highly redundant robots. However, the
robustness of optimization-based control with respect to
inaccurate estimation of the sensor Jacobians has never
been explicitly studied. This becomes crucial when
dealing with varying objects, such as deformable ones.

• A3) Teach-and-repeat generation of object configura-
tion waypoints. In the past, we have designed teach-and-
repeat frameworks for visual [14] and lidar-based [18]
navigation. A teach-and-repeat approach is very promis-
ing for deformable object manipulation, since human
teaching could provide a topological representation of
the waypoints during reshaping. Again, we could rely on
QUT’s recent works on deep learning, for manipulations
taught in simulation [15].

• A4) Model predictive control for reshaping. MPC is a
method for controlling a system so that future states are
also taken into account. We have shown its effectiveness
in producing walking motions [16], and in avoiding
obstacles during navigation [17]. MPC would bridge
the gap existing between the local (sensor-based) and

global (planning-based) approaches developed to date.
However, prolonging manipulation may jeopardize vi-
sion, because of lighting and environment variations. To
this end, we will take advantage of QUT’s expertise on
robust vision [15].

Note that A4 is alternative to A3: either the plan is taught
(A3) or generated automatically by relying on the initial and
final object shape (A4).

The methods that will be developed within these axes will
be validated on the robots present at QUT and LIRMM. As
case studies, we will address linear deformable models, such
as flexible cables, including both elasticity and plasticity.
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