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0, 1])-APPROXIMANT BY NONDECREASING FUNCTIONS

 

We will need the followings elementary properties. Therefore, f p (x) ≤ f p (y). Analogously, we can prove that f p is a nondecreasing function.

In order to prove 2, we consider x ∈ (0, 1). Since

m p (a, b) ≥ inf c>x m p (a, c)
for every a < x < b, we have

sup a<x m p (a, b) ≥ sup a<x inf c>x m p (a, c) = f p (x).
Consequently,

f p (x) = inf b>x sup a<x m p (a, b) ≥ f p (x).
The proof of Theorem 1.1 is now complete.

Since f p , f p are nondecreasing and bounded functions, we can to extend continuously these functions to the points 0 and 1. Henceforth we assume f p , f p defined on [0, 1].

We also consider the sets

F p = {x ∈ (0, 1) : m p (a, x) ≤ m p (x, b), ∀a ∈ [0, x) and ∀b ∈ (x, 1]} It is easily seen that for 1 < p ≤ ∞ and 0 < a < b < 1 the sets F p ∩ [a, b] are compact subsets of [0, 1]. Let (a, b) ∈ S.
As is usual, we say that a nondecreasing function g ∈ for every nondecreasing function h (we note that a best C([0, 1])-approximant is not assumed continuous). Existence of best approximants by nondecreasing functions has been proven in [START_REF] Landers | Best Approximants in L φ -Spaces[END_REF][START_REF] Ubhaya | Isotone Optimization, I[END_REF]. Moreover, best L p ([0, 1])-aproximants by nondecreasing functions are unique when 1 < p < ∞ (see [START_REF] Landers | Best Approximants in L φ -Spaces[END_REF]). However, uniqueness is not even true in C([0, 1]) (see [START_REF] Ubhaya | Isotone Optimization, I[END_REF]).

L p ([a, b]) is a best L p ([a, b])-approximant to f ∈ L p ([
The problem of best approximation by monotone functions has been studied extensively in the literature. For example, in nonparametric regression it is considered the problem of isotonic regression. That means regression by nondecreasing functions defined on a finite and partially ordered set (see [START_REF] Chi-In | The Min-Max Algorithm and Isotonic Regression[END_REF][START_REF] Robertson | Order Restricted Statistical Inference[END_REF]). Locally isotonic regression was applied in [START_REF] Acton | Locally Monotonic Models for Image and Video Processing[END_REF][START_REF] Restrepo | Locally Monotone Regression[END_REF] to signal and video processing. Best approximation by monotone functions defined on a set Ω ⊂ R n was considered by several authors (see [START_REF] Huotari | Best Monotone Approximations in L 1 [0, 1[END_REF][START_REF] Marano | L ϕ -Approximation by non-decreasing functions on the interval[END_REF][START_REF] Ubhaya | Isotone Optimization, I[END_REF] for Ω ⊆ R a interval, [START_REF] Darst | Monotone L 1 -approximation on the unit n-cube[END_REF][START_REF] Darst | Approximation of integrable, approximately continuous functions on (0, 1) n by nondecreasing functions[END_REF][START_REF] Darst | Best L 1 -Approximation of L 1 -Approximation Continuous Functions on (0, 1) n by Nondecreasing Functions[END_REF][START_REF] Iturrieta | Zó Best monotone L ϕ -approximant in several variables[END_REF] for Ω = (0, 1) n and [START_REF] Mazzone | A Characterization of Best ϕ-Approximants with Applications to Multidimensional Isotonic Approximation[END_REF] for Ω ⊂ R n an open and bounded set).

It was proved in [START_REF] Darst | Approximation of Continuous and Quasi-Continuous Functions by Monotone Functions[END_REF] that for f ∈ C([0, 1]) the best L p ([0, 1])-approximants to f by nondecreasing functions converge uniformly as p → ∞ to f * , a best C([0, 1])-approximant to f by nondecreasing functions. The first goal of this paper is to show that f * = f ∞ = f ∞ . In the discrete case, this type of results were obtained using others techniques by V. Ubhaya in [START_REF] Ubhaya | Isotone Optimization, II[END_REF]. The second objective is to prove that the best approximant f ∞ has an extra minimization property. More precisely we will show that f ∞ (x) = f (x) for every x ∈ F ∞ and that if a, b ∈ F ∞ with a < b then f ∞ is a best C([a, b])-approximant to f by nondecreasing functions. We call f ∞ the best natural C([0, 1])-approximant to f by nondecreasing functions.

Minimax formulas for best natural nondecreasing approximants

We start by proving a minimax formula for best L p -approximants, 1 < p < ∞.

Theorem 2.1. Let f ∈ L p ([0, 1]) for 1 < p < ∞.
Then f p = f p a.e. and f p is the best L p ([0, 1])-approximant to f by nondecreasing functions.

Proof. Let g be the best L p ([0, 1])-approximant to f by nondecreasing functions. The function g is defined almost everywhere. Let x ∈ (0, 1) be a continuity point of g and we put α = g(x). We take δ > 0. From [11, Theorem 3.2] we obtain {g≥α-δ}∩(0,b)

ϕ p (f -α + δ)dx ≥ 0 (2)
for every b > x. Since ϕ p is strictly increasing, for 1 < p < ∞, inequality (2) and equation [START_REF] Acton | Locally Monotonic Models for Image and Video Processing[END_REF] 

imply that m p ({g ≥ α -δ} ∩ (0, b)) ≥ α -δ for every b > x. Therefore inf b>x m p ({g ≥ α -δ} ∩ (0, b)) ≥ α -δ.
We observe that {g ≥ α -δ} is an interval with left end point less than x. Hence

f p (x) = sup a<x inf b>x m p (a, b) ≥ g(x) -δ.
Since δ is a positive and arbitrary point and g is continuous a.e., we obtain g(x) ≤ f p (x) a.e.. In a similar way, we can prove that f p (x) ≤ g(x) a.e.. This completes the proof.

Lemma 2.2. Let f ∈ C([0, 1]). Then lim p→∞ m p (a, b) = m ∞ (a, b), (3) 
uniformly in 0 ≤ a < b ≤ 1.
Proof. The equality (3) is a well known result when a and b are fixed numbers. We will prove that the limit is uniform in a and b. Suppose to the contrary that there exist > 0, a sequence p k tending to ∞, and sequences

a k < b k such that |m f p k (a k , b k ) -m f ∞ (a k , b k )| ≥ . ( 4 
)
We define the functions f k (x) := f (a k + (b k -a k )x). We observe that

m f p (a k , b k ) = m f k p (0, 1) (5) 
for every 1 < p ≤ ∞. Since f is a uniformly continuous and bounded function, {f k } is an equicontinuous and bounded sequence. From Arzela-Ascoli Theorem we get a function g ∈ C([0, 1]) and a subsequence of {f k } which converges to g in C([0, 1]). For the sake of simplicity we assume that f k converges to g in C([0, 1]). We take k such that sup

x∈[0,1] |f k -g| < 3 and |m g p k (0, 1) -m g ∞ (0, 1)| < 3 . ( 6 
)
It is easy to check that the first inequality in [START_REF] Darst | Best L 1 -Approximation of L 1 -Approximation Continuous Functions on (0, 1) n by Nondecreasing Functions[END_REF] implies

|m f k p (0, 1) -m g p (0, 1)| < 3 (7)
for every 1 < p ≤ ∞. Now (4), ( 5), [START_REF] Huotari | Best Monotone Approximations in L 1 [0, 1[END_REF] and the second inequality in (6) lead to a contradiction.

We now establish our first main result.

Theorem 2.3. Let f ∈ C([0, 1]). Then f ∞ = f ∞ = lim p→∞ f p , where the limit is considered in the C([0, 1]) norm, and f ∞ is a best C([0, 1])-approximant to f by nondecreasing functions. Proof. The equality f ∞ = f ∞ = lim p→∞ f p is a consequence of Lemma 2.
2, the minimax formulae for f p and f p , and Theorem 2.1. Using the results in [START_REF] Darst | Approximation of Continuous and Quasi-Continuous Functions by Monotone Functions[END_REF], and Theorem 2.1 again, we conclude that f ∞ is a best approximant to f by nondecreasing functions.

Corollary 2.4. The function f ∞ = lim p→∞ f p is continuous when f is continuous.

Proof. It is a immediate consequence of [4, Corollary 2].

A minimization property of f ∞

We shall need the following elementary observation, which can be easily proved.

If f ∈ C([0, 1]) and 0 ≤ a < x < b ≤ 1 then min{m ∞ (a, x), m ∞ (x, b)} ≤ m ∞ (a, b) ≤ max{m ∞ (a, x), m ∞ (x, b)}. ( 8 
)
The following is our second main theorem.

Theorem 3.1. Let f ∈ C([0, 1]). Then 1. f (x) = f ∞ (x) for every x ∈ F ∞ ,
2. if α and β are in F ∞ with α < β then f ∞ is the best natural C([α, β])approximant to f by nondecreasing functions, and

3. f ∞ is constant in each connected component of (0, 1) \ F ∞ . Proof. We have inf b>x m ∞ (x, b) ≤ f (x) ≤ sup a<x m ∞ (a, x) for x ∈ (0, 1) and inf b>x m ∞ (x, b) ≤ f ∞ (x) ≤ f ∞ (x) ≤ sup a<x m ∞ (a, x) for x ∈ (0, 1). Since x ∈ F ∞ , sup a<x m ∞ (a, x) = inf b>x m ∞ (x, b). Therefore 1 is true.
In order to prove 2, we take α, β ∈ F ∞ , with α < β, and x ∈ (α, β).

We consider a, b ∈ (0, 1) such that a < x < b. Suppose a < α then, as

α ∈ F ∞ , (8) implies m ∞ (a, b) ≤ m ∞ (α, b). Therefore sup a<x m ∞ (a, b) = sup α≤a<x m ∞ (a, b). Similarly, we can prove that inf b>x sup α≤a<x m ∞ (a, b) = inf β≥b>x sup α≤a<x m ∞ (a, b). Thus the restriction of f ∞ to the interval [α, β] is the function f ∞ relative to [α, β].
Hence applying Theorem 2.3 to this interval we obtain 2. We now prove 3. Let I be a connected component of (0, 1) \ F ∞ . Since the set F ∞ is relatively closed in (0, 1), I = (a 0 , b 0 ) with 0 ≤ a 0 < b 0 ≤ 1. We suppose that f ∞ is not constant on (a 0 , b 0 ). Then there [START_REF] Acton | Locally Monotonic Models for Image and Video Processing[END_REF] imply that m pn (a, x n ) ≤ α n ≤ m pn (x n , b) for all a ∈ [0, x n ) and all b ∈ (x n , 1]. Therefore x n ∈ F pn . Let x be an accumulation point of the sequence x n . Using Lemma 2.2 and the continuity of the function m p we get that x ∈ F ∞ ∩ (a 0 , b 0 ) which is a contradiction with the fact that (a 0 , b 0 ) is a connected component of (0, 1) \ F ∞ .

exists m ∈ N such that f ∞ is not constant on [a 0 + 1 m , b 0 -1 m ]. Let {p n } be a sequence with p n → ∞ when n → ∞. Since f pn converges to f ∞ ,

1 Introduction

 1 Set S := {(a, b) ∈ [0, 1] 2 : a < b}. For f ∈ L p ([0, 1]), (a, b) ∈ S and 1 < p < ∞ we denote by m f p (a, b) = m p (a, b) the unique constant which is the best L p ([a, b])-approximant to f by constant functions. We note that m p is characterized by the equality b a ϕ p (f -m p (a, b))dx = 0, (1) where ϕ p (y) := |y| p-1 sign(y). Similarly, for f ∈ C([0, 1]) we define m f ∞ (a, b) = m ∞ (a, b) replacing the space L p ([0, 1]) by the space C([0, 1]) in the previous definition. In this case we have m ∞ (a, b) It is easy to show that m p : S → R is continuous for 1 < p ≤ ∞. If I = [a, b] we write m p (I) := m p (a, b).For 1 < p ≤ ∞ and x ∈ (0, 1) we will consider the following functions: f p (x) := sup a<x inf b>x m p (a, b), f p (x) := inf b>x sup a<x m p (a, b).

Theorem 1 . 1 .

 11 For 1 < p ≤ ∞ we have 1. f p , f p are a nondecreasing functions, 2. f p ≤ f p for all x ∈ (0, 1). Proof. If x, y ∈ (0, 1) with x < y, then sup a<x inf b>x m p (a, b) ≤ sup a<x inf b>y m p (a, b) ≤ sup a<y inf b>y m p (a, b).

  a, b]) by nondecreasing functions iff b a |f -g| p dx ≤ b a |f -h| p dx for every nondecreasing function h ∈ L p ([a, b]). Analogously, we say that a nondecreasing function g is a best C([a, b])-approximant to f ∈ C([a, b]) by nondecreasing functions iff max a≤x≤b |f -g| ≤ max a≤x≤b |f -h|

  we can suppose that f pn is not constant on [a 0 + 1 m , b 0 -1 m ]. Then for each n there exists some α n ∈ R such that the left end point of the interval {f pn ≥ α n } falls in the interval [a 0 + 1 m , b 0 -1 m ]. We call this point x n . From [11, Theorem 3.2] we get b xn ϕ pn (f -α n )dx ≥ 0 and xn a ϕ pn (f -α n )dx ≤ 0 for every a ∈ [0, x n ) and every b ∈ (x n , 1]. The previous inequalities and equality
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