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We propose space-variant uniaxial flat optical elements
designed to generate pure Laguerre–Gaussian modes with
arbitrary azimuthal and radial indices l and p from an in-
cident Gaussian beam. This is done via the combined use of 
the dynamic and the geometric phases. Optimal design pro-
tocol for the mode conversion efficiency is derived, and the 
corresponding characteristics are given for 6 ≤ l ≤ 6 and 
0 ≤ p ≤ 5. The obtained “modal q-plates” may find many 
applications whenever the radial degree of freedom of a 
light field is at play.

OCIS codes: (140.3300) Laser beam shaping; (050.4865) Optical
vortices.

Laguerre Gaussian (LG) beams represent a well known
orthogonal basis for the scalar paraxial Helmholtz equation [1],
each mode being associated with a pair of indices, l and p, that
correspond to two independent transverse degrees of freedom.
The azimuthal index l is an integer related with the orbital an
gular momentum carried by a LGl p beam, namely lℏ per pho
ton along the propagation direction [2]. This property has
given to the LG beams a prime position in the optics of vortex
beams for 25 years. The radial index p ≥ 0 is an integer asso
ciated with the transverse intensity distribution of the light
field. Omitting the propagation factor exp!i"k0z ωt#$, where
k0 is the wavenumber, z is the coordinate along the propagation
direction, ω is the angular frequency, and t is the time, the
complex electric field amplitude Elp of a LG mode in vacuum
is expressed in the cylindrical coordinate system "r;ϕ; z# as [1]

Elp"r;ϕ; z;w0#

%Clp
w0

w"z#

!
r 2
p

w"z#

#jl j
Ljl jp

$
2r2

w"z#2

%
exp

!
r2

w"z#2

#

× exp
&
i
!

k0r2z
2"z2& z20#

& lϕ "2p& jl j&1#arctan
$
z
z0

%#'
;

(1)

with Clp a constant that can be derived from the beam power
expression, P % 1

2 ϵ0c
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jElpj2rdrdϕ, where ϵ0 is the dielec
tric permittivity of vacuum, and c is the speed of light in
vacuum. In addition, Ljl jp "x# %
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There is a substantial gap between the studies related to the
azimuthal versus radial degrees of freedom of LG beams.
Nevertheless, several works have already emphasized the impor
tance of the radial modal content. From a quantum point of
view, an operator formalism for the radial modes has been es
tablished [3 5]. It has also been shown that optical information
protocols may benefit from the radial degree of freedom [6 8].
The role played by the radial features of a light field within the
classical picture has also been explored, for instance regarding
its diffraction properties [9], but mainly in the context of the
creation of pure LG modes. Contactless optical manipulation is
another classical optics application example, where the super
position of LG modes including at least one high order radial
mode is used to create rotating beams [10,11] or so called bottle
beams [12]. In practice, numerous techniques have been intro
duced to produce light beams with a well defined azimuthal index
l , such as diffractive optical elements [13], computer generated
holograms [14], refractive spiral phase plates [15], optical cavities
[16,17], or geometric phase optical elements [18], though origi
nally restricted to the generation of LGl0 like vortex beams.

This has been generalized to high order radial modes with
p ≥ 1, for instance by using phase shaping via single high
order diffractive optical elements [19], computer generated
high order phase holograms [20], high order spiral phase plates
[21], high order geometric phase optical elements [22],
or amplitude only spatial light modulators [23]. Remarkably,
complex amplitude modulation can be mimicked by phase
only optical elements. This can be used to generate free space
highly pure LGl p beams [24,25] as well as other kinds of beams,
for instance bounded Bessel beams or Hypergeometric beams
[26]. Nevertheless, there is a practical tradeoff between accu
racy and efficiency, which are competing characteristics. An in
tracavity high order complex amplitude modulation approach
has also been developed [27]. In this context, the advent of
powerful coherent integrated optical sources with controlled
azimuthal and radial indices should emerge, with a huge range
of practical uses in optical communications, optical imaging,
optical trapping, or optical manipulation.

Here we propose another route to achieve complex
amplitude modulation via the combined actions of the dynamic
and geometric phases, towards the generation of pure LG modes
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with arbitrary indices l and p. The dynamic phase is used to
encode the desired LG field magnitude profile into one of the
two circularly polarized components of the transmitted light,
which is retrieved by circular polarization filtering. The geometric
phase is then adjusted to provide the desired LG helical phase
profile. We stress that pure LG beam shaping of one of the
circularly polarized output field component is effective as soon
as light emerges from the optical element. Assuming ideal
polarization selection, this method thus gets rid of the tradeoff
between accuracy and efficiency mentioned above.

We consider a slab of inhomogeneous anisotropic medium
where both the optical axis orientation angle ψ and the birefrin
gent phase retardationΔ are space variant in the transverse plane
of the optical element with thickness L and input facet located at
z % 0. We consider an incident circularly polarized paraxial
Gaussian (LG00) beam propagating along the z axis. From
Eq. (1), its electric field is expressed by E in"r;ϕ; z < 0; t# %
E00"r;ϕ; z;w0;in# exp!i"k0z ωt#$cσ where cσ%"x&iσy#∕ 2

p

with σ % '1 referring to the circular polarization basis.
Neglecting diffraction effects inside the slab, the output light field
at z % L can be straightforwardly obtained by applying locally the
Jones formalism [28]. This gives for the output field, up to an
unimportant phase factor exp!i"k0n⊥L ωt#$ where n⊥ (taken
as constant without loss of generality) is the refractive index
perpendicular to the optical axis,
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In the case of a uniform birefringent phase retardation Δ % π
and azimuthally varying optical axis orientation ψ % qϕ with q
half integer, Eq. (2) simplifies to the known case of a “q plate,”
which refers to a pure geometric phase optical element enabling
the generation of an optical vortex with polarization dependent
azimuthal index l % 2σq [29]. However, since a q plate is im
printing a phase only modulation of the form exp"ilϕ#, the out
put light field is a superposition of a large number of LG modes
with high order radial indices [30]. Our idea consists of exploiting
the interplay between space variant dynamic and geometric
phases in order to perform complex amplitude modulation in the
circular polarization basis specifically, by introducing appropri
ate radial dependence for both the birefringent phase retardation
and the optical axis orientation of q plate. Namely, accounting for
the structuring upgrade π → Δlp"r# and qϕ → ψ l p"r;ϕ#, here
after we demonstrate that pure LGlp modes can be generated.

Such a “modal q plate” produces a σ polarized LGl pbeam if
the following condition is satisfied:

E out"r;ϕ; L# · c(−σ ∝ Elp"r;ϕ; 0;w0;out#; (3)

where the asterisk denotes complex conjugation. The corre
sponding expressions for Δp;l and ψp;l are derived from Eqs. (1)
and (2):
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which implies that the ratio ζ % w0;out∕w0;in between the waist
radius w0 of the LGlp mode and that of the incident Gaussian

beam satisfies 0 ≤ ζ ≤ 1 in order to ensure a finite value for the
maxr !·$ operator, and
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where we introduced the unit step function defined as
H "x ≤ 0# % 0 and H "x > 0# % 1. By doing so, the birefrin
gent phase retardation is always positive and transforms the
incident Gaussian intensity profile into that of the desired
LGlp mode while the optical axis orientation profile ensures
a purely helical wavefront at the output of the modal q plate.

As expected from the Laguerre Gaussian apodization of the
incident Gaussian beam, only a fraction η of the incident power
is transformed into a given LGl p mode. From Eq. (2), and
accounting that

R∞
0 exp" 2r2∕w2

0;in#rdr % w2
0;in∕4, the modal

efficiency is thus expressed as

ηlp %
4
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Z
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From Eqs. (4) and (6), it can be shown that ηl p depends only
on the waists ratio ζ; see Fig. 1 for 1 ≤ l ≤ 3 and 0 ≤ p ≤ 2.
The optimal value ζoptlp that maximizes the modal efficiency
ηoptlp % ηlp"ζ

opt
lp #, and the latter value itself, both depend on

l and p. The results are summarized in Tables 1 and 2 for
6 ≤ l ≤ 6 and 0 ≤ p ≤ 5.
Interestingly, the modal problem has a simple analytical

solution when p % 0. Indeed, in that case, Eqs. (4) (6) are
respectively expressed as

Fig. 1. Modal q plate efficiency as a function of the reduced LGl p
beam waist w0;out∕w0;in for jl j % 1 (black curves), jl j % 2 (red curves),
and jl j % 3 (blue curves), in the case p % 0 [panel (a)], p % 1 [panel
(b)], and p % 2 [panel (c)].

  2



Δl0"r# % 2 arcsin

!$
2

jl j

s
r
W

%jl j

exp

$
r2

W 2 &
jl j
2

%#
; (7)

ψ l0"r;ϕ# %
σ
2

$
lϕ

Δl0"r#
2

%
; (8)

ηl0 % ζ2jl j!
!
e
jl j

"1 ζ2#
#
jl j
; (9)

where we have introduced the effective waist radius

W % w0;in
ζ

1 ζ2
p : (10)

This gives the following expressions for the parameters of
optimal modal q plates:

ζoptl0 %
1

1& jl j
p ; (11)

ηoptl0 %
jl j!ejl j

"1& jl j#1&jl j : (12)

For the sake of illustration, the maps of the optimal bire
fringence phase retardation Δopt

lp "r# and optical axis orientation
angle ψopt

lp "r;ϕ# are shown in Figs. 2 and 3 for 3 ≤ l ≤ 3 and
0 ≤ p ≤ 2. The visual inspection of these maps allows grasping
the fabrication challenge towards the practical realization of
modal q plates. Indeed, to date, the various technologies used
to engineer q plates are basically implemented within a scheme
of planar slabs exhibiting a constant birefringent phase retarda
tion. For instance, one can mention liquid crystals [31] or pol
ymer liquid crystals [32] photoalignment technologies that deal
with the structuring of truly birefringent media. There are also
strategies based on form birefringent media, where the effective
optical anisotropy emerges from subwavelength structuring of
isotropic materials, such as femtosecond laser structuring of
glasses [33] or polymers [34], nanofabrication enabled struc
turing of metals [35] or dielectrics [36]. In the former case,
it is very challenging to consider the independent local control

of both the birefringent phase retardation and the optical axis
orientation, although arbitrary in plane optical axis patterns at
fixed retardance can nowadays be achieved [37]. In the latter
case, however, one could consider retardance control at fixed
structured thickness via space variant filling factor F"r;ϕ# of
a given subwavelength step grating of period Λ, each period
consisting of a FΛ width with refractive index n1 and a
"1 F #Λ width with refractive index n2, which lead to an ef
fective birefringence dn that depends on n1, n2, and F . By
doing so, an arbitrary pattern Δ"r;ϕ# can be obtained from
the relationship Δ"r;ϕ# % 2π

λ dn"n1; n2; F "r;ϕ##L. Another

Table 2. Optimal Values ηoptlp of the Modal Q-Plate
Efficiency for −6 ≤ l ≤ 6 and 0 ≤ p ≤ 5

jl j ! 1 jl j ! 2 jl j ! 3 jl j ! 4 jl j ! 5 jl j ! 6

p % 0 0.68 0.55 0.47 0.42 0.38 0.35
p % 1 0.48 0.44 0.40 0.38 0.35 0.34
p % 2 0.39 0.38 0.36 0.34 0.33 0.31
p % 3 0.33 0.34 0.34 0.31 0.30 0.29
p % 4 0.29 0.30 0.30 0.29 0.29 0.28
p % 5 0.25 0.27 0.28 0.27 0.27 0.27

Table 1. Optimal Values ζoptlp Maximizing ηlp for −6 ≤ l ≤ 6
and 0 ≤ p ≤ 5

jl j ! 1 jl j ! 2 jl j ! 3 jl j ! 4 jl j ! 5 jl j ! 6

p % 0 0.71 0.58 0.50 0.45 0.41 0.38
p % 1 0.44 0.39 0.35 0.33 0.31 0.29
p % 2 0.38 0.32 0.29 0.27 0.26 0.25
p % 3 0.34 0.29 0.26 0.24 0.23 0.22
p % 4 0.32 0.27 0.25 0.23 0.21 0.20
p % 5 0.30 0.26 0.24 0.22 0.20 0.19

Fig. 2. In plane spatial distribution of the birefringent phase
retardation Δopt

l p "r# of optimal modal q plates for 3 ≤ l ≤ 3 and
0 ≤ p ≤ 2. White scale bar: w0;out. Black scale bar: w0;in.

Fig. 3. In plane spatial distribution of the optical axis orientation
angle ψopt

l p "r;ϕ# of optimal modal q plates for 3 ≤ l ≤ 3 and
0 ≤ p ≤ 2. White scale bar: w0;out. Black scale bar: w0;in.
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solid state option could rely on the use of space variant anten
nas designed to control the complex amplitude of light. In
other words, the practical realization of modal q plates is acces
sible to state of the art nanofabrication tools.

In addition, self engineered strategies that do not rely on
machining techniques can also be considered. Indeed, it has
been shown that various kinds of spontaneously formed liquid
crystal defect structures enable the generation of an optical
vortex beam with spin controlled azimuthal index with the
additional key feature demonstrated here, namely Δ % Δ"r#
with Δ"0# % 0. One can mention hedgehog defects [38],
umbilics [39] and disclinations [40] in nematics, focal conic do
mains in smectics [41], and solitonic defect structures in
cholesterics [42]. Moreover, liquid crystals are natural can
didates for the required twisted configurations of the form
ψ"r;ϕ# % lϕ& f "r#, one shown for instance in the case of
nematic films under all optical [43] or electro optical [44] exter
nal stimuli. That is to say, the engineering ofmodal q plates could
also be considered using softmatter optically anisotropic systems.

Recalling that the usual q plates have already found a lot of
applications both in classical and quantum optics [45] and are
likely to find many others in the future [46], modal q plates
enabling the control of both the azimuthal and radial modal
content of a light field with a single optical element, possibly
integrated [47], should be of interest in many scientific and
technological areas. It should be mentioned that modal q plates
are designed for a given azimuthal index l that cannot be
switched to l by mere flip of the helicity of the incident light
field, but flipping also the optical element along the propaga
tion axis. Finally, we note that the proposed combined action of
dynamic and geometrical phases towards the control of the
radial degree of freedom of a light field represents another
attempt to tailor the spatial properties of electromagnetic fields
by hybrid phase transformations [48,49].

Funding. Agence Nationale de la Recherche (ANR) (ANR
15 CE30 0018).
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