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Abstract We present an efficient method for generat-

ing coherent multi-layer landscapes. We use a dictio-

nary built from exemplars to synthesize high-resolution

fully-featured terrains from input low-resolution eleva-

tion data. Our example-based method consists in ana-

lyzing real world terrain examples and learning the pro-

cedural rules directly from these inputs. We take into

account not only the elevation of the terrain, but also

additional layers such as the slope, orientation, drainage

area, the density and distribution of vegetation, and the

soil type. By increasing the variety of terrain exemplars,

our method allows the user to synthesize and control

different types of landscapes and biomes, such as tem-

perate or rain forests, arid deserts and mountains.

1 Introduction

Generating large-scale realistic landscapes with a high

level of detail is a perennial challenge in Computer

Graphics. With the increasing demand for virtual worlds,

there is a growing need for automatic techniques that

generate large scale terrains covered with vegetation at

a very high resolution.

Procedural modeling, which aims at generating com-

plex geometric models from simple generative rules,

has undergone tremendous developments over the past

decade. However, several limitations make it difficult to

create these rules explicitly. In particular, generating

geomorphologically-consistent terrains featuring a vast
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Fig. 1 Overview of our coherent multi-layer landscape syn-
thesis: given a set of input exemplars, our method automati-
cally creates a high-resolution consistent and coherent multi-
layer terrain model from a low-resolution elevation model by
matching input patches with the nearest dictionary atoms.

variety of landforms remains a difficult task. The prob-

lem becomes even more challenging when considering

the generation of layered terrains or landscapes, i.e.,

models defined by different types of layered informa-

tion such as terrain elevation, sand and rock thickness,

vegetation type and density, or humidity. Our work

comes from the observation that those parameters are

strongly correlated and can be modeled as layers inter-

influencing each other. This inter-dependency makes

the design of coherent, biologically- and physically- plau-

sible generative rules even more difficult.

Traditionally, the standard workflow consists in first

synthesizing the terrain, eroding it with procedural or

simulation-based algorithms to generate sediment lay-

ers, and finally using ecosystem simulations to gener-

ate the vegetation. The originality of our method is to

generate the different data layers using a joint synthe-
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sis approach, taking simultaneously into account the

correlated elevation of the terrain, the distribution of

vegetation density, soil type, slope and orientation. Our

method generates large-scale multi-layer landscapes with

a high degree of realism and coherence between the dif-

ferent layers. By adopting an example-based procedu-

ral synthesis approach, we avoid any explicit modeling.

Furthermore, our method allows to add variety to the

synthesized models and allows to control and author

different types of biomes such as alpine mountains with

forests or arid plateaus simply by increasing the num-

ber and variety of examples. Therefore, our approach

provides a powerful and efficient framework to perform

the inverse procedural modeling of multi-layer terrains

at a low computational cost.

Our algorithm proceeds in two steps (Figure 1).

Given a set of exemplars, a pre-processing step creates

a multi-layer dictionary. During the landscape synthesis

step, the user edits a low-resolution input elevation and

possibly a small subset of other layers. The matching

algorithm decomposes the input into patches which are

matched with atoms in the dictionary. Selected multi-

layer atoms are blended together to generate the final

high-resolution multi-layer model.

The main contributions are as follows. 1. We pro-

pose a set of matching functions adapted to the multi-

layer representation for finding the best patch in the

dictionary. Our method combines multi-layer informa-

tion in a coherent way and guarantees that no ambigu-

ity is created when synthesizing the landscape. 2. We

present an example-based dictionary extraction combined

with a coherent multi-layer terrain synthesis algorithm.

Given a low-resolution input, we automatically generate

an augmented high-resolution model. 3. Our approach

allows the user to control the features of the output

terrain by changing the style of different regions and

classes of atoms in the dictionary.

2 Related work

Our work relates to terrain modeling and ecosystem

generation, which can be classified into procedural, exam-

ple-based and simulation-based approaches. This sec-

tion presents a focused overview; we refer the reader

to more general surveys on procedural terrain model-

ing [21] and plant and ecosystem simulation [5].

Procedural modeling methods exploit the observa-

tion that landform features repeat at different scales

and define the elevation either as fractals [15, 20] or

by using a combination of scaled noise-based functions

[17]. Several improvements were proposed to improve

user control, such as terrains generated from feature

curves [14], rivers [10] or a hierarchical construction

tree representation [11]. Specifying generative rules that

preserve the overall coherence of the scene is a difficult

task, mainly because of the indirect control over the

generation processes.

Inverse procedural modeling is a general approach

which aims at inferring the input control parameters of

procedural models from examples or constraints. Some

techniques have been successfully developed for gener-

ating vegetation [22]. Recently, the sparse representa-

tion of terrains [12] combined atoms whose characteris-

tic landforms features can be extracted from exemplars

and stored in an optimized dictionary.

Our method also relies on a dictionary learned from

examples. The originality of our approach is that it pro-

cesses not only the terrain elevation, but also many dif-

ferent channels encoding other parameters such as veg-

etation density, slope, humidity to generate high reso-

lution terrains in a coherent way.

Simulations aim at generating realistic landscapes with

eroded mountains, sedimentary valleys and realistic plant

distributions. Erosion simulations [17] are often used as

a post processing step to add realism to procedurally

generated terrains. Hydraulic erosion techniques were

further extended and refined in [2,19]. Large-scale sim-

ulation of erosion at the level of entire mountain ranges

was addressed in [3]. Erosion-based techniques are dif-

ficult to control and cannot be used to simulate large

scale terrains at a high resolution.

Ecosystem simulations aim at producing realistic

plant distributions [18] according to the characteris-

tics of the environment, and in general rely on particle-

based simulations where plants compete for resources

such as light and space [4]. Several improvements were

proposed such as simulating multilevel plant communi-

ties [16] and asymmetric plant competition [1].

Example-based synthesis approaches borrow from

texture synthesis methods [13, 25] and aim at gener-

ating realistic terrains by combining patches extracted

from exemplars. A first method proposed in [26] ex-

tracts high-resolution height field patches from a ter-

rain exemplar and combines them according to a user-

painted coarse map. This approach was extended and

improved to allow better control [8,9]. Recently, an in-

teractive approach for creating virtual worlds using sta-

tistical example-based synthesis to automate content

synthesis and deformation was proposed in [7].

In contrast, our method analyzes exemplars to gen-

erate coherent multi-layer dictionary implicitly storing

the relationships between terrain elevation, vegetation

densities and other parameters such as solar irradiance

or upstream drainage area. A key contribution of our

work lies in the use of heterogeneous signals, i.e. the

signal encodes information of different kinds such as
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Fig. 2 Given a low-resolution single-layer terrain model, we synthesize a high-resolution multi-layer landscape model with
sand, rock layers, and vegetation. Our algorithm analyzes the input T and decomposes it into patches P. It then matches P
with the atoms Di of the dictionary, and guarantees that the synthesized layers are coherent with the input T .

elevation, vegetation information or textures. This re-

search field is known in the signal processing literature

as joint sparse approximation [24]. Our framework pro-

poses a simple and efficient implementation with a view

to allowing for a faster processing without any sophis-

ticated sparse approximation algorithm.

3 Overview and notations

The overall workflow of our method is divided into two

steps: a dictionary extraction from a set of exemplars

performed as a pre-processing step (Figure 3), and a

high-resolution multi-layer terrain synthesis from a low

resolution model (Figure 2).

3.1 Dictionary creation

At the heart of our method is a dictionary built from

a set of multi-layer exemplars. The dictionary is cre-

ated by analyzing multi-layer input exemplars and con-

tains multi-layer atoms. Multi-layer terrain exemplars

are first decomposed into partially overlapping patches

as described in [12]. The multi-resolution dictionary is

a set of two dictionaries denoted as (D, D̃), low- and

high- resolution, with the same number of atoms and a

one-to-one correspondence between their atoms. Thus,

given a decomposition over D, the reconstruction from

D̃ can be obtained simply by keeping the decomposi-

tion and replacing the atoms through the one-to-one

correspondence.

3.2 Multi-layer terrain synthesis

The inputs of our algorithm are a low-resolution terrain

T containing either a single elevation layer or additional

layers, and a multi-resolution dictionary (D, D̃). The

terrain T can be either a user-drawn sketch, specifying

a coarse elevation map and a distribution of different

materials and vegetation types over the terrain, or a real

digital elevation map that the user wants to augment

with additional layers.

Our algorithm decomposes T into patches, denoted

as P, which are matched to the nearest low-resolution

atoms D of the dictionary. The patches P are then re-

placed by the high-resolution and multi-layer atoms D̃
corresponding to D and the terrain is built by blending

the high-resolution atoms. The output of our algorithm

is a high resolution multi-layer terrain T̃ whose layers

are obtained from the different layers extracted from

the exemplars.

Our method lends itself for synthesizing landscapes

with different kinds of information (detailed elevation,

vegetation density and type, sediment thickness) de-

pending on the number and categories of layers included

in the dictionary. It can be used to create vegetation

and population density, or replace specific regions in a

consistent way as demonstrated in Section 6.

Layers store vector or scalar data. Superscripts will

refer to layers for both input patches and dictionary
atoms. Pe and Ph denote the elevation and the nor-

malized elevation respectively. Pa will refer to the mean

elevation of the layer Ph, and Ps to the mean deviation

of the layer Pe, and will be computed as follows:

Pa = Pe Ps = ‖Pe − Pa‖ Ph = (Pe − Pa)/Ps

The other layers for vegetation density, upstream drainage

area, solar irradiance and classes will be denoted as Pv,
Pu, and P l respectively.

4 Dictionary construction

The creation of the dictionary is performed as a pre-

processing step, independent of the synthesis step it-

self. Exemplars are down-sampled to get low-resolution

multi-layer exemplars. Dictionary atoms are extracted

from both original and down-sampled exemplars, pro-

cessed layer by layer and re-assembled into multi-layer

atoms (Figure 3). The computations are performed both
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on the low-resolution and high-resolution atoms so that

the one-to-one correspondence is preserved. Atoms are

defined as square regular grids storing digital elevation

data, and combined with a radial falloff function for

smooth blending. The layers represent any kind of data:

elevation, vegetation density for every different species,

and computed data such as upstream area or slope.

Exemplars

Elevation Vegetation

Low-resolution atoms D

High-resolution atoms D

hD

FlowSlope

Extra layers

D
ow

n 
sa

m
pl

in
g,

 p
at

ch
 e

xt
ra

ct
io

n

2 Dictionary D

Analysis
1

vD sD

sD
~vD

~hD
~

~
Lighting

uD

uD
~

Fig. 3 Dictionary extraction from a set of input exemplars.

Elevation layers are first centered according to the

mean elevation value of the patch, and then normalized.

Some layers such as the mean elevation, the slope, the

global vegetation density, the solar irradiance and up-

stream drainage area layers are directly computed from

the elevation layer.

The dictionary structure is defined as a set of multi-

layer low-resolution atoms associated to their high-reso-

lution counterpart. They will be denoted as Dji and D̃ji
respectively, where j ∈ {0, . . . , l− 1} denotes the layer,

and i ∈ {0, . . . , n − 1} refers to the i-th atom in the

dictionary. The low-resolution dictionary D = {Di} will

be used to match the input to the dictionary whereas

the high-resolution dictionary D̃ = {D̃i} will be used

for synthesizing the multi-layer terrain.

5 Multi-layer terrain synthesis

Our synthesis algorithm is designed so that the match-

ing process should match an input terrain patch to a

unique dictionary atom efficiently. Moreover, it success-

fully handles multi-layer data and can represent nonlin-

ear features such as the norm of an atom, local curva-

ture or any feature of interest.

In order to be matched with a given atom Di of

the dictionary, an input terrain patch P comes with a

subset Γ of the set of layer indices Ω = {0, . . . , l − 1}.
Let Pj be the j-th layer of the input terrain patch. Let

gj denote the matching function of the jth layer. We

define the matching function g : Rn × Rn → [0, 1] as:

g(P,Di) =
∑
j∈Γ

ωj gj(Pj ,Dji )
∑
j∈Γ

ωj = 1

The coefficients ωj form a partition of unit and weight

the relative impact of the different layers in the match-

ing. The matching functions gj detailed in the next

subsections evaluate the similarity between patches and

atoms for the different types of layers. The higher the

value g(P,Di), the better the correspondence between

the input patch and the i-th atom. Let k denote the

atom index that minimizes the matching function:

k = argmax
i

g(P,Di)

The reconstructed patch P̃ = {P̃j} contains the lay-

ers of the high-resolution matched atom k. The recon-

structed elevation will be computed as:

P̃e = (Ph · Dhk )Ps D̃hk + Pa

All the other layers will be directly reconstructed from

the dictionary atoms, therefore

∀j ∈ Γ − {e}, Pj = D̃jk

In the particular setting of l = 1, Γ = {h} and

gh(Ph,Dhi ) = |Ph · Dhi | where the layer h contains vec-

tor data and atoms in the dictionary are normalized,

we obtain the regular Matching Pursuit algorithm [23]

with a sparsity of s = 1. Our framework generalizes

this approach by introducing additional layers in the

matching step and allowing complex matching layouts.

The landscape reconstruction from the patches P̃ is

performed by blending the overlapping patches with a

falloff function of the distance to the patch center. In

the remainder of this section, we rely on this general

framework and show how the different types of layers

are processed.

5.1 Orientation

In this section, we consider the layer h that represents

the elevation of a terrain. Recall that dictionary atoms

Dhi and terrain patches Ph are centered at zero in order

to avoid a constant component term in the projection

which would make the matching less meaningful. Con-

sequently, if we use the matching function gh(Ph,Dhi ) =

|Ph · Dhi |, a good matching can be achieved with Ph ·
Dhi < 0, i.e. by inverting the dictionary atom, which

produces inaccurate results for our landscape genera-

tion: North faces may become South faces, ridges may

become valleys, with dramatic consequences on addi-

tional layers, such as riverside vegetation on top of

mountains as illustrated in Figure 4.
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Input patch Best atom: P ·D < 0 Output patchh h
k

Fig. 4 By using standard sparse synthesis, the atom that
best matches the input ridge elevation data has a negative
coefficient and corresponds to a valley. The vegetation density
of the valley atoms are incorrectly placed on top of the terrain
patch. In contrast, our approach avoids inversions.

In our framework, we are synthesizing layers that

store other important properties, therefore we need to

preserve the overall coherence between layers. To solve

this problem, we use the following matching function

that maps onto [0, 1] :

gh(Ph,Dhi ) = (1 + Ph · Dhi )/2

Figure 5 demonstrates the importance of preserving the

terrain orientation. The dictionary was created from

multi-layer data containing the elevation (used for patch

matching) and the normal (used in synthesis). The gen-

erated terrain is a high resolution elevation map aug-

mented with a coherent normal map.

ReferenceOur approachSparse synthesis

Fig. 5 Sparse synthesis generates patches with arbitrarily-
oriented atoms, resulting in inconsistent orientations which
affects the generation of other layers: North rims would be re-
placed by South rims, thus misplacing orientation-dependent
content such as solar irradiance or vegetation. Our method
preserves the orientation and generates coherent patches.

5.2 Elevation and slope

The matching algorithm can also benefit from infor-

mation about the altitude of the atoms and patches,

as well as their mean elevation deviation that approxi-

mates slope. The altitude matching function is:

ga(Pa,Dai ) = k(|Pa −Dai ‖) k(x) = e−x
2/σ2

The standard deviation coefficient σ serves as a user-

control parameter. We chose σ so that the Gaussian

should be equal to 0.5 at the medium difference:

σ = (2
√

ln 2)−1 max
i

(‖Pa −Dai ‖)

We use the same matching function for the slope func-

tion gs. The weight ωa allows users to control altitude-

dependent content such as snow on high peaks, whereas

ωs controls slope-dependent content such as sediments

or trees.

ωh = 0.4  ωa = ωs = 0.3

ExemplarInput

ωh =1  ωa = ωs = 0.0

Fig. 6 Activating the altitude and slope matching functions
gives a vegetation distribution that better fits the exemplar.

Figure 6 illustrates the impact of the coefficients

ωa and ωs on the vegetation synthesis when using a

dictionary containing a mean altitude layer and a slope

layer that are derived directly from the elevation data

(mean elevation and slope magnitude). The synthesis

was performed on a input elevation map T with steeper

slopes than the exemplar, which explains the scattered

vegetation compared to large forests in the exemplar.

5.3 Context layers

environmental properties (such as specific climate or

illumination conditions) that may extend over multi-

ple patches. Taking into account the context is crucial

for improving the overall matching process; therefore,

we use context layers computed from the neighboring

patches to improve the matching process.

Context data for a given patch Pj is computed over

a spatial domain Ωj embedding Pj . In our experiments,

the radius of the domain ranged for twice to eight times

the radius of the patch. In our implementation, we per-

form a hierarchical down-sampling of the information

contained in Ωj so as to define a multi-scale description

of the patch neighborhood and speed up the evaluation

of the matching function. Although context layers in-

clude data from a larger domain Ωj ⊃ Pj , atoms Dj
and D̃j have identical spatial extents. Atoms in D̃ are

used exclusively in the last step of the terrain synthe-

sis when replacing patches with their high resolution

counterparts.

Figure 7 compares the results obtained by increasing

the size of the neighborhood when using context lay-
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No context Large context
ΩP

Fig. 7 Elevation synthesis using context layers. The input
sketch is shown as an inset. From left to right: output terrain
with simple matching, and with a context layer. The grey
square denotes the patch size, and the white one indicates
the approximate extent of the neighborhood Ω considered
for computing the context layers.

ers for capturing the landform features. Context layers

allow for a more realistic reconstruction of the cliffs,

valleys and flat terrain landforms such as plateaus as

the best matching atom can be determined according

to the features in the neighborhood of the patch.

5.4 Class layers

We introduce class layers as a powerful tool to control

the style of the synthesized multi-layer terrain model,

e.g. rocky mountains, snow peaks, hills with forests.

Classes are defined by using a specific abstract layer

that defines the desired class of patch.

Exemplar Input Output

Fig. 8 Terrain authoring from a sketch defining 3 classes:
hills with forests, desert mountains, snow peaks. The dictio-
nary includes segmented exemplars from the central part of
the Himalayas.

Dictionary atoms are first labeled to identify mul-

tiple differentiated regions from distinct classes (Fig-

ure 8). A classification layer stores vectors whose com-

ponents define the relative probability (terms range in

[0, 1] and sum to 1) that the patch should belong to

the corresponding class. An exemplar with 3 different

classes leads to 3-component vectors for the class layer

(Figure 8). The matching method consists in choosing

atoms that have preferably the same class as the input

terrain patches. We define the matching function gc as:

gc(Pc,Dci ) =
1

n

n∑
k=1

Pc(k) · Dci (k)

where n represents the number of classes; Pc(k) and

Dci (k) represents the kth class information sample for

the input patch and dictionary atom respectively. Sam-

ples are normalized class vectors: normalization is im-

portant so that patches with smoothly varying classes

should not match well with atoms of a single class.

5.5 Matching multiple exemplars

Our method allows to use dictionaries created from dif-

ferent exemplars and featuring various types of land-

scapes. Without loss of generality we present multiple

exemplars matching with 2 biomes. In this particular

setting, we consider two dictionaries A and B that rep-

resent the two biomes. The user has to paint two ad-

ditional input layers α and β that describe the relative

influence of the respective biomes. Note that the sum

of α and β should be 1 everywhere. For the matching

and reconstruction, we use the following algorithm: for

all patches P in the input terrain:

1. Find the atoms Ai ∈ A that maximizes g(Pα �
P,Pα � A). Perform the same task with P for the

other dictionary B weighted by β to find Bj .
2. Blend the two high resolution atoms and generate

P = P̃α � Ãi + P̃β � B̃i where P̃α and P̃β are the

upsampled versions of Pα and Pβ .

where � denotes Hadamard element-wise vector multi-

plication.

ExemplarsInput T Control layers

Generated terrain Close-up

A B Cα β γ

Fig. 9 High-resolution landscape generated from a low reso-
lution elevation map, three exemplars and control layers indi-
cating the preferred exemplar. The dictionaries were created
from the Rocky Mountains, the Grand Canyon and Smokies
National Park elevation maps.

5.6 Environmental layers

Layers representing global environmental information

can be used to further improve the overall landscape,

i.e. terrain and vegetation, synthesis process. Contrary

to elevation or vegetation density layers that only pro-

vide local information at a given point, global layers
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store parameters that are derived from a global analysis

of the terrain. Such layers are particularly useful for im-

plicitly representing correlations between neighboring

patches and introducing coherence terms in the equa-

tion that evaluates the matching between patches and

atoms. In our system, we experimented with two types

Without drainage With drainage

Fig. 10 Influence of the upstream drainage area layer: gullies
and ravines are better reconstructed using it.

of global information layers: the upstream drainage area

that approximates the average flow of water passing

through a patch, and the average solar irradiance that

represents the average amount of sunlight received by

a patch. If not provided, those layers can be computed

from the elevation data of the exemplars and the input

T to generate the corresponding layers for patches Pu
and P l and dictionary atoms Du and Dl. The matching

function is simply defined as:

gu(Pj ,Dji ) = (1 + Pj · Dji )/2 j ∈ {u, l}

The upstream drainage area is computed by simulating

the flow of a large number of particles randomly dis-

tributed over the surface of the terrain and measuring

the number of particles passing through every patch.

Figure 10 shows that taking the drainage area into ac-

count allows for a better matching reconstruction of

ravines and gullies. Solar irradiance (layer P l) is cal-

culated based on latitude and longitude by intersecting

rays from the sun position along its trajectory with the

terrain. This captures terrain self-shadowing and pro-

vides average direct illumination from the sun.

6 Results

Our system automatically synthesizes coherent high-

resolution multi-layer landscapes, i.e., terrains with de-

tailed elevation, soil type, sediment layers covered with

a realistic distribution of different types of vegetation

from a few input low-resolution layers (in general eleva-

tion and control layers). Instead of relying on complex

procedural ecosystem simulations, our method repro-

duces the patterns and characteristics of the dictionary

exemplars and preserves the overall coherence of the

different layers (Figure 11, 14).

An important feature of our framework is its versa-

tility: it can be used to generate an arbitrary number of

layers of different types. Moreover, our dictionary-based

system allows the user to enhance the database with as

many atoms as needed, completing it with atoms fea-

turing sediments or different kinds of plants.

The user controls the multi-layer terrain generation

process by adjusting the weighting coefficients for the

input and synthesized layers (Figure 6). Artists can

freely provide, besides the elevation data, arbitrary lay-

ers as inputs, choose the layers and define their purpose:

soil type, humidity, vegetation density or biome as long

as the dictionary atoms encode these layers. The al-

gorithm produces high-resolution terrains or additional

layers consistent with the user-provided input.

Sparse synthesis
Coherent 

multi-layer synthesis

Dense vegetation 
on steep slopes

Coherent vegetation 
layers

Rocky
cliffs

Fig. 11 Comparison between sparse synthesis and our
method. Left image shows the vegetation distribution without
taking into account the orientation, mean altitude and slope.
Right image shows the coherent distribution: as exemplars do
not have trees at high altitudes, our method produces trees
that conform to this rule.

Figures 8 and 9 show examples of sketch-based au-

thoring. The sketch contains a coarse description of the

desired classes (forest, desert, peaks), with the purpose

of synthesizing consistent biomes. The influence of the

sketches in the matching process can be controlled by

modifying the weighting coefficients. Figure 14 shows an

example where control is achieved by sketching the ex-

pected distribution of different vegetation layers (tree,

shrub, grass). Figure 15 shows an example of an au-

thoring session. This example demonstrates that the

synthesized layers (here the vegetation layer) can be

in turn used and modified to guide the synthesis, in a

coherent feedback loop.

Instead of defining a vegetation distribution for each

vegetation type, the user may simply provide a vegeta-
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Layers Multi-layer terrain synthesis Time (s)

Input Output Figure Patch Atoms Patches Input Output Scale Dict. Match. Synth.

h, c h, t 8 242 3920 289 1852 7402 ×4 0.20 0.07 0.43

h, c h, t 9 242 5401 1521 4502 13502 ×3 0.35 3.19 9.95

h h, v 11 322 2116 324 2802 14002 ×5 0.08 0.03 0.47

h, v, c h, v 14 102 3969 10816 5132 51302 ×10 0.07 1.91 7.45

h, v h, v 12 242 3481 29584 20482 20482 ×1 0.11 3.07 7.47

Table 1 Statistics: patch size, number of atoms in the dictionary, number of patches, size of the input and output terrains,
amplification factor. We also report timings (in s) for the dictionary construction, matching process, and patch replacement.

Without vegetation constraint Vegetation constraint
ωh = 1.0  ωv = 0.0 ωh = 0.4  ωv = 0.6 

Fig. 12 Vegetation control: left image shows a terrain with-
out vegetation density control, i.e., following the distribu-
tion of the dictionary exemplar, whereas right image shows a
smooth disc-shaped constraint. The algorithm automatically
selects atoms with no vegetation under water.

tion density layer (single scalar), and use the dictionary

to convert the overall density into vegetation distribu-

tions for the different types of vegetation. Figure 12

illustrates this case: we created another layer for the

dictionary that encodes the (weighted) sum of other

vegetation layers, and used it to compare the average

density between atoms and patches.

6.1 Multi-step synthesis

Our method allows to execute the synthesis process iter-

atively, using some of the output layers of one iteration

as input layers for the next iteration. Therefore, we can

use several dictionaries with different layer subsets in a

coherent way.

Figure 13 shows an example of a two-step workflow.

The first iteration generated a dictionary extracted from

a real dataset of Catalonia, which was in turn used to

synthesize coherent population and vegetation densi-

ties. The second iteration generated a higher resolution

dictionary containing per-class distributions which was

used to synthesize the different types of vegetation ac-

cording to the previously generated vegetation density.

6.2 Performance

Our method was implemented and tested on an In-

tel Core i7 with 16 GB of RAM. Table 1 presents an

Input

Population
density

Vegetation
density

Synthesis 1

D
ire

ct
 

Sy
nt

he
si

s
Sy

nt
he

si
s 2

Vegetation coherent 
with population

Too much 
vegetation

Fig. 13 Example of a two-step vegetation synthesis. First,
we produce a vegetation layer coherent with a population
density. Then, this layer is used to produce the distribution
of three vegetation classes. In the first step the resolution
was increased by 3 whereas it was preserved in the second
step. Using directly the second dictionary on the input terrain
cannot account for population density and thus places forests
on areas with a high population density.

overview of the different cases and reports the corre-

sponding statistics. Timings demonstrate that our ap-

proach is efficient and can be used in practical terrain

authoring applications. Although our current frame-

work has been coded into a single-threaded CPU im-

plementation, our method lends itself for a parallel im-

plementation on the GPU.

The dictionaries can be extended easily by adding

new layers to existing atoms, or by adding new atoms

from other exemplars. Increasing the size of the dictio-

nary allows for more variety and yields better results, at

the cost of a more computationally demanding match-

ing step. Matching performs in a few seconds and even

less than a second for average-size dictionaries. The

matching step of Figure 9 required one pass per class;

timings take into account the multiple passes. Synthe-

sis and blending performs in less than a few seconds

on most examples. Notable exceptions are reported for

the largest synthesized model (Figure 14), with a large

terrain (5130×5130) involving more than 10 k patches,

and Figure 12 which contains almost 30 k patches.

The time needed to evaluate gj(Pj ,Dji ) for complex

data becomes the more expensive as the number of lay-
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ωv = 0.28 ωv = 0.17 ωv = 0.06 ωv = 0 

Fig. 14 Vegetation control over a large terrain: the vegetation distribution dictionary was created from the eastern Pyrenees
exemplars (Figure 1), and the different species were prescribed by the user by defining three different classes (trees in red,
bushes in green and sand in blue). Results are shown for different values of the control parameter ωv.

ers increases. In our implementation, we optimized the

computation by using a Poisson disc-based distribution

of samples inside the patch area and evaluating gj only

over the reduced set of center points.

6.3 Discussion

Our dictionary-based framework has several applica-

tions. The input can be real digital elevation models,

rough sketches drawn by hand, or a combination of

both, containing a single layer (e.g. elevation), or multi-

ple layers. The output terrain contains always as many

layers as available in the dictionary, thus providing co-

herent data amplification.

A key feature of our approach is to provide a unified,

easy-to-control, and flexible model for multi-layer land-

scape synthesis generating plausible and predictable re-

sults. Although alternative methods exist for some spe-

cific problems, none of them cover simultaneously all

the applications supported by our framework. Our method

provides control to the user and allows him to cre-

ate any arbitrary layer in a coherent way. These two

features are key for dictionary reusability and, ulti-

mately, for effective terrain creation, editing and syn-

thesis. Context layers combined with global environ-

mental layers allow us to generate spatially coherent

patches that more faithfully reproduce landform fea-

tures such as gullies, erosion lines or plant clusters. Fi-

nally, our approach can be extended easily by consider-

ing other types of layers and defining the corresponding

appropriate matching function.

As for all example-based approaches, our method

may require a large input dataset to synthesize terrains.

The dictionary extraction pre-processing step is very

efficient. Although it may be difficult to find real world

exemplars with appropriate layers, the set of exemplars

can be completed with results obtained by computer

simulations. Our framework offers many possibilities for

reusing dictionaries, since it is built independently of

the synthesis step.

Although the coherence between the different layers

of an output patch is guaranteed by construction, the

coherence between neighboring patches in the output

is affected by the variety of atoms in the dictionary.

This limitation has two consequences. First, mixing ex-

emplars from radically different biomes (e.g. rain forest

and desert) into the same dictionary may result in poor

spatial coherence or sharp transitions. That limitation

may be alleviated by providing a sketch of the desired

distribution, as described in Section 5.5.

Another limitation of our method is that it does

not properly handle structured layouts such as road-

networks, villages or cities: the synthesis process does

not guarantee that the structures would seamlessly link

between two neighboring patches. Our method can nev-

ertheless synthesize statistic information such as popu-

lation density (Figure 13), which in turn may be used

as input to generate villages or cities [6].

7 Conclusion

We have presented a multi-layer example-based approach

to synthesize realistic landscapes, i.e. terrains contain-

ing heterogeneous information layers such as elevation,

vegetation density or soil type. The cost function for

matching dictionary atoms with terrain patches allows

joint synthesis of coherent information layers. While our

method lends itself for representing statistical data lay-

ers such as vegetation or population density, it cannot

be directly used to synthesize constructs such as road

networks or cities. Bridging the gap between our ap-

proach and road and city generation techniques is a

challenging problem worth investigating as future work.
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