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In this supplementary file we provide details regarding
the proposed algorithm. We derive a few theoretical
results, we present comparisons with other algorithms
in 2D and illustrate the robustness to noise in 3D.

Mathematical approach
Reformulation of (4) into (7)
In 2D, the fact that point xi belongs to an ellipse rep-
resented by (A, b, c) reads:

a1,1xi[1]2 + a2,2xi[2]2 + 2a1,2xi[1]xi[2]+

b1xi[1] + b2xi[2] + c = 0. (8)

By stacking the coefficients in a vector

q = (a1,1, a2,2,
√

2a1,2, b1, b2, c)
T ,

equation (8) can be rewritten in the compact form (see
e.g. [1])

〈di, q〉 = 0,

where

di = (xi[1]2, xi[2]2,
√

2xi[1]xi[2], xi[1], xi[2], 1)T . (9)

Now, letting D = [d1, . . . , dn], function G can be
rewritten as

G(X, q) = ‖DT q‖2. (10)

In 3D, a similar decomposition can be performed.
We used the following conventions in our codes

q = (a1,1, a2,2, a3,3,
√

2a1,2,
√

2a1,3,
√

2a2,3, b1, b2, b3, c)
T ,

di = (xi[1]2, xi[2]2, xi[3]2,
√

2xi[1]xi[2],
√

2xi[1]xi[3],
√

2xi[2]xi[3], xi[1], xi[2], xi[3], 1)T . (11)
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Let m = d(d + 1)/2 + d + 1 denote the number of
parameters in q. The set of admissible vectors Q is
then defined as:

Q = {q ∈ Rm,Tr(A(q)) = 1,A(q) � 0}, (12)

where A : Rm → Rd×d is the linear mapping that
associates matrix A to vector q. With the proposed
notation, problem (4) simplifies to the following convex
problem:

min
q∈Q
‖DT q‖2. (13)

Minimizers and invariance
Proposition 1 Problem (4) is convex. It admits at
least one minimizer. Set

m = d(d+ 1)/2 + d+ 1. (14)

If n ≤ m−2, the minimizer is non unique. If the points
are in “generic” position and the number n ≥ m − 1,
then the minimizer is unique.

Proof We consider the equivalent formulation (7) in-
stead of (4).

Problem (7) is convex since Q and q 7→ ‖DT q‖2 are
both convex. It consists of a projection problem on
Q with the possibly degenerate metric q 7→ ‖DT q‖2.
Standard convex analysis results [2, Prop. 2.3.4] state
that the solution exists and it is unique when the met-
ric is non degenerate.

If n ≤ m − 2, notice that dim(ker(DT )) ≥ 2 and
dim({q ∈ Rm,Tr(A(q)) = 1}) = m − 1. Hence, there
is a subspace V of dimension at least 1 such that ∀q ∈
V , DT q = 0 and Tr(A(q)) = 1. All vectors q in this
subspace satisfy ‖DT q‖22 = 0, hence they are solution
of (7). They all describe ellipsoids passing perfectly
through the set of points.

If n ≥ m − 1, the genericity hypothesis amounts to
assume that ker(DT )) is of dimension less or equal
than 1 and is transverse to {q ∈ Rm,Tr(A(q)) = 1}.
Hence, function q 7→ 1

2‖DT q‖22 is strictly convex over
{q ∈ Rm,Tr(A(q)) = 1} ensuring uniqueness of the
minimizer.
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Remark 1 An ellipsoid should satisfy A � 0 and not
A � 0. However, it is important to work over closed
sets to ensure existence of a minimizer. The minimizer
of (4) can therefore represent a degenerate ellipsoid
such as a line in 2D or a plane in 3D. This situation
never happened in our numerical experiments.

Proposition 2 The minimizer (Â, b̂, ĉ) is covariant
to translation and rotation of the input point locations
X. More precisely, let Ê denote the ellipsoid solution
of (4) and Ê′ denote the ellipsoid obtained by solving
(4) with input coordinates X ′ = (x′i)1≤i≤n, where x′i =
Rxi+t, R ∈ Rd×d is an orthogonal matrix and t ∈ Rd

is a translation vector. Then Ê′ = RÊ + t.

Proof Let E denote an ellipsoid defined through the
triplet (A, b, c) ∈M. Now, let E′ = RE + t. A change
of variable shows that E′ is defined through (A′, b′, c′)
with

A′ = RART , b′ = Rb−2A′t and c′ = c−〈t, A′t+b′〉.
(15)

In addition, it is clear that (A′, b′, c′) ∈ M since the
trace and eigenvalues are invariant to isometries.

Straightforward calculus (using the relationship
RTR = RRT = Id) shows that

G(X,A, b, c) = G(X ′, A′, b′, c′). (16)

Hence the minimizers (Â, b̂, ĉ) of G(X,A, b, c) over M
and the minimizer (Â′, b̂′, ĉ′) of G(X ′, A′, b′, c′) are re-
lated through (15).

Remark 2 The solution of (4) is however not covari-
ant to affine changes. In the case of an affine change of
coordinate, the orthogonality identity RTR = Id used
in the proof is not satisfied anymore.

Algorithmic approach

We propose solving (7) using Douglas-Rachford algo-
rithm which was first proposed by Lions and Mercier
[3]. It is a simple algorithm to solve problems of the
following type:

min
q∈Rm

f1(q) + f2(q), (17)

where f1 : Rm → R∪{+∞} and f2 : Rm → R∪{+∞}
are extended real-valued convex closed functions such
that f1(x) + f2(x) → +∞ as ‖x‖ → +∞. It is de-
scribed in Algorithm 1, while Proposition 3 states its

convergence properties. We recall that the proximal
operator of a function f is defined by:

Proxγf (z) = argmin
x∈Rn

γf(x) +
1

2
‖x− z‖2.

Algorithm 1 Douglas-Rachford algorithm to minimize
(17)

Input: Initial guess q(1/2) ∈ Rm, number of iterations Nit, pa-
rameter γ > 0.
Output: q(Nit) an approximate solution of (17).
for k = 1 to Nit do

q(k) := Proxγf2 (q
(k−1/2))

q(k+1/2) := q(k−1/2) − q(k) + Proxγf1 (2q
(k) − q(k−1/2)).

end for

Proposition 3 (Convergence [3, 4]) The sequence
(q(k))k∈N converges to a solution of (17).

To apply this algorithm to (7), we set

f1(q) = ‖DT q‖2 (18)

and

f2(q) =

{
0 if q ∈ Q,
+∞ otherwise.

It now suffices to evaluate the proximal operators of f1
and f2. They are given in proposition 4 and 5 below.

Proposition 4 The proximal operator of f1 is given
by

Proxγf1(z) = (γDDT + Id)−1(z). (19)

Proposition 5 Let z ∈ Rm. Assume that A(z) can
be diagonalized as A(z) = UΣUT , where Σ = diag(σ).
Let σ+ denote the projection of σ on the unit simplex
and define A+ = Udiag(σ+)UT . Then Proxγf2(z) is
obtained by changing the first d(d + 1)/2 components
of z by A−1(A+) and leaving the others unchanged.

Proof It suffices to note that:

min
A(q)�0,Tr(A(q))=1

1

2
‖q − z‖2

= min
A(q)�0,Tr(A(q))=1

1

2
‖A(q)−A(z)‖2F

= min
S�0,Tr(S)=1

1

2
‖S − Σ‖2F .
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where ‖ · ‖F denotes the Frobenius norm, which is in-
variant by unitary transforms. Projecting a vector on
the unit simplex is a standard issue, see e.g. [5]. It can
be solved exactly in O(d) operations.

Remark 3 In [6], the authors proposed using the
ADMM algorithm [7], which can be seen as Douglas-
Rachford algorithm applied to the dual of (17). Their
implementation relies on the fact that Q = Q1 ∩ Q2,
where Q1 describes the set of symmetric positive semi-
definite matrices and Q2 describes the set of matrices
with trace equal to 1. They then propose to split the
problem in three terms (one for Q1, one for Q2 and one
for f1) while our decomposition uses only two terms.
This simplifies the algorithm by reducing the number
of parameters to tune to 1: the value of γ.

An effective algorithm
The algorithm to solve the ellipsoid fitting problem
(4) is given in Algorithm 2. It depends on two extra
parameters: the number of iterations Nit and a value
γ > 0. The number of iterations to achieve a reason-
able result strongly depends on normalizing conditions
described in the next section. The convergence is also
sensitive to the value of γ. However, with the normal-
ization proposed in the next section, it can be tuned
once for all. In all our numerical experiments, we sim-
ply set γ = 10.

Algorithm 2 An algorithm to solve (4)

Input: Data points X = [x1, . . . , xn], Number of iterations Nit,
Parameter γ > 0.
Output: The parameters q of an ellipsoid.
Compute matrix D using equation (9) in 2D or (11) in 3D.
Set ci = mean(X(:, i)).

Set r2 = mean(
∑d
i=1(X(:, i)− ci)2).

if d=2 then
Set q(1/2) = [0.5, 0.5, 0,−c1,−c2, (c21 + c22 − r2)/2].

else if d=3 then
Set q(1/2) = [0.5, 0.5, 0.5, 0, 0, 0,−c1,−c2,−c3, (c21 + c22 +

c23 − r2)/2].
end if
Call Algorithm 1, with f1 defined in (18).

We observed that the algorithm performance strongly
depends on the points locations. This is illustrated in
Fig. 1 for coordinate shifts and in Fig. 2 for the dila-
tion of one axis. In addition, the solutions of (4) are
not invariant to affine transforms, which is a desirable
property. We propose to address both issues below.
Similar ideas were proposed in [8] for the specific case
of spheres.

Let X = [x1, . . . , xn] ∈ Rd×n. We are looking for a
linear transform P ∈ Rd×d and a translation vector
t ∈ Rd, such that the vectors

yi = P (xi − t) (20)

have mean 0 and covariance matrix Id. Letting Y =
[y1, . . . , yn], this means that Y Y T = Id.

For centering X, we clearly need to take

t =
1

n

n∑
i=1

xi. (21)

Now, let X̄ = [x1− t, . . . , xn− t] denote the set of cen-
tered vectors. The eigenvalue decomposition of X̄X̄T

reads

X̄X̄T = Ū Σ̄ŪT . (22)

By letting

P = Σ−1/2UT , (23)

we obtain the desired result.
Algorithm 3 summarizes the proposed idea. It

strongly improves the algorithm’s convergence. In
practice, this approach never required more than 200
iterations to reach machine precision, while the unnor-
malized method can require arbitrarily large comput-
ing times depending on the points set location.

Algorithm 3 Ellipsoid fitting using SVD normalization
Input: Data points X.
Output: An ellipsoid E.
Evaluate t and P using (21), (22) and (23).
Construct yi = P (xi − t).
Apply Algorithm 2 with input Y = [y1, . . . , yn], Nit = 100 and
γ = 10.
Set E = P−1E + t.

Comparison in 2D
In this section we illustrate the behavior of different
algorithms on a 2D example that is representative of
numerous experiments. We compare four algorithms
both in terms of computing times and robustness of
the results with respect to i) noise and ii) non-uniform
sampling. In all experiments, the same ellipse is used.
Its center is set to z = (4, 5) and the lengths of its axes
are 4 and 1.
1 The first algorithm denoted DR is described in

Algorithm 2.
2 The second algorithm denoted DR-SVD is Algo-

rithm 3.
3 The third algorithm is the standard Linear Least

Square approach [10] denoted LLS. It consists in
choosing the normalization condition ‖q‖ = 1
in the minimization of G given by Equation
(3The algebraic approachequation.0.3). When skip-
ping the constraint A(q) � 0, the problem be-
comes

min
‖q‖=1

‖DT q‖2, (24)
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Figure 1 Shift experiment: in this experiment, we fit the set of points indicated with asterisks using 100 iterations of
Douglas-Rachford algorithm 1, or the same set shifted by 10 units horizontally. We then plot the result at the same origin. As can be
seen, the green ellipsoid (non shifted points) is well retrieved, while the one associated to shifted points is unsatisfactory. The same
behavior can be observed for the cost function. The convergence curve associated to the non shifted points shows that machine
precision is reached after about 50 iterations. On its side, the convergence curve associated to the shifted points converges linearly
with a very slow rate. It reaches the maximal reachable precision (10−10) in about 20,000 iterations.

which amounts to finding the smallest eigenvector
of K = DDT . It yields a vector q̃ that describes
a quadric, which is not necessarily an ellipsoid.

4 The fourth algorithm denoted LLS-SVD consists
of applying LLS to the dataset after a change of
coordinates, similarly to what is described in Al-
gorithm 3. This algorithm is affine invariant.

In Figure 3 (left) one can observe that all algo-
rithms provide satisfactory results, although DR-SVD
is faster than DR. Note that LLS and LLS-DR are
very rapid since they consist of finding the smallest
eigenvector of a 6 × 6 matrix. In Figure 3 (right) the
situation is different since the points are not sampled
regularly along the ellipse. In this situation, the solu-
tions provided by LLS and LLS-SVD are not ellipses,
this comes from the fact that the constraint of posi-
tivity of the matrix A(q) is not included in the LLS
formulation of the problem.

3D experiments

In this section, we perform a few experiments to chal-
lenge the algorithm implemented in the Icy plugin. To
do so, we draw points uniformly at random on the
boundary of an ellipsoid on 3 orthogonal planes. We
then add a random perturbation of normal distribu-
tion with variance σ2 within each plane. This way, we
simulate what a user does by clicking on points in 3
orthogonal views. Note that the orthogonal planes ori-
entation do not necessarily coincide with the ellipsoid
axes.

Minimal amount of points

The objective here is to illustrate the minimal number
of points required and the stability to noise. As can
be seen in this example, 20 points are enough to pro-
vide an accurate result despite a significant amount of
noise.

Effect of the SVD on the precision

We saw in the previous paragraph that the SVD scal-
ing allows to strongly improve the convergence speed
of the iterative algorithm. In this section, we illustrate
the effect of the SVD scaling on the precision of the
estimate. We draw 100 ellipsoids with random orienta-
tions with an oblate shape (l1 = 1, l2 = 0.5, l3 = 0.5)
or a prolate shape (l1 = 1, l2 = 1, l3 = 0.5). For each
of these, we draw 8 points randomly on the boundary
of the ellipsoid intersected with each plane XY , XZ
and Y Z. This yields 24 points in total. We then add
random Gaussian noise with various standard devia-
tions σ ∈ {0, 0.05, 0.1}. This is in the range of what
an end-user could do. We estimate the ellipsoids with
and without the SVD scaling and report the Haudorff
distance between the true ellipsoid and the estimated
ellipsoid in Table 1. As can be seen, the SVD scaling
slightly deteriorates the estimation quality, but the re-
sults are overall on par.
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Figure 2 Linear transform experiment: in this experiment, we fit the set of points indicated with asterisks using 400 iterations of
Algorithm 1, or the same set of points dilated by a factor 8 along the x-axis, see left Figure. The convergence curves show different
behaviors: while the curve associated to the circle shows a favorable linear behavior right from the start, the curve associated to the
ellipse has a plateau for the first 110 iterations and then then has the same favorable linear behavior. This phenomenon illustrates
recent results about Douglas-Rachford algorithm dynamics [9]: the algorithm converges to a manifold in a finite number of iterations
and then shows a linear convergence rate.

Table 1 Segmentation time and accuracy for 3 different users. The number after the sign ± represents the standard deviation.

Prolate Oblate

Without With Without With

σ = 0 0 0 0 0

σ = 0.05 0.074 ± 0.037 0.098 ± 0.75 0.093 ± 0.051 0.096 ± 0.071

σ = 0.1 0.207 ± 0.153 0.217 ± 0.134 0.156 ± 0.069 0.169 ± 0.079
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Figure 3 Comparisons of 4 different algorithms to fit an ellipse to a set of points. Left: all algorithms perform well for uniformly
distributed points along an ellipse. The number of iterations necessary for DR to converge is 4000 and it is 30 for DR-SVD. Right:
results for nonuniformly distributed points. The LLS and LLS-SVD algorithm produce hyperbolas instead of ellipses. In this specific
case, DR-SVD produces a result closer to the ground truth than DR, but it is not the case for all noise realizations. Notice that the
users of our plugins should avoid specifying configurations of points as shown in the right figure.

Figure 4 Fitting a 3D ellipsoid with semi-axes lengths l1 = 5, l2 = 3 and l3 = 1. All results in this experiment were obtained with
the proposed DR-SVD algorithm. The retrieved ellipsoid is displayed in green. The planar sections of the true underlying ellipsoid are
displayed in blue. The sampled points are displayed in black. In each experiment, numerical precision was obtained in less than 200
iterations. Top-left (n = 8 points, σ = 0) : this is not sufficient to retrieve the ellipsoid. Top-right (n = 9, σ = 0): this is sufficient to
perfectly recover the exact ellipsoid. These two results illustrate Proposition 1. Bottom-left (n = 9, σ = 0.2): the detection is
inaccurate since n is too small. Bottom-right (n = 20, σ = 0.2): increasing the number of points n renders satisfactory results even
in noisy settings.


