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FitEllipsoid: a fast supervised ellipsoid
segmentation plugin
Bastien Kovac1, Jérôme Fehrenbach1,2*, Ludivine Guillaume1 and Pierre Weiss1,2

Abstract

Background: The segmentation of a 3D image is
a task that can hardly be automatized in certain
situations, notably when the contrast is low and/or
the distance between elements is small. The
existing supervised methods require a high amount
of user input, e.g. delineating the domain in all
planar sections.

Results: We present FitEllipsoid, a supervised
segmentation code that allows fitting ellipsoids to
3D images with a minimal amount of interactions:
the user clicks on a few points on the boundary of
the object on 3 orthogonal views. The quantitative
geometric results of the segmentation of ellipsoids
can be exported as a csv file or as a binary image.
The core of the code is based on an original
computational approach to fit ellipsoids to point
clouds in an affine invariant manner. The plugin is
validated by segmenting a large number of 3D
nuclei in tumor spheroids, allowing to analyze the
distribution of their shapes. User experiments show
that large collections of nuclei can be segmented
with a high accuracy much faster than with more
traditional 2D slice by slice delineation approaches.

Conclusions: We designed a user-friendly software
FitEllipsoid allowing to segment hundreds of
ellipsoidal shapes in a supervised manner. It may
be used directly to analyze biological samples, or to
generate segmentation databases necessary to train
learning algorithms. The algorithm is distributed as
an open-source plugin to be used within the image
analysis software Icy. We also provide a Matlab
toolbox available with GitHub.

Keywords: supervised segmentation; ellipsoid; Icy
plugin
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Background
Starting observation
Segmenting ellipsoidal structures in 2D or 3D images-
can be used to characterize the shape of organs, tissues,
cells, nuclei or other cell organels [1, 2, 3], or serve as
an initialization for more advanced algorithms such as
active contours [4, 5, 6, 7].

While fully automatic detection algorithms [8, 9, 10,
11] are probably the ideal tool to limit subjective-
ness and time of analysis, existing strategies are not
sufficient to provide convincing segmentation results
when images suffer from strong degradations (e.g. blur,
noise, low resolution) or contain densely packed ob-
jects. In addition, automatic methods usually require
tuning a few parameters, which may be more time
consuming than using a simple supervised segmen-
tation algorithm. Finally, the generation of learning
databases or gold standards to test and compare exist-
ing segmentation algorithms still requires efficient su-
pervised algorithms. Unfortunately, to the best of our
knowledge, there currently exists no such freely avail-
able tool, which would benefit many different commu-
nities.

Contributions
These few considerations motivated us developing two
simple plugins for the Icy image analysis software [12]
that are based on a novel computational approach.
They are dedicated to fitting ellipses in 2D images or
ellipsoids in 3D images. The objectives of this paper
are to present the methodology and describe the plugin
for 3D ellipsoids.

The core of the algorithm consists in solving the well
studied problem of ellipsoid fitting from point clouds.
This is a notoriously difficult problem that attracted
the attention of researchers from different fields such
as computer vision, statistics or numerical analysis, to
name a few [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26]. We propose an original and robust computa-
tional algorithm that shares the same spirit as a recent
work [26], but significantly outperforms it when the el-
lipsoids are not centered or anisotropic. An important
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feature of the proposed algorithm is affine invariance:
the point cloud is registered prior to computation, en-
suring a robust behavior whatever the shape of the
point cloud.

The proposed algorithms are shared not only within
the Icy plugin, but also through a set of Matlab codes
delivered on a Github repository [27]. To the best of
our knowledge, FitEllipsoid is the first open-source
toolbox that allows fitting ellipsoids and not more gen-
eral quadrics (e.g. hyperbolas).

In order to showcase the usefulness of the plugin, we
propose to examine the morphology and the distribu-
tion of shapes of nuclei in a 3D tumor spheroid. Are
they rather elongated, spherical or none of these? Us-
ing FitEllipsoid, we obtained the shape of hundreds
of nuclei from 3D SPIM images of optically-cleared
spheroids.

Implementation
Specifications
The main objective of this plugin is to provide users
an accurate segmentation of ellipsoidal objects, while
satisfying the following constraints:
• permit 3D visualization to allow for visual inspec-

tion of the segmentation,
• minimize the time required for user interaction.

This is particularly important in biology where
hundreds or thousands of objects have to be ana-
lyzed routinely,
• export the results as files that other programs can

use for further processing,
• deliver a free and open-source software.

Description
The need for a free software dedicated to biomedical
imaging oriented us to the recently developed imag-
ing tool Icy [12]. It is based on VTK (Visualization
ToolKit) [28], allowing for nice 3D visualization.

An ellipsoid can be represented in different ways:
• A center (3 parameters), three angles of rotations

and the length of each axis (3 parameters).
• A center (3 parameters), the three axes (9 param-

eters linked through orthogonality relationships)
and the length of each axis (3 parameters).
• A center (3 parameters) and a positive symmetric

definite matrix (6 coefficients).
Unfortunately, none of these representations can be

easily used by a human. For instance, finding the cen-
ter of the ellipsoid precisely by just looking at the im-
age would result in inaccurate results.

The strategy that is adopted in FitEllipsoid is to ask
the user to select a few points in 3D on the object’s
boundary and the plugin then creates an ellipsoid that
passes through them approximately. In order to select

Figure 1 Selecting points in the orthogonal views on a
synthetic 3D image. Top: in red the points selected by the
user. Bottom: the 3 orthogonal views. By convention the views
are (clockwise from top left) in the respective planes (XY, YZ,
XZ).

points on the object boundary, we let the user select
points on 3 orthogonal 2D views (see Fig. 1).

In theory, it is possible to reconstruct an ellipsoid
perfectly when knowing as little as 9 points in generic
position lying on its surface (see the supplementary
material for a detailed discussion). The estimation
with just 9 points may be unstable to noise, which can-
not be avoided due to imperfect pixel selection by the
user. We therefore let the user select as many points
on the boundary as desired.

Orthogonal views are probably the easiest way to
interact with a 3D environment and their use is very
common in biomedical imaging (see e.g. [29]). The user
first selects a point in 3D space to define the 3 planes
of interest and then locks the views to click on a few
points on each plane. The operation can be repeated
on multiple orthogonal views to sample the object sur-
face more uniformly. When enough points have been
selected, an algorithm described in the next section fits
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Figure 2 Fitting result on the synthetic 3D image of Fig. 1.
Top: orthogonal views. Bottom: 3D rendering.

an ellipsoid to the point cloud. The operation can be
repeated in the case when multiple ellipsoids have to
be fitted. The result obtained by the point selection
from Fig. 1 is displayed in Fig. 2.

Apart from the 3D visualization, the ellipsoids pa-
rameters (center, axes orientations and length of axes)
are saved in a CSV file that can be read using stan-
dard spreadsheets or scientific computing softwares. In
addition, it is possible to save a 3D binary image indi-
cating the interior of each ellipsoid.

Tutorial
A video tutorial is provided here http://youtu.be/

MjotgTZi6RQ. It describes the main features of the plu-
gin.

Mathematical description
Given a set of n points X = (xi)1≤i≤n in Rd, where
d = 2 or 3, the objective of this section is to describe
a fast and robust algorithm to fit an ellipsoid to those
points. This is a longstanding problem studied in more

than 40 journal papers. We refer to the book [25] for a
more comprehensive overview. Two main approaches
have been proposed to solve it.

The geometric approach This method was proposed
in [13, 16, 22]. It consists in finding an ellipsoid E that
minimizes the following least squares problem:

F (E) =

n∑
i=1

dist(xi, E)2, (1)

where dist(xi, E) = infx∈E ‖x − xi‖ is the Euclidean
distance from the point xi to the ellipsoid E. While
this formulation has a clear geometrical meaning, it
suffers from being highly nonconvex. Designing global
minimization methods is therefore heavy from a com-
putational point of view.

The algebraic approach This method is the one
adopted in this paper. An ellipsoid E can be repre-
sented by a triplet (A, b, c) through an implicit equa-
tion of the form

E =
{
x ∈ Rd, 〈x,Ax〉+ 〈b, x〉+ c = 0

}
, (2)

where A ∈ Rd×d is a symmetric positive definite ma-
trix, b ∈ Rd is a vector and c ∈ R is a scalar.

The algebraic approach consists in minimizing the
following residual

G(X,A, b, c) =

n∑
i=1

(〈xi, Axi〉+ 〈b, xi〉+ c)2, (3)

over a set M of admissible triplets (A, b, c). The sole
positive definiteness condition A � 0 is not sufficient
since the infimum of G over the set of positive semi-
definite matrices is (A, b, c) = (0, 0, 0). It is necessary
to add a normalization condition to avoid the trivial
solution. Various possibilities have been considered in
the literature. We follow the approach proposed in [17]
that consists in imposing Tr(A) = 1. This choice has
the advantage of leading to a convex constraint, allow-
ing to design efficient numerical algorithms. Overall,
the optimization problem considered here reads

min
(A,b,c)∈M

G(X,A, b, c), (4)

where M = {(A, b, c) ∈ Rd×d × Rd × R, A �
0,Tr(A) = 1}.

The interests of this specific formulation are the fol-
lowing:
• There exists at least one minimizer. Moreover if

the number of points n satisfies n ≥ d(d+1)/2+d and

http://youtu.be/MjotgTZi6RQ
http://youtu.be/MjotgTZi6RQ
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Figure 3 A family of ellipses passing through 4 points. In
dimension d = 2 the minimum number of points necessary to
ensure uniqueness is n = 5.

the points are in generic position, then the minimizer
is unique, see Fig. 3 in 2D for an illustration and the
supplementary material for a proof.
• The minimizer is covariant to translation and rota-

tion of the input point locations X. More precisely, let
Ê denote the ellipsoid solution of (4) and Ê′ denote
the ellipsoid obtained by solving (4) with input coordi-
nates X ′ = (x′i)1≤i≤n, where x′i = Rxi + t, R ∈ Rd×d

is a rotation matrix and t ∈ Rd is a translation vec-
tor. Then Ê′ = RÊ + t. The proof of this property is
detailed in the supplementary material.

A numerical algorithm
In [17], Calafiore suggested reformulating (4) as a semi-
definite program and using interior point type meth-
ods to solve it. This type of algorithm is known to be
robust and reliable but is rather hard to implement.
Moreover, common primal-dual interior point meth-
ods [23] have a complexity that does not scale well
with the number of input data points n. Based on this
observation, Lin and Huang [26] designed a method
based on the alternating direction method of multi-
pliers (ADMM) to solve problem (4). While the per-
iteration complexity of this approach is lower than that
of interior point methods, the number of iterations is
hard to control from a theoretical point of view, and
we will show through numerical experiments that it
can be very large to yield satisfactory solutions. We
propose a more robust approach in what follows.

In 2D, the fact that the point xi belongs to an el-
lipse represented by (A, b, c) can be rewritten in the
compact form (see e.g. [13]):

〈di, q〉 = 0,

where

di = (xi[1]2, xi[2]2,
√

2xi[1]xi[2], xi[1], xi[2], 1)T ,

q = (a1,1, a2,2,
√

2a1,2, b1, b2, c)
T ,

and we denote xi[j] the j-th coordinate of the point xi.
Now, letting D = [d1, . . . , dn], the objective function
G can be rewritten as

G(X, q) = ‖DT q‖2. (5)

In 3D, a similar decomposition can be performed, see
details in the supplementary material.

Let m = d(d + 1)/2 + d + 1 denote the number of
parameters in q. The set of admissible vectors Q is
defined as

Q = {q ∈ Rm,Tr(A(q)) = 1,A(q) � 0}, (6)

where A : Rm → Rd×d is the linear mapping that
associates matrix A to vector q. With the proposed
notation, problem (4) simplifies to the following convex
problem:

min
q∈Q
‖DT q‖2. (7)

We solve (7) using the Douglas-Rachford algorithm,
which was first proposed by Lions and Mercier [30].
The details are presented in the supplementary mate-
rial.

Invariance to affine transformations

Non invariance of the Algorithm

As discussed above, the minimizers of (7) are covari-
ant to isometries. However the algorithm is not, this is
illustrated in the supplementary material. Moreover,
the solutions of (4) are not invariant to affine trans-
forms, which would be a desirable property. We pro-
pose to address both issues below. Similar ideas were
proposed in [15] for the specific case of spheres.

Ensuring invariance using the SVD

In order to ensure invariance of the algorithm we
change the coordinate system and work with a point
cloud that is centered with covariance matrix equal to
the identity. We obtain an ellipsoid in the modified sys-
tem and finally map it back to the original one. This
can be achieved using a singular value decomposition,
as explained in the supplementary material.
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Results
Performance of the optimization algorithm
We report in the supplementary material experiments
and comparisons on 2D data, as well as a robustness
to noise study in 3D. We show that our numerical ap-
proach never requires more than 200 cheap iterations
to reach machine precision, while the unnormalized
method can require arbitrarily large computing times
depending on the points set location. In addition, we
provide comparisons with the simpler LLS algorithm
[14] and show an improved robustness to noise.

Segmentation experiments on synthetic data
In order to assess the plugin’s efficiency in terms of:
accuracy, reproducibility and time of user’s interac-
tion, we designed a synthetic 3D image composed of
145 oblate[1] ellipsoids mimicking a tumor spheroid, see
Fig. 4. This image can be reproduced using the codes
available on GitHub. The image was blurred with a
Gaussian kernel of standard deviation equal to 1.5
pixel, to mimick what happens on a real microscope.
Three users were asked to segment all the ellipsoids,
and to time their task. The segmentation results were
then compared with the ground truth. The results are
displayed in Tab. 1. The column labelled ’time’ dis-
plays the average time spent by the user (in seconds)
to segment one ellipsoid, the column ’center’ provides
the average error (in pixel) between the true location
of the center and the estimated one, the column ’an-
gle’ corresponds to the average error (in degrees) of the
orientation of the minor axis, and the column ’length’
corresponds to the average error (in pixels) on the 3
axes lengths.

Notice that the accuracy on the center location and
on the axis length is below the resolution of 1.5 pixel.
It is then possible to claim that our plugin allows to
obtain subresolution results for perfectly ellipsoidal ob-
jects in a few seconds. Note that this time is the time
required for the user to select the points, the compu-
tation time is in fractions of a second. In addition, the
angular accuracy is also satisfactory, suggesting that
the plugin can be used to analyze the geometry of large
collections of objects.

Table 1 Segmentation time and accuracy for 3 different users.
The number after the sign ± represents the standard deviation.

time (s) center (px) angle (deg) length (px)
User 1 25.7± 3.1 1.08 ± 0.32 4.6 ± 1.5 1.07 ± 0.41
User 2 26.1± 5.0 0.90 ± 0.35 5.9 ± 2.5 0.54 ± 0.35
User 3 20.9± 3.3 1.01 ± 0.36 4.9 ± 1.7 0.68 ± 0.36

[1]We used this geometry since we thought that it
would correspond to what is observed in real tumor
spheroids. We will see later that this is actually not
the case.

Figure 4 Synthetic spheroid used to assess the plugin’s
accuracy. Left: the 3 orthogonal views, Right: 3D rendering.

Segmentation experiments on real 3D tumor spheroids
The plugin FitEllipsoid was used to segment cell nuclei
in spheroids. We show in Fig. 5 and 6 two examples of
3D tumor spheroids. The one in Fig. 5 is a spheroid
with a large diameter of 500 microns leading to a poor
image quality due to light scattering and absorption.
Fig. 6 presents a smaller spheroid with a diameter of
150 microns.

The biological question we addressed was to esti-
mate the distribution of shapes of nuclei, through the
estimation of their semi-axes lengths `1 ≥ `2 ≥ `3.
Two different experimental conditions have been ex-
plored: untreated freely-grown spheroids and spheroids
treated for 8h with Latrunculin, a drug targetting
actin cytoskeleton.

We used FitEllipsoid to segment n = 708 nuclei from
x = 19 control spheroids and n = 266 nuclei from
x = 7 spheroids treated with Latrunculin. We dis-
play a 2D-histogram of the joint distribution `2/`1 vs
`3/`2 for each condition in Figure 7. A prolate spheroid
(a rugby ball) satisfies `3/`2 ' 1 and `2/`1 < 1 and
on this graph, it corresponds to a point on the right
boundary of the unit square. An oblate spheroid on
its side, satisfies `3/`2 < 1 and `2/`1 ' 1. It corre-
sponds to a point on the top boundary of the square.
The sphere coincides with `3/`2 = `2/`1 = 1, which is
the top-right corner.

On the histograms, we can observe that the distri-
bution is denser along the diagonal, and that there is
no clear trend towards a prolate or oblate shape. It is
however clear that the nuclei are not spherical. The
1D histograms on the right of Figure 7 shows that the
aspect ratio (defined as `3/`1) of a nuclei is shifted
towards 1 when going from the treated to the con-
trol spheroids. The average aspect ratio is 0.58 for the
control spheroid and 0.63 for the Latrunculin treated
spheroid.

Overall we see that the plugin allows to distinguish
subtle but statistically significant changes of shapes.
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Figure 5 Segmentation of a cell nucleus on a real 3D image.
From top to bottom: the points selected on the 3 orthogonal
views, 3D rendering of the result of the segmentation.

Conclusions
FitEllipsoid is a powerful tool for supervised ellipsoids
segmentation, with a user-friendly interface. The com-
putational part of the software is based on a novel
algorithm that is invariant under affine transforms. It
allowed to segment hundreds of cell nuclei in order to
analyze statistically their shape.

Abbreviations

ADMM: Alternating direction method of multipliers; CSV: Coma separated

values; LLS: Linear least squares; SPIM: Single plane imaging microscope;

VTK: Visualization ToolKit.
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Figure 6 Segmentation of cell nuclei on a real 3D image. From left to right: the segmented ellipses on the 3 orthogonal views, 3D
rendering of the result of the segmentation, 3D rendering of the binary image provided by the plugin.
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