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Abstract

We propose a supervised segmentation algorithm dedicated to fitting ellipsoids in 3D images with a minimal amount
of user inputs. Its computational core is based on an original approach to fit ellipsoids to point clouds in an affine
invariant manner. The algorithm estimates the fitting ellipsoid in a small number of cheap iterations. The code is
distributed as an open-source plugin to be used within the image analysis software Icy. Computational experiments
show that collections of nuclei in fluorescence microscopy images can be segmented much faster than with more
traditional 2D delineation approaches.
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1. Introduction

Motivation. Segmenting ellipsoidal structures in 2D or
3D images is a very common problem in biomedical
imaging. The results can be used to understand the ge-
ometry of organs (e.g. lungs, kidneys), tumors, cells or
nuclei (Lockett et al., 1998; Okada et al., 2005; Mah-
davi and Salcudean, 2008), or serve as an initialization
for more advanced algorithms such as active contours
(Dufour et al., 2005; Thevenaz et al., 2011; Cuingnet
et al., 2012; Delgado-Gonzalo et al., 2013).

While fully automatic detection algorithms (Olivo-
Marin, 2002; Jaqaman et al., 2008; Soubies et al., 2013;
Zhang et al., 2016) are probably the ideal tool to re-
duce human work and mistakes, our recent experience
suggests that existing strategies are not sufficient to pro-
vide convincing segmentation results when images suf-
fer from strong degradations (e.g. blur, noise, low reso-
lution) or contain densely packed objects. In that case,
humans are often superior to machines. In addition, au-
tomatic methods usually require tuning a few parame-
ters, which may be more time consuming than a simple
supervised segmentation algorithm. Finally, generating
learning databases or gold standards to test and com-
pare existing segmentation algorithms still requires the
use of supervised algorithms. Unfortunately, to the best
of our knowledge, there currently exists no such freely
available tool, which would benefit different communi-
ties.

Contributions. These few considerations motivated us
developing two simple plugins for the Icy image anal-
ysis software (De Chaumont et al., 2012). They allow
users fitting ellipses or ellipsoids in 2D or 3D images.
The objective of this paper is describe the plugin for
3D ellipsoids, and present the algorithm that was imple-
mented and compare it with other approaches.

For the specific task of fitting ellipsoids, the proposed
method is about 5 times faster than the best rivals we
found based on slice-by-slice delineation. This effi-
ciency is obtained thanks to an intuitive user interaction
and to the fact that our algorithm focuses on finding el-
lipsoids and not more complex surfaces.

The core of the algorithm consists of solving the well
studied problem of ellipsoid fitting from point clouds.
This is a notoriously difficult problem that attracted
the attention of researchers from different fields such
as computer vision, statistics or numerical analysis, to
name a few (Gander et al., 1994; Fitzgibbon et al., 1999;
Nievergelt, 2001; Ahn et al., 2001; Calafiore, 2002;
Ahn et al., 2002; Markovsky et al., 2004; Li and Grif-
fiths, 2004; Chernov and Lesort, 2005; Kleinsteuber and
Hüper, 2010; Ying et al., 2012; Saunderson et al., 2012;
Kanatani et al., 2016; Lin and Huang, 2016). We pro-
pose an original, lightweight and robust computational
algorithm that shares the same spirit as a recent work
(Lin and Huang, 2016), but significantly outperforms it
when the ellipsoids are not centered or anisotropic. An
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important feature of the proposed algorithm is affine in-
variance: the point cloud is centered and reduced prior
to computation, ensuring a robust behavior whatever the
shape and location of the point cloud.

The proposed algorithm is shared not only within the
Fiji plugin, but also through a set of Matlab codes de-
livered on a Github repository https://github.com/

pierre-weiss/FitEllipsoid. To the best of our
knowledge, this is the first open-source toolbox that al-
lows fitting ellipsoids and not more general quadrics
(i.e. hyperboloids).

Structure of the paper. The rest of the paper is orga-
nized as follows. We first describe in Section 2 the
plugin to segment 3D ellipsoids. Then we present in
Section 3 the algorithmic approach that was adopted to
solve the ellipsoid fitting problem. In Section 4 we pro-
pose a series of numerical experiments that compare the
proposed approach with other algorithms.

2. The plugin

A video tutorial describing the main features of the
plugin is provided at the following address: https:

//youtu.be/MjotgTZi6RQ. Below, we explain the
technical choices and illustrate how the user can input
the point cloud and retrieve the segmented ellipsoid.

2.1. Specifications
The main objective of this plugin is to segmenta-

tion of ellipsoidal objects, while satisfying the follow-
ing constraints:

• Permit 3D visualization to allow for visual inspec-
tion of the segmentation or illustrate some results.

• Deliver a free and open-source software.

• Minimize the time required to obtain the results.
This is particularly important in biology where
some applications require to segment hundreds or
thousands of cells.

• Export the results as files that other programs can
use for further processing.

2.2. Description
The need for a free software dedicated to biomedical

imaging, allowing 3D visualization and user interfac-
tion, oriented us to the recently developed imaging tool
icy (De Chaumont et al., 2012). It is based on VTK
(Visualization ToolKit) (Schroeder and Martin, 1996),
allowing for nice 3D rendering using graphics cards.

Figure 1: Top: Selecting points (at least 9) in the orthogonal views.
Bottom: result of the fitting for 15 points.

The user interaction can take advantage of 3 orthogo-
nal views that can be intuitively displaced in space.

An ellipsoid can be mathematically represented in
different ways:

• A center (3 parameters), three angles of rotations
and the length of each axis (3 parameters).

• A center (3 parameters), the three axes (9 param-
eters linked through orthogonality relationships)
and the length of each axis (3 parameters).

• A center (3 parameters) and a positive symmetric
definite matrix (6 coefficients).

Unfortunately, none of these representations can be
easily used by a human. For instance, finding the center
of the ellipsoid precisely by just looking at the image
would result in inaccurate estimation.

The interface of the plugin asks the user to select
points in 3D on the object’s boundary and then create
an ellipsoid that passes through them approximately.

In theory, it is possible to reconstruct an ellipsoid per-
fectly when knowing as little as 9 points in generic posi-
tion lying on its surface (see Proposition 1). The estima-
tion with just 9 points may be unstable to noise, which
cannot be avoided due to imperfect pixel selection by
the user. We therefore let the user select as many points
on the boundary as desired.

In order to select points on the object boundary, the
user is asked to select points on 3 orthogonal 2D views
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(see Fig. 1, top). Orthogonal views are probably the
easiest way to interact with a 3D environment and is
very common in biomedical imaging (see e.g. (Heller
et al., 2002)). The user first selects a point in 3D space
to define the 3 planes of interest and then locks the views
to click on a few points on each plane. The operation
may be repeated on multiple orthogonal views to sample
the object surface more uniformly. When enough points
have been selected, an algorithm described in Section 3
fits an ellipsoid to the points cloud. The operation can
be repeated in case multiple ellipsoids have to be fitted.
The result obtained by the points selection is displayed
in Fig. 1, bottom.

Apart from the 3D visualization, the ellipsoids pa-
rameters (center, axes orientations and length of axes)
can be exported in a CSV file. In addition, it is possible
to save a 3D binary image indicating the interior of each
segmented ellipsoid.

2.3. Experiments
The initial motivation for this plugin is the segmenta-

tion of nuclei in 3D tumor spheroids, images with flu-
orescence microscopes. To the best of our knowledge,
the only attempt to automatically segment 3D ellipsoids
specifically was proposed in Soubies et al. (2013). This
algorithm provided too many false positives on the 3D
stacks we obtained. The main reason is that Selective
Plane Illumination Microscope images suffer from sever
degradations in the z-direction, related to diffraction and
scattering.

On the side of supervised segmentation algorithms,
the closest rival we found is the segmentation editor
from the commercial software Amira. This algorithm
allows delineating a few 2D slices and then renders a
surface passing through the curves approximately. The
surface can then be approximated with an ellipsoid. The
users feedback is that the proposed plugin allows seg-
menting nuclei about 5 times faster than the segmenta-
tion editor. In practice, segmenting a nuclei in a com-
plex, large scale image with FitEllipsoid requires be-
tween 30 seconds and a minute.

3. Fast and robust ellipsoid fitting

3.1. Mathematical description
Given a set of n points X = (xi)1≤i≤n in Rd, where

d = 2 or 3, the objective of this section is to describe
a fast and robust algorithm to fit an ellipsoid to those
points. This is a longstanding problem studied in more
than 40 journal papers. We refer to the book (Kanatani
et al., 2016) for a more comprehensive overview. Two
main approaches have been proposed to solve it.

The geometric approach. This method was proposed in
(Gander et al., 1994; Ahn et al., 2001; Kleinsteuber and
Hüper, 2010). It consists of finding an ellipsoid E that
minimizes the following least squares problem:

F(E) =

n∑
i=1

dist(xi, E)2, (1)

where dist(xi, E) = infx∈E ‖x − xi‖ is the Euclidean dis-
tance from the point xi to the ellipsoid E. While this
formulation has a simple geometrical meaning, it suf-
fers from being highly nonconvex. Designing global
minimization methods is therefore heavy from a com-
putational point of view.

The algebraic approach. This method is the one
adopted in this paper. An ellipsoid E can be represented
by a triplet (A, b, c) through the implicit equation:

E =
{
x ∈ Rd, 〈x, Ax〉 + 〈b, x〉 + c = 0

}
, (2)

where A ∈ Rd×d is a symmetric positive definite matrix,
b ∈ Rd is a vector and c ∈ R is a scalar. Assuming that
the eigenvalue decomposition of A reads A = UΣUT ,
where U = [u1, . . . , ud] is an orthogonal matrix and Σ =

diag(σ1, . . . , σd), equation (2) can be rewritten as

E =
{
x ∈ Rd, ‖Σ1/2UT (x − z)‖2 = r2

}
, (3)

where the ellipse center z and the parameter r are related
to b and c via the following equations:

b = −2Az and c = 〈Az, z〉 − r2. (4)

The ellipsoid’s i-th axis is characterized by its length
r
√
σi

, and its direction is given by ui.
The algebraic approach consists of minimizing the

following residual:

G(X, A, b, c) =

n∑
i=1

(〈xi, Axi〉 + 〈b, xi〉 + c)2, (5)

over a set M of admissible triplets (A, b, c). The sole
positive definiteness condition A � 0 is not sufficient
since the infimum of G over the set of positive semi-
definite matrices is reached for (A, b, c) = (0, 0, 0). It
is therefore required to add a normalization condition
to avoid this trivial solution. Various possibilities have
been considered in the literature. The most popular
approach lately was proposed in (Calafiore, 2002) and
consists of imposing Tr(A) = 1. This choice has the
advantage of leading to a convex constraint, allowing to
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design efficient numerical algorithms. Overall, the opti-
mization problem considered herein reads:

min
(A,b,c)∈M

G(X, A, b, c), (6)

whereM = {(A, b, c) ∈ Rd×d×Rd×R, A � 0,Tr(A) = 1}.
From a numerical point of view, the interest of this

specific formulation lies in Proposition 1 below, which
states that the solution is unique when enough points are
provided.

Proposition 1. Problem (6) is convex. It admits at least
one minimizer. Define

m = d(d + 1)/2 + d + 1. (7)

If n ≤ m − 2, the minimizer is non unique. If the points
are in “generic” position and n ≥ m − 1, then the solu-
tion is unique.

Figure 2 illustrates the fact that in 2D there are an
infinity of ellipses passing through 4 given points.

−1 0 1 2
−1

0

1

2

Figure 2: A family of ellipses passing through 4 points. In dimension
d = 2, we have m = 6, hence the minimum number of points required
for uniqueness is n = 5 according to Proposition 1.

Proof. We will use of the equivalent formulation (15)
instead of (6).

Problem (15) is convex since Q and q 7→ ‖DT q‖2

are both convex. It consists of a projection problem
on Q with the possibly degenerate metric q 7→ ‖DT q‖2.
Standard convex analysis results (Bertsekas et al., 2003,
Prop. 2.3.4) state that the solution exists and it is unique
when the metric is non degenerate.

If n ≤ m − 2, notice that dim(ker(DT )) ≥ 2 and
dim({q ∈ Rm,Tr(A(q)) = 1}) = m − 1. Hence, there
is a subspace V of dimension at least 1 such that for all
q ∈ V , DT q = 0 and Tr(A(q)) = 1. All vectors q in this
subspace satisfy ‖DT q‖22 = 0, hence they are solution

of (15). They all describe ellipsoids passing perfectly
through the set of points.

If n ≥ m − 1, the genericity hypothesis in proposition
1 amounts to assume that ker(DT ) is of dimension less
or equal than 1 and is transverse to {q ∈ Rm,Tr(A(q)) =

1}. Hence, the function q 7→ 1
2‖D

T q‖22 is strictly convex
over the hyperplane {q ∈ Rm,Tr(A(q)) = 1} ensuring
uniqueness of the minimizer.

Remark 1. An ellipsoid should satisfy A � 0 and not
A � 0. However, it is important to work over closed sets
to ensure existence of a minimizer. The minimizer of (6)
can therefore in principle be the equation of a degener-
ate ellipsoid such as a line in 2D or a plane in 3D. This
situation never happened in our numerical experiments.

The following proposition states an isometric invari-
ance of the problem.

Proposition 2. The minimizer (Â, b̂, ĉ) is covariant to
translation and rotation of the input point locations X.
More precisely, let Ê denote the ellipsoid solution of (6)
and Ê′ denote the ellipsoid obtained by solving (6) with
input coordinates X′ = (x′i )1≤i≤n, where x′i = Rxi + t, R ∈
Rd×d is an orthogonal matrix and t ∈ Rd is a translation
vector. Then Ê′ = RÊ + t.

Proof. Let E denote an ellipsoid defined through the
triplet (A, b, c) ∈ M. Now, let E′ = RE + t. A change
of variable shows that E′ is defined through (A′, b′, c′)
with

A′ = RART , b′ = Rb−2A′t and c′ = c−〈t, A′t+b′〉. (8)

In addition, note that (A′, b′, c′) ∈ M since the trace and
eigenvalues are invariant to isometries. Straightforward
calculus and the relationship RT R = RRT = Id show
that

G(X, A, b, c) = G(X′, A′, b′, c′). (9)

Hence the minimizers (Â, b̂, ĉ) of G(X, A, b, c) over M
and the minimizer (Â′, b̂′, ĉ′) of G(X′, A′, b′, c′) are re-
lated through (8).

Remark 2. The proof uses the orthogonality identity
RT R = Id, and the result is no more true when R is not
orthogonal. The solution of (6) is not covariant to affine
changes.

3.2. A numerical algorithm

In (Calafiore, 2002), Calafiore suggested reformulat-
ing (6) as a semi-definite program and used interior
point type methods to solve it. This type of algorithm is
known to be robust and reliable but is rather elaborate
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to implement. Moreover, common primal-dual interior
point methods (Ying et al., 2012) have a complexity that
does not scale well with the number of input data points
n. Based on this observation, Lin and Huang (Lin and
Huang, 2016) designed a method based on the alternat-
ing direction method of multipliers (ADMM) to solve
problem (6). While the per-iteration complexity of this
approach is lower than that of interior point methods,
the number of iterations is hard to control from a theo-
retical point of view, and we will show through numer-
ical experiments that it can be very long to reach sat-
isfactory solutions (10,000 to 100,000 iterations). We
propose a more robust approach in what follows, and in
practice our plugin converges in 200 iterations.

In 2D, the fact that point xi belongs to the ellipse rep-
resented by (A, b, c) reads:

a1,1xi[1]2+a2,2xi[2]2+2a1,2xi[1]xi[2]+b1xi[1]+b2xi[2]+c = 0.
(10)

By stacking the coefficients in a vector

q = (a1,1, a2,2,
√

2a1,2, b1, b2, c)T ,

equation (10) can be rewritten in the compact form (see
e.g. (Gander et al., 1994))

〈di, q〉 = 0,

where

di = (xi[1]2, xi[2]2,
√

2xi[1]xi[2], xi[1], xi[2], 1)T .
(11)

Now, letting D = [d1, . . . , dn], function G can be rewrit-
ten as

G(X, q) = ‖DT q‖2. (12)

In 3D, a similar decomposition can be performed.
Following (Gander et al., 1994) we used the following
conventions in our codes

q = (a1,1, a2,2, a3,3,
√

2a1,2,
√

2a1,3,
√

2a2,3, b1, b2, b3, c)T ,

di = (xi[1]2, xi[2]2, xi[3]2,
√

2xi[1]xi[2],
√

2xi[1]xi[3],
√

2xi[2]xi[3],

xi[1], xi[2], xi[3], 1)T . (13)

Let m = d(d + 1)/2 + d + 1 denote the number of
parameters in q. The set of admissible vectors Q is then
defined as:

Q = {q ∈ Rm,Tr(A(q)) = 1,A(q) � 0}, (14)

where A : Rm → Rd×d is the linear mapping that asso-
ciates matrix A to vector q. Similarly, we let B : Rm →

Rd and C : Rm → R denote the mapping that to q asso-
ciate b and c respectively. With the proposed notation,
problem (6) simplifies to the following convex problem:

min
q∈Q
‖DT q‖2. (15)

We solve (15) using the Douglas-Rachford algorithm,
see (Lions and Mercier, 1979). It is an algorithm de-
signed to solve problems of the following type:

min
q∈Rm

f1(q) + f2(q), (16)

where f1 : Rm → R∪{+∞} and f2 : Rm → R∪{+∞} are
extended real-valued convex closed functions such that
f1(x) + f2(x) → +∞ as ‖x‖ → +∞. It is described in
Algorithm 1, while Proposition 3 states its convergence
properties. We remind that the proximal operator of a
function f is defined by:

Proxγ f (z) = argmin
x∈Rn

γ f (x) +
1
2
‖x − z‖2.

Algorithm 1 Douglas-Rachford algorithm to solve (16)
Input: Initial guess q(1/2) ∈ Rm, number of iterations
Nit, parameter γ > 0.
Output: q(Nit) an approximate solution of (16).
for k = 1 to Nit do

q(k) := Proxγ f2 (q(k−1/2))

q(k+1/2) := q(k−1/2) − q(k) + Proxγ f1 (2q(k) − q(k−1/2)).

end for

Proposition 3 (Convergence (Lions and Mercier, 1979;
Combettes and Pesquet, 2011)). The sequence (q(k))k∈N
generated by Algorithm 1 converges to a solution of
(16).

To apply Algorithm 1 to solve (15), we set

f1(q) = ‖DT q‖2 (17)

and

f2(q) =

0 if q ∈ Q,
+∞ otherwise.

It remains to evaluate the proximal operators of f1 and
f2. They are given in proposition 4 and 5 below.

Proposition 4. The proximal operator of f1 is given by

Proxγ f1 (z) = (γDDT + Id)−1(z). (18)
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Proposition 5. Let z ∈ Rm. Assume that A(z) is di-
agonalized as A(z) = UΣUT , where Σ = diag(σ) and
U is orthogonal. Let σ+ denote the projection of σ on
the unit simplex and define A+ = Udiag(σ+)UT . Then
Proxγ f2 (z) is obtained by changing the first d(d + 1)/2
components of z byA−1(A+) and leaving the others un-
changed.

Proof. It suffices to note that:

min
A(q)�0,Tr(A(q))=1

1
2
‖q − z‖2

= min
A(q)�0,Tr(A(q))=1

1
2
‖A(q) −A(z)‖2F

= min
S�0,Tr(S )=1

1
2
‖S − Σ‖2F .

where ‖ · ‖F denotes the Frobenius norm, which is in-
variant by unitary transforms. Projecting a vector on
the unit simplex of Rd is a standard issue met in matrix
completion problems, see e.g. (Condat, 2016). It can be
solved exactly in O(d) operations.

Remark 3. In (Lin and Huang, 2016), the authors pro-
posed using the ADMM algorithm (Glowinski and Mar-
roco, 1975), which can be seen as the Douglas-Rachford
algorithm applied to the dual of (16). Their implemen-
tation relies on the fact that Q = Q1 ∩Q2, where Q1 de-
scribes the set of symmetric positive semi-definite ma-
trices and Q2 describes the set of matrices with trace
equal to 1. They then propose to split the problem in
three terms (one forQ1, one forQ2 and one for f1) while
our decomposition uses only two terms. This simplifies
the algorithm by reducing the number of parameters to
tune to 1: the value of γ.

The final algorithm to solve the ellipsoid fitting prob-
lem (6) is given in Algorithm 2. It depends on two extra
parameters: the number of iterations Nit and a value
γ > 0. The number of iterations to achieve a reason-
able result strongly depends on normalizing conditions
described in the next section. The convergence is also
very sensitive to the value of γ. However, with the nor-
malization proposed in the next section, it can be tuned
once for all. In all our numerical experiments, we use
γ = 10.

3.3. Making the algorithm invariant to affine trans-
forms

3.3.1. Non invariance of Algorithm 2
As stated in Proposition 2, the minimizers of (6) are

invariant to isometries. However, it is easily seen that
the algorithm is not, since the basis of polynomials (11)

Algorithm 2 An algorithm to solve (6)
Input: Data points X = [x1, . . . , xn], number of itera-
tions Nit, parameter γ > 0.
Output: An ellipsoid E.
Compute matrix D using equation (11) in 2D or (13)
in 3D.
Set ci := mean(X(:, i)).
Set r2 := mean(

∑d
i=1(X(:, i) − ci)2).

if d = 2 then
Set q(1/2) := [0.5, 0.5, 0,−c1,−c2, (c2

1 +c2
2−r2)/2].

else if d = 3 then
Set q(1/2) := [0.5, 0.5, 0.5, 0, 0, 0,−c1,−c2,−c3, (c2

1+

c2
2 + c2

3 − r2)/2].
end if
Call Algorithm 1.
Transform vector q(Nit) as an ellipsoid E using equa-
tion (3).

is not adapted to the dataset. As a result, we observed
that the algorithm performance strongly depends on the
points locations. This is illustrated in Fig. 3 for coordi-
nate shifts and in Fig. 4 for the dilation of one axis. In
addition, the solutions of (6) are not invariant to affine
transforms, which is a desirable property. We propose to
address both issues below. Similar ideas were proposed
in (Nievergelt, 2001) for the specific case of spheres.

3.3.2. Ensuring invariance using the SVD
We propose to ensure invariance of the algorithm by

changing the coordinate system in order to obtain a
point cloud that is centered with covariance matrix equal
to the identity. Then we use Algorithm 2 to fit an ellip-
soid in the modified system, and finally map it back to
the original coordinates. This can be achieved using a
singular value decomposition of a d × d matrix, as ex-
plained below.

Let X = [x1, . . . , xn] ∈ Rd×n. We are looking for
a linear transform P ∈ Rd×d and a translation vector
t ∈ Rd, such that the vectors

yi = P(xi − t) (19)

have mean 0 and covariance matrix Id. Letting Y =

[y1, . . . , yn], this means that YYT = Id.
For centering X, we use

t =
1
n

n∑
i=1

xi. (20)

Now, let X̄ = [x1−t, . . . , xn−t] denote the set of centered
vectors. The eigenvalue decomposition of X̄X̄T reads

X̄X̄T = ŪΣ̄ŪT . (21)
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points) is well retrieved, while the one associated to shifted points is unsatisfactory. The same behavior can be observed for the cost function.
The convergence curve associated to the non shifted points shows that machine precision is reached after about 50 iterations. On its side, the
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By letting
P = Σ−1/2UT , (22)

we obtain the desired result.
Algorithm 3 summarizes the proposed idea. It

strongly improves the algorithm’s convergence. In prac-
tice, this approach never required more than 200 it-
erations to reach machine precision, while the unnor-
malized method can require arbitrarily large computing
times depending on the points location.

Algorithm 3 Ellipsoid fitting using SVD normalization
Input: Data points X.
Output: An ellipsoid E.
Evaluate t and P using (20), (21) and (22).
Construct yi = P(xi − t).
Apply Algorithm 2 with input Y = [y1, . . . , yn], Nit =

100 and γ = 10.
Set E = P−1E + t.

4. Experiments

4.1. Comparisons in 2D

We illustrate here the behavior of different algorithms
on a 2D example. We compare 4 algorithms both in
terms of computing times and robustness of the results
with respect to i) noise and ii) non-uniform sampling.
In all experiments, the same ellipse is used. Its center is
set to z = (4, 5) and the lengths of its axes are 4 and 1.

1. The first algorithm denoted DR is Algorithm 2.
2. The second algorithm denoted DR-SVD is Algo-

rithm 3.
3. The third algorithm denoted LLS is the standard

Linear Least Square approach (Fitzgibbon et al.,
1999). It consists in replacing the normalization
constraint Tr(A(q)) = 1 in equation (14) by the
constraint choosing ‖q‖ = 1, and to skip the con-
straintA(q) � 0. The problem becomes

min
‖q‖=1
‖DT q‖2, (23)

which amounts to finding the smallest eigenvector
of K = DDT . This vector q̃ describes a conic,
which is not necessarily an ellipse.

4. The fourth algorithm denoted LLS-SVD consists
of applying LLS to the dataset after a change of
coordinates, similarly to what is described in Sec-
tion 3.3.2. This algorithm is affine invariant.

The results are presented in Fig. 5, where the solu-
tions of the different algorithms are shown for two dif-
ferent points cloud. The results are presented after 4000
iterations, which is necessary for DR to converge, while
DR-SVD only requires 30.

4.2. 3D experiments

In this section, we perform a few experiments to
challenge the algorithm implemented in the Icy plugin.
To do so, we draw points uniformly at random on the
boundary of an ellipsoid on 3 orthogonal planes. We
then add a random perturbation of normal distribution
with variance σ2 within each plane. This way, we simu-
late what a user does by clicking on points in 3 orthog-
onal views. Note that the orthogonal planes orientation
do not necessarily coincide with the ellipsoid axes.

The objective is to illustrate the minimal number of
points required and the stability to noise. As can be
seen in this example, 20 points are enough to provide
an accurate result despite a significant amount of noise.

Conclusions

We proposed a supervised segmentation algorithm of
ellipsoids within the open-source Icy imaging software.
It provides results significantly faster than usual 2D de-
lineation techniques, reducing human labor or allow-
ing to segment much larger sets in a given amount of
time. The results may be used to create gold standards
or learning databse, or also as such for biomedical inter-
pretations.

The algorithm is based on a novel fast and lightweight
method to fit ellipsoids to point clouds in an affine in-
variant manner. It provides satisfactory results in a
short time, whatever the points configuration. We show
a much better behavior than recently developed ap-
proaches.

All the codes are open-source.
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Figure 5: Comparisons of 4 different algorithms to fit an ellipse to a set of points. Left: all algorithms perform well for uniformly distributed
points along an ellipse. The number of iterations necessary for DR to converge is 4000 and it is 30 for DR-SVD. Right: results for nonuniformly
distributed points. The LLS and LLS-SVD algorithm produce hyperbolas instead of ellipses. In this specific case, DR-SVD produces a result
closer to the ground truth than DR, but it is not the case for all noise realizations. Notice that the users of our plugins should avoid specifying
configurations of points as shown in the right figure.
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