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Distributed Deblurring of Large Images of Wide
Field-Of-View

Rahul Mourya, André Ferrari, Rémi Flamary, Pascal Bianchi, and Cédric Richard

Abstract—Image deblurring is an economic way to reduce
certain degradations (blur and noise) in acquired images. Thus,
it has become essential tool in high resolution imaging in
many applications, e.g., astronomy, microscopy or computational
photography. In applications such as astronomy and satellite
imaging, the size of acquired images can be extremely large (up
to gigapixels) covering wide field-of-view suffering from shift-
variant blur. Most of the existing image deblurring techniques
are designed and implemented to work efficiently on centralized
computing system having multiple processors and a shared mem-
ory. Thus, the largest image that can be handle is limited by the
size of the physical memory available on the system. In this paper,
we propose a distributed nonblind image deblurring algorithm in
which several connected processing nodes (with reasonable com-
putational resources) process simultaneously different portions of
a large image while maintaining certain coherency among them to
finally obtain a single crisp image. Unlike the existing centralized
techniques, image deblurring in distributed fashion raises several
issues. To tackle these issues, we consider certain approximations
that trade-offs between the quality of deblurred image and the
computational resources required to achieve it. The experimental
results show that our algorithm produces the similar quality
of images as the existing centralized techniques while allowing
distribution, and thus being cost effective for extremely large
images.

Index Terms—Distributed optimization, Proximal projection,
Consensus, Message-Passing-Interface, Shift-variant blur, Inverse
problems, Image restoration.

I. INTRODUCTION

IN many applications, it is essential to have high resolution
images for precise analysis and inferences from them.

However, a certain amount of degradations (blur and noise)
are unavoidable in many of the imaging systems due to several
factors, such as the limited aperture size, the involved medium
(both atmosphere and optics), and the imaging sensors. With
advances in the computational technologies, the digital image
restoration techniques, such as image deblurring, have been
proven to be an economic way to enhance resolution, signal-
to-noise ratio, and contrast of the acquired images. In this
paper we can consider the situation where we assume that
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the information about blur and the statistics of noise is know
a priori, and then the restoration is referred to as nonblind
deblurring. In general, image deblurring is an ill-posed inverse
problem [1], [2]. In a Bayesian setting it can be expressed
as maximum-a-posteriori estimation problem [3], which boils
down to the following numerical optimization problem:

x∗ := arg min
x
{Ψdata(y,x) + λ Ψprior(x)} (1)

where the vectors y ∈ Rm and x ∈ Rn represent the observed
(acquired blurry and noisy) image, and the unknown crisp
image to be estimated, respectively. Two dimensional (2D)
images are represented as column vectors by lexicographically
ordering their pixels values. The first term Ψdata in (1) is called
likelihood or data-fidelity term that depends upon the noise and
the image formation model. The second term Ψprior is called
a priori or regularizer that imposes any prior knowledge on
the unknown image x. The scalar parameter λ keeps trade-off
between the likelihood and a priori terms, which generally
depends upon the noise level in the observed image.

Blur in an acquired image is characterized by the impulse
response of the imaging system, commonly known as point-
spread-function (PSF). As far as a narrow field-of-view is
concerned, PSF can be considered constant throughout the
field-of-view leading to a shift-invariant blur. The blurring
operation in this case is modeled as simple a convolution
between the sharp image and the PSF, and can be performed
efficiently in Fourier domain. In many cases, however, blur
varies throughout the field-of-view due to several causes:
relative motion between the camera and the scene; moving
objects with respect to the background; variable defocussing
of non-planar scenes with some objects located in front or
behind the in-focus plane; optical aberrations such as space-
variant distortions, vignetting or phase aberrations. In here we
consider shift-variant blur across the field-of-view of a planar
scene, i.e. all the objects in the scene lie in-focus plane; see
[4] for discussion on shift-variant blur in the case of non-
planar scene. Two subtly different situations can be considered
for shift-variant blur in planar scene: i) a large field-of-view
is captured into several pieces by multiple imaging systems
each capturing a small portion of the whole scene, and ii) the
same scene is captured by a single imaging system having
wide field-of-view. In the former case, each imaging system
can have slightly different blur from each other operating
under different settings. Thus, the captured images can have
slightly different blurs from each other resulting into piece-
wise constant blur in the whole scene. We will refer to this

xxxx–xxxx/xx$00.00 c© 2017 IEEE



SUBMITTED TO IEEE TRANS. ON IMAGE PROCESSING, 2017 2

situation as piece-wise constant shift-variant blur. In the latter
case, the blur in the whole field-of-view can vary smoothly,
e.g. blur due to optical aberrations. We will refer to this
situation as smooth shift-variant blur. The shift-invariant and
piece-wise constant shift-variant blurs can be considered as
special cases of the smooth shift-variant blur. The blurring
operation in the smooth shift-variant case cannot be modeled
by a simple convolution, and there does not exists any efficient
and straight-forward way to perform the operation. However,
there are some fast approximations of smooth shift-variant blur
operators proposed in [5]–[7]; see [8] for detailed comparison
between different approximations.

If we approximate the noise in observed image by a non-
stationary white Gaussian noise as considered in [9] (see [10]–
[12] for more refined noise model), then a discrete image
formation model can be written as:

y = H x+ ε (2)

where the matrix H ∈ Rm×n, m < n, denotes the blur oper-
ator1, and ε is the zero-mean non-stationary white Gaussian
noise, i.e. ε(`) ∼ N (0,σ2(`)) with σ2(`) denoting the noise
variance at `th component of the vector y. We assume that
the raw captured image is preprocessed to yield an image that
closely follows the above image formation model (2). The
preprocessing may includes the correction of the background
and of the flat field, the correction of defective pixels and
possibly of its correlated noise, and the scaling of the image
in photons.

Before we proceed further, let us introduce some more
notations. Hereafter, we will use upper-case bold and lower-
case bold letters for denoting matrices (and linear operators),
and column vectors, respectively. For every set T , we denote
by |T | the cardinality of the set, and by RT the set of
functions on T → R. Let X represents Euclidean space,
then we denote by 〈 . , . 〉 the standard inner product on
X , and by ‖ . ‖ the Euclidean norm. Letting V denote a
positive definite linear operator of X onto itself, we use the
notation 〈x,y〉V = 〈x,Vy〉, and we denote by ‖ . ‖V the
corresponding norm. When V is a diagonal operator of the
form (Vx) : ` 7→ α(`) x(`) we equivalently denote ‖x‖2V
by ‖x‖2α =

∑
`α(`)x(`)2, where α = (α1, α2, · · · ). We

also denote ‖x‖1,V =
∑
`α(`) |x(`)| the weighted L1-norm,

simply noted ‖x‖1 when V is the identity. Moreover, if L is
a linear operator, we denote by L

T

its adjoint operator.
Considering the above image formation model (2) with a

known PSF, the (nonblind) image deblurring problem (1) can
be explicitly expressed as:

x∗ := arg min
x≥0

{1

2
‖y −H x‖2W + λ φ(D x)} (3)

where the matrix W is diagonal with its components given by
W(`, `) = 1/σ2(`) for observed pixels and W(`, `) = 0 for
unmeasured pixels. The function φ represents some regularizer
(e.g., Tikhonov’s L2-norm, sparsity promoting L1-norm, or

1Blur operator is a rectangular matrix since size of observed image is
restricted by the physical size of the image sensor, i.e., sensor captures little
less than what optics can see.

Huber’s mixed L1-L2-norm), and D is some linear opera-
tor, e.g., finite forward difference or some discrete wavelet
transform. The formalism (3) of image deblurring problem
is referred to as analysis-based approach where the unknown
variable is expressed in the image domain itself. An alternative
formalism, referred to as synthesis-based approach, is also
considered in literature where the unknown variable is in
some transformed domain, e.g., coefficients of some discrete
wavelet; see [13] for detailed discussion on the two approaches
and their comparisons. Without loss of generality, in this paper
we consider only the analysis-based approach for expressing
the image deblurring problem.

Depending upon the structures of the two terms in the opti-
mization problem (3), the solution can be obtained in a single
step i.e., a closed-form solution (e.g., Wiener deconvolution),
or one has to rely on iterative solvers, which may require, at
each iteration, the same computational expense or even more
than the closed-form solution2. The latter one is the frequently
occurring case in many applications, e.g., the regularization
term is not differentiable (nonsmooth). Though, there exists
a vast literature on numerical optimization, but we refer the
readers to [14]–[17] and the references therein for some of the
recent and fast optimization algorithms specially developed for
inverse problems in imaging.

A. Motivation: Deblurring Extremely Large Image

With the advances in imaging technologies, the applications
in astronomy, satellite imagery and others are able to capture
extremely large image of wide field-of-view. The size of such
images can vary from few tens megapixels up to gigapixels.
As discussed previously, we consider two imaging situations
where such large images are acquired: piece-wise constant
and smooth shift-variant blur. In the former situation, the
images from multiple narrow field-of-view imaging systems
are supposed to be mosaicked together into a single image
provided that their relative positions within the whole field-
of-view are known. For further simplification, we assume that
all the narrow field-of-view imaging systems have the same
noise performance. In the both imaging situations, it is highly
desirable to obtain a single crisp image from the acquired
image(s) for any further applications.

Image deblurring is well studied topic and a vast literature
exists [1]–[3], [11], [16], [18]–[20] for moderate size (few
megapixels) images with shift-invariant blur. These methods
differ from each other in the way they formulate the data-
fidelity term or the regularization term, and the optimization
algorithms they propose to solve the resulting problem. The
image deblurring problem becomes more complicated when
one considers the images suffering from shift-variant blur.
Some recent works [5]–[8] proposed efficient methods for
deblurring images with shift-variant blur. However, all the
methods listed above are designed and implemented to work
efficiently on a centralized computing system, possibly with
multiple processor cores sharing a single memory space.

2Applying blur operator H or its adjoint H
T

is an expensive operation,
and one may require to apply them several times per iterations of the solver.
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Such a computing system is commonly referred to as multi-
threaded shared memory system based on single instruction
multiple data (SIMD) architecture. Hereafter, we will refer to
all such existing methods by centralized deblurring techniques.
In contrast to deblurring a moderate size image, deblurring
an extremely large image is a challenging problem since
the largest size of the image that can be handled is then
limited by the capacity of shared memory available on the
centralized system. It is not cost effective to build a centralized
system with several processor cores and a huge shared memory
when the modern distributed computing systems (consist of
several connected processing nodes each having reasonable
amount of computational resources) are proving to be far more
economical way for solving huge-scale problems than the cen-
tralized system. Many domains such as machine learning, data
mining [21], and others are already benefiting from distributed
computing approach for discovering patterns in huge datasets
distributed at different nodes. As per our knowledge, there
are very few works, e.g., [22]–[25], considering distributed
computing approach for image restoration/reconstruction prob-
lems. Within this context, we propose a distributed image
deblurring algorithm for large images acquired from either of
the imaging situations mentioned above.

B. Our contributions

In this paper, we propose a distributed algorithm for
deblurring large images, which needs less frequent inter-
node communication. Our algorithm can handle the acquired
image(s) from both the imaging situations: smooth shift-
variant and piece-wise constant shift-variant blur. For the
first imaging situation, we consider splitting the large image
into sufficiently small overlapping blocks and then deblur
them simultaneously on the several processing nodes while
maintaining certain coherencies among them so as to obtain
a single crisp image without any transition artifacts among
the deblurred blocks. For the second imaging situation, we
assume that the relative positions of narrow images in the
whole field-of-view are known, and there are certain overlaps
among them. If a narrow image is not sufficiently small to
fit in the memory of a node, then we can split it further into
smaller overlapping blocks. Similar to the first situation, we
deblur the small images simultaneously to obtain a single crisp
image. To do so, we reformulate the image deblurring problem
(1) into a distributed optimization problem with consensus,
and then present an efficient optimization method to solve
it. Our distributed deblurring algorithm is rather generic in
the sense that it can handle different situations such as shift-
invariant or shift-variant blur with any possible combination
of the data-fidelity and regularization terms. Depending on
the structures of the data-fidelity and regularizer, we can
select any fast optimization algorithm for solving the local
deblurring problems at processing nodes. By several numerical
experiments, we show that our algorithm is cost effective in
term of computational resources for large images, and is able
obtain the similar quality of deblurred images as the existing
centralized deblurring techniques that are applicable only to
images of moderate size.

The remaining parts of the paper is organized as follows.
In Section II, we discuss the difficulties associated with
distributed formulations of image deblurring problem, and
the possible approaches to overcome it. In Section III, we
present the distributed formulation and an efficient distributed
algorithm to solve it. We discuss the criteria for selecting the
different parameters associated with our approach. In Section
IV, we discuss the implementation details and present several
numerical experiments where we compare the results obtained
from different approaches. Finally, in Section V, we conclude
our work with possible future enhancements.

II. DISTRIBUTED COMPUTING APPROACH FOR IMAGE
DEBLURRING

A generic approach for dealing with large-scale problem
is the “divide and conquer” strategy, in which a large-scale
problem is decomposed into smaller subproblems in such way
that solving them and assembling theirs results would produce
the expected final result or, at least, reasonably close to it.
Distributed computing approach has emerged as a framework
of such a strategy. Distributed computing systems are consist
of several processing nodes, each having a reasonable amount
of computational resources (in term of memory and processor
cores), connected together via some communication network
so that nodes can exchange messages to achieve a certain
common goal. They are built based on the multiple instructions
multiple data (MIMD) architecture. Nodes in a distributed
system may not be necessarily located at the same physical
location, so a high speed communication links may not be
always feasible among them. Thus, an efficient distributed
algorithm is the one which is computation intensive rather
than communication demanding. In many applications such
as machine learning, data mining, distributed approaches have
become de-facto standard for efficiently estimating extremely
large number of parameters using huge dataset distributed
on the different nodes. Taking such an inspiration, one can
devise a distributed strategy for deblurring extremely large
images. A possible approach is to use the distributed array
abstraction available on modern distributed systems, and reim-
plement the standard centralized deblurring techniques using
distributed arrays instead of a shared memory array. However,
the bottleneck of such an approach would be extensive data
communication among the nodes at each iteration of the
optimization algorithm. To overcome this, a straightforward
approach would be to split the given observed image y into
N smaller contiguous blocks yi ∈ Rmi , i = 1, 2, · · · , N ,
and deblur them independently to obtain the deblurred blocks
x̂i ∈ Rni , i = 1, · · · , N that can be merged to obtain the
single deblurred image x̂ ∈ Rn. However, there may arise
several issues from both the theoretical and practical point-of-
views as discussed below.

A. Issues with Distributed Approach for Image Deblurring

For sake of simplicity, let us first consider the shift-invariant
image deblurring problem, and point out some of the major
issues:
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1) Practically, it is infeasible to explicitly create the blur
operator matrix H. For this reason blur operation is ef-
ficiently performed in Fourier domain using Fast Fourier
Transforms (FFT) algorithm. Thus, there is no straight
forward way to split the matrix H into block matrices
Hi ∈ Rmi×ni so that they could be used to perform
independent deblurring of the observed blocks yi such
that the final result would be equivalent to using the
original matrix H on whole image y. Any approxima-
tion of block matrices Hi chosen not appropriately may
create artifacts such as nonsmooth transition among the
deblurred blocks.

2) Blur operation performed in Fourier domain assumes cir-
cular boundary condition. The circulant blur assumption
in image deblurring process can lead to severe artifacts
due to discontinuity at boundaries caused by the periodic
extension of image [16]. Thus, deblurring the individual
blocks yi can introduce boundary artifacts into them
that will eventually worsen the quality of final deblurred
image.

3) Splitting the image into blocks can also raise issues with
the regularization term. Many frequently used regulariz-
ers are not separable, i.e., its value on the whole image
is not equivalent to the sum its value on the blocks. Such
an approximation can result into structural incoherencies
among the deblurred blocks.

The issues mentioned above complicate further the shift-
variant image deblurring problem, since there is no any
efficient and straightforward way to formulate shift-variant
blur operator. Considering the above issues associated with
the naı̈ve “split, deblur independently, and merge” approach,
it is obvious that one needs to approximate the problem (3)
in a way so that it can be solved efficiently in a distributed
manner, yet obtain the solution that remains reasonably close
to the solution of the original problem (3). In the next section,
we describe how to tackle the above issues, and then we will
present our distributed image deblurring algorithm.

B. Tackling the Issues in Distributed Image Deblurring

As discussed above, it is nontrivial problem to explicitly
create a blur operator and then decompose it into block
matrices to operate them independently for distributed image
deblurring. However, we can formulate an approximation of
the block matrices Hi such that when they are used in
deblurring process, certain homogeneities among the deblurred
blocks are imposed. Let us consider the smooth shift-variant
blur case. Provided that we are able to sample N local
PSFs hi, i = 1, · · · , N at regular grid points within the
field-of-view, the approximation of shift-variant blur operator
proposed in [6], [7] suggests an interesting idea to formulate
the block matrices Hi. Their approximations of the shift-
variant blur operator is based upon the idea that a PSF at
any point within field-of-view can be well approximated by
linear combination (interpolation) of the PSFs sampled at the
neighboring grid points. Said so, the shift-variant blurring
operation can be written as: y = R

∑N
i=1ZiHiW iCix,

where Ci are chopping operators that select overlapping

blocks from the image x, W i = diag(ωi) are interpolation
weights corresponding to each blocks, Hi are blur operators
corresponding to the sampled local PSFs hi, Zi are operators
that zero-pads the corresponding blurred blocks keeping it in
the same relative position with respect to the whole image, and
R is a chopping operator that restrict the final blurred image to
sensor size. Interpolation weights ωi are non-zero only within
certain locality depending upon the order of interpolation.
This approximation allows to perform shift-variant blurring
combining several local shift-invariant blurring, which can be
performed efficiently in Fourier domain. This approximation
renders smooth variation of blur throughout the whole image.
Higher accuracy in blurring operation can be achieved by
denser sampling of PSFs with the field-of-view. The image
deblurring results presented in [6], [8] suggest that the first-
order interpolation (e.g., ωi is a ramp within the range
[0, 1] between the two adjacent grid points for 1D signal as
illustrated in Fig.1) is sufficient to achieve reasonably good
quality of deblurred images. Using first-order interpolation,
the shift-variant blur operator is only four times expensive than
the shift-invariant blur operation on the same size of image.
However, this fast approximation of shift-variant blur operator
is efficient only for a centralized multi-threaded shared mem-
ory implementation. It is not directly applicable for distributed
setting as it will lead to intensive data communication among
the nodes each time the blur operator or its adjoint is used by
an iterative solver. Nevertheless, this approximation suggests
the following idea for distributed image deblurring: i) split the
observed image y into N overlapping blocks yi, ii) generate
2D first-order interpolation weights ωi corresponding to each
block, iii) provided with N PSFs hi sampled locally within
each block, distribute the observed blocks, the PSFs, and the
interpolation weights among the N nodes, and iv) then on
each node perform local image deblurring while maintaining
certain consensus among the overlapping pixels of the adjacent
blocks. The consensus operation can be a weighted averaging
among the overlapping pixels. Using the interpolation weights
ωi for averaging operation will indirectly impose the smooth
variation of blur across whole observed image. Without loss of
generality, the aforementioned strategy is also applicable to the
cases when an image suffers from shift-invariant or piece-wise
constant shift-variant blur since these two operations can be
well approximated by the above fast shift-variant blur operator
for the smooth blur variation.

As pointed out above, performing local deblurring in Fourier
domain may lead to boundary artifacts, thus to avoid such arti-
facts in the deblurred blocks, we borrow the idea from [16]. We
express the local blur operator as: Hi = CiHi, i = 1, · · · , N ,
where Hi ∈ Rni×ni are circular convolution matrices formed
from PSFs hi, and Ci ∈ Rmi×ni are chopping operators,
which restrict the convolution results to the valid regions.
Expressing the local blur operators in this form allows an
efficient non-circulant blur operation in Fourier domain while
suppressing boundary artifacts in the deblurred patches.

Concerning the last issue about approximating regularizer
on the whole image by sum of it on blocks, it depends upon the
structure of regularizer. If the regularizer is separable in image
domain, e.g., φ(Dx) = ‖x‖1 or ‖x‖22, then the aforesaid
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approximation holds. However, for many of the frequently
used regularizers, e.g., ‖Dx‖22 or ‖Dx‖1 or ‖Dx‖2 where D
represents finite-forward difference operator or some discrete
wavelet transform, the aforementioned approximation does not
hold. This can lead to incoherencies among the deblurred
blocks, which can render nonsmooth transitions among them.
However, as shown hereafter a sufficient amount of overlaps
among the adjacent blocks with aforementioned consensus
imposed on the overlapping pixels during deblurring process
will limit the incoherencies, and suppress any nonsmooth
transition in the final deblurred image.

III. THE PROPOSED APPROACH

Considering all the ideas developed in Section II, we
propose a generic framework for distributed image deblurring
applicable to images suffering from both the shift-invariant and
shift-variant blur. We make some reasonable approximations,
and reformulate the original problem (3) into the distributed
optimization problem presented below. The resulting optimiza-
tion problem is solved in a distributed manner by Douglas-
Rachford (D-R) splitting algorithm that first appeared in [26].

A. General Setting
Consider a distributed computing system with a set of N

nodes having peer-to-peer bidirectional connections among
them, or at least connection topology shown in Fig. 2. Given
an observed image y ∈ Rm, we split it into N blocks
yi ∈ Rmi ,∀i = 1, 2, · · · , N , with certain overlaps among
them. We generate 2D first-order interpolation weights ωi
corresponding to the observed blocks as shown in Fig. 3(e).
Provided that we are able to sample N PFSs hi within
the blocks, and Hi ∈ Rmi×ni be the corresponding blur
operators, we distribute the observed blocks, the corresponding
PSFs, and the interpolation weights among the nodes. We,
then, seek to distributively estimate the whole unknown crisp
image x ∈ Rn. Let us denote by P1, . . . ,PN a collection
of N subsets of {1, . . . , n}. For every i = 1, . . . , N , we
assume that ith compute node is in charge of estimating the
components of x corresponding to the indices Pi. The subsets
P1, . . . ,PN are overlapping. Hence, different nodes handling
a common component of x must eventually agree on the
value of the latter. Formally, we introduce the product space
X := RP1 × · · · × RPN , and we denote by C the set of
vectors (x1, . . . ,xN ) ∈ X satisfying the restricted consensus
condition

∀(i, j) ∈ {1, . . . , N}2, ∀` ∈ Pi ∩ Pj , xi(`) = xj(`) .

Moreover, we assume that every ith node is provided with a
local convex, proper and lower semicontinuous function fi :
RPi → (−∞,+∞]. We consider the following constrained
minimization problem on RP1 × · · · × RPN :

arg min
x1···xN

N∑
i=1

fi(xi) s.t. (x1, . . . ,xN ) ∈ C . (4)

For our image deblurring problem, the local cost function fi
is composed of the local data-fidelity term

xi 7→
1

2
‖yi −Hi xi‖2Wi

,

for some positive definite Wi(`, `) = 1/σ2
i (`) as in (3),

and a regularizer φi(Di xi) with positivity constraint on xi,
i.e., xi ∈ RPi

+ . If A is a set, the notation ιA stands for the
indicator function of the set A, equal to zero on that set and
to +∞ elsewhere. Thus, the local cost function needed to be
minimized at each of the nodes have the form:

fi(xi) =
1

2
‖yi −Hi xi‖2Wi

+ λi φi(Di xi) + ιRPi
+

(xi)

where φi are convex, proper and lower semicontinuous func-
tions and Di are linear operators on RPi .

B. Optimization Algorithm

Before we present our distributed optimization algorithm
for solving problem (4), let us introduce one more notation.
For any convex, proper and lower semicontinuous function
h : X → (−∞,+∞], we introduce the proximity operator

proxV−1,h(v) = arg min
w∈X

h(w) +
‖w − v‖2V

2

for every v ∈ X .
For solving (4), we consider D-R Splitting algorithm, thus

we reformulate (4) as

arg min
x∈X

f(x) + g(x)

where g = ιC is the indicator function of C and f(x) =∑
i fi(xi) for every x = (x1, . . . ,xN ) in X . Let us equip the

Euclidean space X with the inner product 〈 . , . 〉V for some
positive definite linear operator V : X → X . Let ρ(k) be a
sequence in ]0, 2[, and ε(k)1 and ε(k)2 be sequences in X , then
the D-R splitting algorithm writes as:

x(k+1) = proxV−1,f (u(k)) + ε
(k)
1

z(k+1) = proxV−1,g(2x
(k+1) − u(k)) + ε

(k)
2

u(k+1) = u(k) + ρ(k)
(
z(k+1) − x(k+1)

)
.

If the following holds:
1) the set of minimizers of (4) is non-empty,
2) 0 ∈ ri(dom(f)−C), where ri represents relative interior,
3)
∑
k ρ

(k)(2− ρk) = +∞,
4) and

∑
k ‖ε

(k)
1 ‖2 + ‖ε(k)2 ‖2 < +∞,

then the iterates u(k) converges weakly to some point in X
and x(k) converge to a minimizer of (4) as k →∞; see [27,
Corollary 5.2] for the proof. The parameter ρ(k) is referred
to as a relaxation factor, which can be tuned to improve
the convergence. The sequences ε(k)1 and ε

(k)
2 allow some

perturbations in the two prox operations, which is very useful
in the cases when the prox operations do not have closed-form
solutions and have to rely on some iterative solvers.

From now onward, we assume that V is a diagonal operator
of the form Vx = (V1x1, . . . ,VNxN ), where for every i,

Vixi : Pi → R
` 7→ αi(`)xi(`) ,

where αi(`) is a positive coefficient to be specified later. For
every ` ∈ {1, . . . , n}, we introduce the set P−` = {i : ` ∈
Pi}.
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Lemma III.1. For every x ∈ X , the quantity z =
proxV−1,ιC (x) is such that for every i ∈ {1, . . . , N} and every
` ∈ Pi,

zi(`) =

∑
i∈P−`

αi(`) xi(`)∑
i∈P−`

αi(`)
.

Proof: For every x ∈ X of the form x = (x1, . . . ,xN ),
and every ` ∈ {1, . . . , n}, we use the notation xP−` (`) =

(xi(`) : i ∈ P−` ). We denote by C` the linear span of the
vector (1, . . . , 1) in R|P

−
` |, where |P−` | is the cardinality of

P−` . The function g = ιC writes

g(x) =

n∑
`=1

ιC`(xP−`
(`)) .

For an arbitrary x ∈ X , the quantity z = proxV−,g(x) is
given by

z = arg min
w∈X

n∑
`=1

(
ιC`(wP−`

(`))

+
1

2

∑
i∈P−`

αi(`)(wi(`)− xi(`))2
)

Clearly, for every ` ∈ {1, . . . , n}, the components zi(`) are
equal for all i ∈ P−` , to some constant w.r.t. i, say z̄(`). The
later quantity is given by

z̄(`) = arg min
w∈R

∑
i∈P−`

αi(`)(w − xi(`))2

=

∑
i∈P−`

αi(`)xi(`)∑
i∈P−`

αi(`)
.

By the above lemma, the D-R splitting algorithm can be
explicitly written as follows. For every i ∈ {1, . . . , N} and
every ` ∈ {1, . . . , n},

x
(k+1)
i = proxV−1

i ,fi
(u

(k)
i )

z̄(k+1)(`) =

∑
i∈P−`

αi(`)(2x
(k+1)
i (`)− u(k)

i (`))∑
i∈P−`

αi(`)

u
(k+1)
i (`) = u

(k)
i (`) + ρ(k)

(
z̄(k+1)(`)− x(k+1)

i (`)
)
.

The resulting algorithm is a synchronous distributed algorithm
without any explicit master node. It is depicted in Algorithm 1.
Hereafter, we will refer to it by proposed deblurring method.
Given some initial guess of the local solutions at each node,
the first step of Algorithm 1 execute the LOCAL-SOLVER in
parallel on all the nodes to obtain local deblurred blocks. Then
all the nodes synchronize at the start of the second step, and
then they exchange the overlapping pixels with its adjacent
nodes to distributively perform the weighted averaging of those
pixels. Then, the last step of the algorithm is executed in
parallel on all the nodes.

The convergence speed of proposed deblurring method is
dependent upon the parameters αi, and like in other opti-
mization algorithms e.g., ADMM [28], selecting the optimal
values of αi for fast convergence is a tedious task. We select

Algorithm 1 Distributed Image Deblurring
procedure DISTRIBUTED-SOLVER

Initialize: ui ← u
(0)
i ,∀i = 1, 2, · · · , N

while not converged do
for i = 1 . . . N do
xi ← LOCAL-SOLVER(ui ;αi, fi)

end for
for ` = 1 . . . n do

Compute distributively at nodes i ∈ P−` :
z̄i(`)←

∑
i∈P−`

ωi(`)(2xi(`)−ui(`)),∀` ∈ Pi
end for
for i = 1 . . . N do
ui(`)← ui(`) + ρ(z̄i(`)− xi(`)),∀` ∈ Pi

end for
end while
return x1, . . . ,xN

end procedure
procedure LOCAL-SOLVER(u ;α, f )
w ← proxα−1,f (u) = arg minw{f(w) + 1

2‖w−u‖
2
α}

return w
end procedure

αi = γ ωi for γ > 0, so that we can tune γ for fast
convergence, and as well impose the smooth variation of the
blur among adjacent blocks.

C. Size of Image Blocks and the Extent of the Overlaps

The size of observed image blocks and the extent of overlaps
among them have impact upon the computational cost and the
quality of final deblurred image. Thus, they must be chosen
appropriately depending upon the situations: shift-invariant,
piece-wise constant shift-variant, and smooth shift-variant blur.
Without loss of generality, we assume that all local PSFs have
the same size.

In the case of smooth shift-variant blur, the size of image
blocks and the extent of overlaps depend upon how densely
the grid points, thus the local PSFs, can be sampled within
the field-of-view. Denser the grid points, better is the ap-
proximation of shift-variant blur in the image. If we consider
N equidistant grid points within the field-of-view, then the
support of image blocks extend (in both horizontal and vertical
directions) over three consecutive grid points, except for the
image blocks at the boundaries of image. Thus, each block
overlaps half of its size from top, bottom, left and right with
its adjacent blocks, i.e., a pixel in the observed image appears
into four adjacent blocks. As discussed previously, this extent
of overlaps are necessary to impose smooth variation of blur
among the image blocks. See the illustration in Fig. 1, which
demonstrate for 1D signal the scheme of splitting the observed
image into blocks, and the extent of overlaps among them.
Similarly, Fig. 5(a) shows 5 × 5 grid points overlaid upon
the observed image where the local PSFs are sampled, and
Fig. 5(c) shows resulting overlapping image blocks.

In the case of shift-invariant blur, again we can consider
N equidistant grid points within the field-of-view, and split
the observed image into N overlapping blocks. However, in
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Shift-invariant blur case Shift-variant blur case

1 2 3 1 2 3

Fig. 1. An 1D illustration showing the splitting of the observed image, the extent of the overlap, and shape of the interpolation weights for the shift-invariant
and smooth shift-variant blur cases. Given an observed image y, the crossbar are equidistant reference grid points where PSFs hi are sampled. Depending
upon the case: shift-invariant or shift-variant blur, the extent of the overlap is selected. The observed image is split into 3 overlapping patches yi. xi are the
locally deblurred patches at ith node from the corresponding observed patches yi. The dashed parts at the ends of each xi are the extra pixels estimated at
boundaries assuming no measurements were available for them. ωi are the interpolation weights corresponding to the support of xi, and its values are within
range [0, 1] such that

∑3
i=1 ωi(`) = 1,∀` = 1, · · · , n.

Fig. 2. The communication network topology for our distributed image
deblurring algorithm. Each square represents a node connected to its neighbors
by bi-directional communication channel. Provided with blurred patches, and
the corresponding local PSFs and the interpolation weights, the nodes run
simultaneously the LOCAL-SOLVERs, and exchange their local estimate of
overlapping pixels to perform the consensus operation.

this case, we do not need the same extent of overlaps among
the blocks as in the case of smooth shift-variant blur, but a
smaller extent of overlaps. In fact, it is sufficient to have extent
of overlaps slightly larger than half the size of the local PSF. In
this case, overlaps among the blocks are required not to impose
smooth variation of blur (as the PSF same over whole field-
of-view), but to minimize any discrepancies in the deblurred
image due to approximation introduced in the regularization
term. Similarly, in the case of piece-wise constant shift-variant
blur, we can consider the same splitting scheme as in the case
of shift-invariant blur for the same reason.

In the case of proposed deblurring method, the maximum
number blocks we can split the image is dependent upon the
number of available nodes to process in parallel. In such a

situation, the larger the number of available nodes, the larger
the number of blocks we can chose, thus, smaller the size of
blocks. From a computational point of view, the smaller the
size of the blocks, the smaller the memory and computation
time required by nodes to execute the LOCAL-SOLVER3.
Moreover, the smaller the size of blocks, the smaller is the
extent of overlaps among them, thus, the smaller the amount
of data to be exchanged among the nodes. With all these
advantages from a computational point-of-view, we may intend
to split the observed image into as many blocks as the number
of available nodes, given that we are provided with as many
local PSFs within the field of view. However, the size of the
local PSF suggests a lower limit on the size of blocks. We
should not select the size of blocks smaller than the size of the
PSF, otherwise the local deblurring problem at each node will
be highly underdetermined (more number of unknown pixels
at boundaries of the blocks need to be estimated), which would
eventually deteriorate the quality of the final deblurred image.
Thus, to achieve better quality deblurred image, we should
select the size of blocks at least twice the size of PSF.

IV. NUMERICAL EXPERIMENTS AND RESULTS

Our algorithm depicted in Algorithm 1 can be seen as
general framework for distributed image deblurring. Depend-
ing upon the situation, we can derive a particular instance
from it, e.g., shift-invariant or shift-variant deblurring, and
depending upon the structures of data-fidelity and regularizer,
we can select any efficient optimization method as the LOCAL-
SOLVER. In order to validate the proposed deblurring method,
we performed two numerical experiments, first, considering
the simpler case of shift-invariant deblurring, and then more
difficult case of the shift-variant deblurring.

3The size of vectors affects the efficiency of Fast Fourier Transform
algorithm and other operations. Smaller vector fit well into the different levels
of data-caches in processor so that it consumes lesser clock cycles to execute
the operations compared to the situation when the vectors are larger to fit
into the data-caches leading to many cache misses and eventually requiring
several cycles to fetch them from main memory.
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Moreover, to evaluate the performance of the proposed
deblurring method in terms of quality of deblurred image, we
compared it with two other possible approaches. First obvious
choice was centralized deblurring as a reference method that
solves the original problem (3). Since centralized deblurring
method would require a huge memory for a large image, thus
we selected images of reasonable sizes for our experiments.
We chose the naı̈ve “split, deblur independently, and merge”
approach as the second method. In oder to minimize inco-
herencies among the deblurred blocks obtained by the second
method, we split the observed image into overlapping blocks,
and blended the locally deblurred blocks into single image
by weighted averaging of the overlapping regions by using
the same 2D first-order interpolation weights as in proposed
method. Hereafter, we will refer to this approach as indepen-
dent deblurring method. The independent deblurring method
is not intended to solve correctly either of the optimization
problems (3) or (4), but it is a straight forward way to deblur
large images with minimal computational resources. Similarly,
in the case of shift-variant image deblurring, we consider
comparing our algorithm with the centralized and independent
deblurring methods. For the centralized deblurring method, we
used the fast shift-variant blur operator based on first-order
PSF interpolation as described in [8].

Let us first present the general settings of our experiments,
and later more specific details. For the case of shift-invariant
deblurring, we considered “Lena” image, which we resized to
1024×1024 pixels, and extended its dynamic range linearly to
have maximum intensity up to 6000 photons/pixels. We refer
to this image as the reference image. The reference image
was blurred with an Airy disk PSF (of size 201× 201 pixels)
formed due to a circular aperture of radius 6 pixels, and was
corrupted with white Gaussian noise of variance σ2 = 400
photons/pixels to obtain the observed image. To study the
impact of factors discussed in Section III-C, we considered
different cases by varying number of blocks and the extent
of overlaps among them. Figure 3 shows an instance when
observed image is split into 3 × 3 blocks with overlaps of
100× 100 pixels among the adjacent blocks.

For the shift-variant deblurring case, we considered “Bar-
bara” image, which was resized it to 1151× 1407 pixels, and
its dynamic range was extended linearly to have maximum
intensity up to 6000 photons/pixels. As above, we call this
image as reference image. We generated 9 × 9 normalized
Gaussian PSFs each of size 201× 201 pixels with the central
PSF having full-width-half-maximum (FWHM) = 3.5 × 3.5
pixels, and linearly increasing FWHM in the radial direction
up to 16.5 × 10.5 pixels for the PSF at extreme corner
of the reference image as depicted in Fig. 4. These PSFs,
somehow, mimic the shift-variant blur due to optical aber-
rations (coma) [29]. We blurred the reference image with
this shift-variant PSFs using shift-variant blur operator based
on PSF interpolation described in [8]. We obtained the final
observed image by adding white Gaussian noise of variance
σ2 = 400 photons/pixels to the blurred image. As in shift-
invariant deblurring case, we considered different scenarios by
varying the number of blocks. Figure 5 shows an experimental
setup when using only 5×5 gird of PSFs, i.e., when observed

image split is into 5× 5 overlapping blocks.
In both the cases, we deliberately selected low level noise in

the observed image so that any incoherency or artifact arising
in the deblurred image due to the approximations we made was
not superseded by the strong regularization level required for
low signal-to-noise ratio in observed image. Also, we selected
sufficiently large size of PSFs so that they are not band-limited,
which is the case in many real imaging systems.

A. Choice of Regularization Term

For our experiments, we selected the regularization function
φ to be Huber loss and D to be circular forward finite
difference operator, so the regularizer is written as

φ(Dixi) =

{
1
2‖Dixi‖22 ‖Dixi‖2 ≤ δ
δ(‖Dixi‖2 − δ

2 ) otherwise

We chose this regularizer for two reasons: i) it is smooth
(differentiable), which makes the functions fi in (4) smooth
so that we can choose any fast optimization algorithm such as
quasi-Newton methods (e.g., BFGS class methods [30]) as the
LOCAL-SOLVER, and ii) it behaves in between Tikhonov and
the total-variation regularization, depending upon the value of
δ. Thus, it is able to preserve the sharp structures in the images
while avoiding stair-case artifacts in smoothly varying regions
usually rendered by total-variation regularizer [9]. However,
our proposed deblurring method is not restricted to any partic-
ular choice of regularizer; depending upon the application one
can chose any regularizer and any fast optimization algorithm
for local deblurring problem.

B. Implementation Details

Since the optimization problems arising in all deblur-
ring methods were smooth, thus we chose a quasi-Newton
method called limited-memory variable metric with bound-
constraint (VMLM-B)4 [31]. VMLM-B is a variant of the stan-
dard limited-memory BFGS with bound-constraint (LBFGS-
B) [32], but with some subtle differences. VMLM-B does
not require any manual tunning of parameters to achieve fast
convergence (the only parameter step-length at each iteration
of VMLM-B is estimated by line-search methods satisfying
Wolfe’s conditions). Thus, this left us with only a single
parameter γ to be tunned to achieve faster convergence of our
algorithm. Moreover, using the same algorithm (VMLM-B)
for solving the optimization problems in all three deblurring
methods ensured a fair comparison among them in terms of
quality of deblurred images and the computational expenses.

In all our experiments, we set ρ(k) = 1. After few trials,
we found that γ = 0.001 results in fast convergence of
our algorithm. Since D-R splitting algorithm converges even
when the prox operations are carried out inexactly, thus to
speed-up our algorithm, we allowed the LOCAL-SOLVER to
be less accurate during the initial iterations, and then more
accurate as the iterations progress [28, Section 3.4.4]. To do
so, we allowed VMLM-B to perform 10 inner iterations at

4An open source implementation of VMLM-B in C programming is
available at https://github.com/emmt/OptimPack.
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the beginning, and increased it by 10 at every next iteration
of main loop. To speed-up further, we did warm-start of the
VMLM-B at every iterations of our algorithm by supplying
x(k) as an initial guess for next x(k+1) estimation. All the
results presented below were obtained after 25 iterations of
the proposed algorithm. It was observed that 25 iterations were
generally sufficient, and more than 25 iterations did not bring
any noticeable difference in the results. For the centralized
and independent deblurring methods, we allowed VMLM-B
to perform a maximum of 1000 iterations or until it satisfied
its own stopping criterion based on gradient convergence
or progress in the line-search method. It was noticed that,
generally, 500 to 600 iterations were sufficient and further
iterations did not bring any noticeable difference.

All the three deblurring methods including the centralized,
independent and the proposed were implemented in high-
level dynamic programming language “Julia”5 [33]. The pro-
posed distributed deblurring is implemented using Message
Passing Interface (MPI) based on Open MPI library6. The
source codes for all the demonstrations shown in this paper
will be freely available at https://github.com/mouryarahul/
ImageReconstruction.

C. Results and Discussion

As mentioned above, we conducted two different experi-
ments, one for shift-invariant, and another for smooth shift-
variant blurred image. To compare the quality of the deblurred
images obtained from all the three methods we considered
two image quality metrics: signal-to-noise ratio (SNR), and
Structural Similarity Index (SSIM) [34]. In all the cases, we
heuristically fixed the regularization parameter δ = 100, and
performed deblurring for different values of λ in a sufficiently
large range to see if one of the methods produces better quality
image for certain range of λ than others. The plots (SNR vs
λ and SSIM vs λ) in the Fig. 3(i–j) show the results obtained
from shift-invariant deblurring when observed image was split
into 3 × 3 blocks. To study the influence of size of blocks
and extent of overlaps on the quality of deblurred image,
we conducted several trails with different settings. The plots
in the Fig. 3(k–l) show the influence of extent of overlaps
on the image quality. The plots shows that our algorithm
performed slightly better than the centralized deblurring in
terms of both the SNR and SSIM. This could be due to the
approximation introduced in the regularization term in the
proposed deblurring method, e.g., sum of the regularizer on
the blocks may be favorable than the regularizer on whole
for some images depending upon the contents in the image.
Moreover, the proposed deblurring may also be benefited by
the explicit overlaps among the adjacent blocks; each node
can result into slightly different values of the overlapping
pixels, which eventually leads to better estimate of those pixels
after averaging the estimates from different nodes. This is
indicated by the fact that there is slight increase in both the
SNR and SSIM with increase in the extent of overlaps as
seen in the plots Fig. 3(k–l). It also indicates that an overlap

5http://julialang.org/
6https://www.open-mpi.org/

equal to half the size of PSF is sufficient, and a larger overlap
did not produce much improvement, but, of course, it did
increase the computational and communication cost. We also
noticed that the SNR and SSIM of deblurred image obtained
from proposed deblurring is slightly less dependent upon the
extent of overlaps compared to that obtained by independent
deblurring.

The plots in Fig. 6(a–b) compare the results obtained by
the three deblurring methods for the case of smooth shift-
variant blurred image. First, we noticed that the image quality
obtained by all the three methods improves drastically with the
increase in density of grid of PSFs sampled within field-of-
view. The SNR and SSIM of deblurred image obtained using
only 3 × 3 PSFs is significantly lower than the cases when
5× 5, 6× 6 and 8× 8 grids of PSFs are used. This is due to
the fact that the observed image was simulated using a finer
9 × 9 grids of PSFs, and the coarser grids of PSFs are less
accurate in capturing smooth variation of blur than a finer
grid of PSFs. We also noticed that unlike the shift-invariant
deblurring case, the values of SNR and SSIM obtained by the
proposed deblurring is slightly lower than that obtained by
the centralize deblurring. This could be due to the fact that
both the centralized and proposed deblurring benefits from
the explicit overlaps among the block, but some information
is always lost at the boundaries of the deblurred blocks in
the case of proposed deblurring, which is not the case for
centralized deblurring. Also, there must be some influence
of the approximation introduced into the regularization term
for the case of proposed deblurring. We observed from the
plots in Fig. 3(i–j) and Fig. 6(a–b) that three methods do not
attained the highest SNR or SSIM at the same value of the
regularization parameter λ.

As expected, we observed that the naı̈ve independent de-
blurring method performed significantly lower than the other
two methods. As pointed out above, this is due to the fact
that the method is not intended to solve correctly either the
original problem (3) or the distributed formulation (4), but it
is the crudest and computationally cheapest way to perform
image deblurring by splitting image into pieces.

In our experiments, we observed that the first step, i.e.,
the LOCAL-SOLVER, of the proposed deblurring algorithm
is the one which consumed the significant computation time
among the three steps; LOCAL-SOLVER took 600 to 800 times
more computation time than the consensus step (including
communication time among the nodes). This should be true,
in general, for many other local deblurring algorithms devised
using different combination of data-fidelity and regularization
terms depending upon the applications. Thus, the proposed
deblurring algorithm is efficient in the sense that it is compu-
tation intensive rather than being communication intensive.

For the small or moderate size of images as we considered in
our experiments, the proposed deblurring algorithm is compu-
tationally more expensive than the centralized and independent
deblurring methods; it takes at least 10 to 15 times more
computation time than the latter ones. However, in the case
of extremely large images for which centralized deblurring is
practically not feasible, computational expenses of proposed
deblurring is justified by the better quality of deblurred image,
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which cannot be achieved by the computationally cheaper in-
dependent deblurring. Some more simulations performed with
different set of images and PSFs are presented in Appendix
A, and the results suggest similar conclusions as above.

V. CONCLUSION

In this paper we have proposed a distributed image de-
blurring algorithm for large images for which the existing
centralized deblurring methods are practically inapplicable due
to requirement of huge physical memory on a single system.
The proposed algorithm is rather a generic framework for
distributed image deblurring for it can handle different imaging
situations such as deblurring a single large image suffering
from shift-invariant blur, a wide field-of-view captured into
multiple narrow images by different imaging systems with
slightly different PSFs, and a large image of a wide field-
of-view suffering from smoothly varying blur captured by a
single imaging system. Depending upon the application, one
can easily adapt it to include different data-fidelity and regular-
ization terms, and then select any fast optimization algorithm
to solve the local deblurring problem at the different nodes
of a distributed computing system. Our algorithm is efficient
in the sense that it is computation intensive rather than being
communication intensive. We showed by experimental results
on simulated observed images that the proposed deblurring
algorithm produce almost similar or little lower quality (mea-
sured in term of SNR and SSIM) of deblurred images than that
obtained by centralized deblurring. But, this small compromise
in the quality of deblurred image is trade-off by the cost
effectiveness of our distributed approach for large images,
which is practically not feasible for the centralized deblurring
methods. Moreover, we compared the proposed deblurring to
a naı̈ve and computationally cheaper independent deblurring,
and showed the latter always performed significantly lower
than the former. Thus, when high accuracy is desirable, e.g.,
in astronomical application, the proposed deblurring should
be preferred over independent deblurring method, of course at
expense of extra computational cost.

In this paper, we considered nonblind image deblurring,
i.e., the PSFs were known a priori, however, in real imaging
scenario calibrating PSFs accurately is a tedious and chal-
lenging task. A more practical way would be to follow a
blind image deblurring approach which is able estimate the
PSFs from the observed image(s), and recover the single crisp
image. Thus, the next perspective step would be to extend the
proposed algorithm toward distributed blind image deblurring
method which should be able to estimate distributively the
PSFs imposing certain regularity among them, and eventually
estimate the unknown crisp image.
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[8] L. Denis, E. Thiébaut, F. Soulez, J.-M. Becker, and R. Mourya, “Fast
Approximations of Shift-Variant Blur,” International Journal of Com-
puter Vision, vol. 115, no. 3, pp. 253–278, 2015.

[9] L. M. Mugnier, T. Fusco, and J.-M. Conan, “Mistral: a myopic edge-
preserving image restoration method, with application to astronomi-
cal adaptive-optics-corrected long-exposure images,” JOSA A, vol. 21,
no. 10, pp. 1841–1854, 2004.

[10] H. Lanteri and C. Theys, “Restoration of Astrophysical Images The
Case of Poisson Data with Additive Gaussian noise,” EURASIP Journal
on Applied Signal Processing, vol. 15, pp. 2500–2513, 2005.

[11] F. Benvenuto, A. L. Camera, C. Theys, a. Ferrari, H. Lantéri, and
M. Bertero, “The study of an iterative method for the reconstruction
of images corrupted by Poisson and Gaussian noise,” Inverse Problems,
vol. 24, no. 3, p. 035016, jun 2008.

[12] E. Chouzenoux, A. Jezierska, J.-c. Pesquet, and H. Talbot, “A Convex
Approach for Image Restoration with Exact Poisson-Gaussian Likeli-
hood,” SIAM J. Imaging Science, vol. 8, no. 4, pp. 2662–2682, 2015.

[13] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,” Inverse Problems, vol. 23, no. 3, pp. 947–968, 2007.

[14] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,” IEEE
Trans. on image processing, vol. 18, no. 11, pp. 2419–34, 2009.

[15] M. V. Afonso, J. M. Bioucas-Dias, and M. a. T. Figueiredo, “Fast image
recovery using variable splitting and constrained optimization,” IEEE
Trans. on image processing, vol. 19, no. 9, pp. 2345–2356, 2010.

[16] A. Matakos, S. Ramani, and J. A. Fessler, “Accelerated edge-preserving
image restoration without boundary artifacts,” IEEE Trans. on Image
Processing, vol. 22, no. 5, pp. 2019–2029, 2013.

[17] R. Mourya, L. Denis, J.-M. Becker, and E. Thiébaut, “Augmented
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(a) Reference image (size = 1024 ×
1024 pixels)

(b) Airy disk PSFs (size = 201× 201
pixels) due to circular aperture of ra-
dius 6 pixels

(c) Observed image (SNR= 9.0364
dB, SSIM = 0.7594)

(d) Overlapping observed patches

(e) 3 × 3 blocks of interpolation
weights with brightest pixel equal to
1 and the darkest pixel equal to 0.

(f) Image obtained by centralized
deblurring method (SNR = 14.3818
dB, SSIM = 0.8166 at λ = 0.001)

(g) Image obtained by independent
deblurring method (SNR = 14.3402
dB, SSIM = 0.8162 at λ = 0.001)

(h) Image obtained by proposed de-
blurring method (SNR = 14.5931 dB,
SSIM = 0.8188 at λ = 0.002)
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Fig. 3. Experiment 1: experimental setup and results from shift-invariant deblurring of “Lena” image. The observed image (c) is obtained by blurring the
reference image (a) with shift-invariant PSF (b), and then corrupting with white Gaussian noise of variance σ2 = 400. Image blocks (d) are obtained by
splitting observed image into 3×3 blocks with overlaps of 100×100 pixels among them. The 2D first-order interpolation weights (e) are of the same size as
observed blocks. Plots (i–j) show the image quality of deblurred images obtained for different strengths of regularization. The legends “Central”, “Proposed”,
and “Indpndt” represent results from the centralized, the proposed and the independent deblurring methods, respectively. Plots (k–l) show impact of extent of
overlap on the image quality of deblurred images. The legends “Proposed-2x2” and “Indpndt-2x2” represent the proposed and independent deblurring methods
for the case when the image is split into 2× 2 blocks. Similarly, the other two legends represent the case when the image is split into 3× 3 blocks.
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(a) Reference image (1151× 1407 pixels) with 9× 9 grid points
(overlaid in green) where PSFs are sampled.

(b) Shift-variant PSFs (each of size 201× 201 pixels) generated
at the 9× 9 grid points in (a).

(c) Blurred and Noisy (observed) image

Fig. 4. Experiment 2: experimental setup for shift-variant deblurring of
“Barbara” image. The grid of PSFs (b) contains normalized Gaussian PSFs
with central PSF having FWHM = 3.5 × 3.5 pixels, and linearly increased
up to FWHM = 16.5×10.5 pixels for the extreme corner PSF. The observed
image (c) is obtained by blurring the reference image (a) with the shift-
variant PSFs, and then corrupting white Gaussian noise of variance σ2 = 400
photons/pixels.

(a) 5× 5 grid points overlaid upon the observed image Fig. 4(c)
where the PSFs are sampled.

(b) Shift-variant PSFs (each of size 201× 201 pixels) sampled at
5× 5 grid points shown in (a).

(c) 5 × 5 overlapping observed blocks obtained after splitting
image in (a).

Fig. 5. Experiment 2: experimental setup for shift-variant deblurring when
using 5× 5 grid of PSFs, i.e., observed image is split into 5× 5 overlapping
blocks.
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Fig. 6. Experiment 2: results from shift-variant image deblurring comparing
the image quality (in terms of SNR and SSIM) obtained by the three different
deblurring methods for different strength of regularization. The legends
“Central3x3”, “Proposed-3x3”, “Indpndt-3x3” denotes the results from the
centralized, the proposed, and independent deblurring methods, respectively,
when using only 3× 3 grid of PSFs. Similarly, other legends denotes for the
results obtained when using 5× 5, 6× 6 and 8× 8 grid of PSFs sampled in
the field-of-view.

(a) Estimated by centralized deblurring (SNR = 12.3278 dB, SSIM
= 0.7767 at λ = 0.002).

(b) Estimated by independent deblurring (SNR = 11.6696 dB,
SSIM = 0.7736 at λ = 0.004)

(c) Estimated by proposed deblurring (SNR = 12.0239 dB, SSIM
= 0.7764 at λ = 0.002)

Fig. 7. Experiment 2: deblurred images obtained by the three methods when
using 6× 6 grid of PSFs.
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Fig. 8. Experiment 3: results from shift-invariant deblurring of “Barbara” image. The independent and proposed deblurring methods used 4× 4 blocks with
overlap of 100× 100 pixels among them. The observed image had SNR = 8.7269 dB and SSIM = 0.6399.
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APPENDIX
SOME MORE SIMULATION RESULTS

We repeated the above experiments for different set of
images and PSFs, what we referred to as Experiment 3 and
4. This time we chose PSFs that caused less blurriness in
the observed images than the previous experiments. For shift-
invariant image deblurring, we chose “Barbara” image, and a
Airy disk PSF of size 201×201 pixels formed due to a circular
aperture of radius 9.5 pixels. For smooth shift-variant image
deblurring, we chose “Pentagon” image of size 2048 × 2048
pixels, and a grid of shift-variant normalized Gaussian PSFs
of size 201 × 201 pixels with central PSF having FWHM =
3.5 × 3.5 pixels and linearly increasing FWHM in the radial
direction up to 8.5× 6.5 pixels for the PSF at extreme corner
of the reference image. In both the cases, they dynamic range
of the reference image was extended linearly up to 6000
photons/pixels and the noise in the observed images was white
Gaussian with variance σ2 = 400 photons/pixels. The results
from both new experiments are shown in Fig. 8 and Fig. 10.
Again, we have very similar conclusions from this repeated
experiments as from the previous experiments.
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Fig. 9. Experiment 4: results from smooth shift-variant deblurring of
“Pentagon” image shown below in Fig. 10.
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(a) Reference image (size = 2048× 2048 pixels) (b) Observed image SNR = 8.71283 dB, SSIM = 0.7496

(c) Estimated by centralized deblurring (SNR = 13.3965
dB, SSIM = 0.8653)

(d) Estimated by independent deblurring (SNR = 12.9053
dB, SSIM = 0.8619)

(e) Estimated image blocks by proposed deblurring (f) Estimated by proposed deblurring (SNR = 13.2979
dB, SSIM = 0.8618)

Fig. 10. Experiment 4: experimental setup and results from smooth shift-variant deblurring of “Pentagon” image. The observed image is generate by blurring
with a 9 × 9 grid of shift-variant normalized Gaussian PSFs having FWHM=3.5 × 3.5 pixels in the center and linearly increasing FWHM in the radial
direction up to 8.56.5 pixels for the PSF at extreme corner. The deblurred image are estimated using only 7×7 grid of PSFs sampled within the field-of-view.
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