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Abstract
The realistic synthesis and rendering of film grain is a crucial goal for many amateur and professional photographers and
film-makers whose artistic works require the authentic feel of analog photography. The objective of this work is to propose
an algorithm that reproduces the visual aspect of film grain texture on any digital image. Previous approaches to this problem
either propose unrealistic models or simply blend scanned images of film grain with the digital image, in which case the result is
inevitably limited by the quality and resolution of the initial scan. In this work, we introduce a stochastic model to approximate
the physical reality of film grain, and propose a resolution-free rendering algorithm to simulate realistic film grain for any
digital input image. By varying the parameters of this model, we can achieve a wide range of grain types. We demonstrate
this by comparing our results with film grain examples from dedicated software, and show that our rendering results closely
resemble these real film emulsions. In addition to realistic grain rendering, our resolution-free algorithm allows for any desired
zoom factor, even down to the scale of the microscopic grains themselves.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—

1. Introduction

The digital revolution has changed the way we process, store and
view images. An image unit, the pixel, is simply a quantized num-
ber representing in some manner light or color intensity, and it can
be stored and transmitted in a unique and unambiguous fashion.
This leads to many practical advantages of digital over “analog”
photography (reproduceability, robustness etc.). However, when
it comes to creating images of high artistic and visual quality,
a great many amateur and professional photographers and film-
makers prefer to use analog photography, in other words images
produced with silver-halide based processes. In a recent interview
[Lac15] Edward Lachman, the director of cinematography of the
film “Carol”, made the choice to use 16mm film in order to capture
the feel of a specific period. To take an even more extreme exam-
ple, the recognized director Quentin Tarantino declared in the 2014
Cannes film festival that “digital projection ... is the death of cin-
ema as I know it” [Smi14]. Given the opinions of such prominent
photographers and film-makers, it is not surprising that great efforts
are made to recreate the “soul” of certain types of film emulsion.

Several factors contribute fundamentally to the feel of an ana-
log film. Some of the main ones are image contrast, color palette
and film grain. Film grain is the texture caused by the fact that ana-
log photographs, mostly created by silver-halide type processes, are
the result of many microscopic photo-sensitive particles reacting to
light. These particles are called grains. Thus, on the microscopic
scale, an analog image is binary : either a particle is present, in

which case light is blocked, or it is not, in which case light is trans-
mitted. Because humans can see with a limited resolution, what we
perceive as an image is in reality a local average density of grains.
The resulting visual aspect is often referred to as “graininess”.

There are two main approaches to film grain synthesis. The first,
which is commonly used in many commercial solutions such as
DxO’s FilmPack [DxO16], is to apply a stored example of film
grain to the digital image. Advantages of this approach include
speed and simplicity. However, the results will necessarily be de-
terministic, that is to say that if we apply the synthesis twice to
the same image, we obtain the same output. This is clearly a con-
siderable disadvantage for the synthesis of a random phenomenon,
and will be particularly visible if the algorithm is applied to video
sequences. Furthermore, this approach is completely reliant on the
resolution and quality of the original scan. The second approach
to film grain synthesis is to use a grain model. This is more fre-
quently used in academic works [MRB06, Yan97, OLK09]. How-
ever, most of these models rely again on an example of scanned
film grain for synthesis, which entails the same drawbacks as men-
tioned above. In the case where film grain is modelled as indepen-
dent noise [MRB06,Yan97], with a variance which is dependent on
the input image intensity, the grain texture is completely uncorre-
lated spatially, which gives a distinctly “digital” feel to the image.
Indeed, this is one of the main criticisms of photographers and film-
makers towards digital film grain synthesis methods. In Edward
Lachman’s interview he discusses this, stating that it is possible to
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Figure 1: Film grain rendering results with several zoom factors. We propose a stochastic film grain model and a film grain rendering
algorithm which can render film grain on a digital image at any chosen resolution.

“recreate grain digitally now, but it is pixel-fixated. It does not have
this anthropomorphic quality in which the grain structure in each
frame is changing”. Thus, the spatial correlation of film grain is
one of its defining features.

In light of the drawbacks of the previous methods, we propose
a physically motivated film grain model and a synthesis algorithm
to produce the grain texture for a given input image. To our knowl-
edge, this is the first synthesis algorithm based on a physical model
of the photographic process. This careful modeling leads to realistic
and aesthetically pleasing results. In particular, the visual charac-
teristics of our grain are dependent on the image grey-level. This
is not the case in other approaches, which either scan or learn the
grain at a fixed grey-level.

The contributions of this work are:

1. a resolution-free model of film grain based on the physical pro-
cess of silver-halide photography;

2. a Monte-Carlo based algorithm to render a given image with
film grain at a chosen resolution;

3. tunable parameters based on the physical characteristics of the
film grain, such as the grain size and size distribution;

The C++ implementation of the proposed algorithm is freely avail-
able online [NGD17]

Our film grain model is continuous, and we produce a discrete
image during the last step of the algorithm, once the photographic
process has been imitated. This is a significant advantage, as it re-
sults in a resolution-free algorithm which can “zoom” indefinitely
on the image, until the individual grains are visible, as illustrated
in Figure 1. This is not possible for either the methods based on
scanned examples of grain, as the resolution is fixed, or those which
model film grain as independently distributed noise. In approaches
using scanned film grain, zooming is either achieved by “stretch-
ing” the grain or tiling; in both cases the results are visually unsat-
isfactory. Some examples of these problems may be found in the
supplementary material.

2. Background and the photographic process

The literature concerning film grain and film grain synthesis is
clearly separated according to whether they belong to the analog
world or the digital world. Those in the former category are con-
cerned exclusively with identifying visual and statistical character-
istics of film grain. The digital category looks at both removal and

synthesis of film grain. From one point of view, film grain may be
considered as a kind of noise, and thus should be removed. How-
ever, denoised images tend to be too smooth and not visually pleas-
ing, and therefore an effort is also made to try and recreate the
grain [OLK09]. Thus, many works of the digital category try to pro-
vide both possibilities. Unfortunately, to the best of our knowledge
none of these methods take account of the analog literature. One of
our goals is to produce a digital algorithm based on the modeling of
the physical photographic process studied in the analog literature.

2.1. Previous work

The silver-halide photographic process has been extensively stud-
ied since the beginning of the twentieth century. Gurney and Mott
[Gur38] proposed a comprehensive physical model of the process,
which is widely accepted. Nutting [Nut13] was the first to study the
statistical properties of the so-called “random dot model” for film
grain, and proposed the Nutting formula which links the optical
density of a film emulsion to the average number of grains present
and to the size of the inspected region. An important quantity stud-
ied in the analog literature is granularity or root-mean-square (rms)
granularity. This is experimentally measured using a microdensit-
ometer on any given film emulsion after development, and corre-
sponds to the standard deviation of the optical density of the emul-
sion. Another useful connected quantity is that of Selwyn granu-
larity [Wer94], which is basically the granularity defined in such a
fashion that it is independent of the aperture size. A good summary
of these basic notions may be found in the paper of Bayer [Bay64]
in the context of the random dot model. A particularly hot topic
concerning film grain is that of grain “clumping”. This corresponds
to the perceived clustering of film grain. Much of the subsequent
analog literature is concerned with proposing mathematical models
which imitate this effect [CKT73, LTW72, TU83].
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Figure 2: Illustration of the physical photographic process. The
sensitization and development processes are shown here, with one
crystal interacting with a photon and subsequently being devel-
oped, while the other crystal remains undeveloped and transparent.
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Figure 3: An illustration of the different steps of the photographic process. The signal from the real-world image is recorded on the film
negative with dark film grains on a light background. This is inverted in the positive image.

Many approaches use actual scanned examples of film grain for
the purposes of synthesis. This appears to be the most popular
approach in the industrial environment as well as in some aca-
demic approaches. Film grain synthesis products such as Dxo’s
“FilmPack” [DxO16] and Grubba Software’s “TrueGrain” [Gru15]
tools take this approach. More precisely, a single grain image is
saved for each film type. In the same philosophy, Schallauer and
Mörzinger [SM06] extract the grain pattern from real images of
grain and synthesize a new grain image from these examples, which
they then apply to the image in an additive fashion. Unfortunately,
they do not go into detail as to how this synthesis is carried about.
A similar approach is used in the Film Emulation feature of the
G’MIC free software [G’M16] using the random phase texture al-
gorithm [GGM11] to synthesize large grain textures from small
stored samples. Bae et al. [BPD06] use the classical Heeger-Bergen
texture synthesis [HB95] approach on a constant region in an ex-
ample grainy image to produce film grain. However, they do not
specify how this is applied to a given input image. Stephenson
and Saunders [SS07] filter white noise in the Fourier domain. Yan
et al. [Yan97] proposed an additive film grain model with signal-
dependent noise. A drawback is that their approach supposes that
film grain noise is spatially uncorrelated, which is clearly unre-
alistic for film grain noise. Oh et al. [OLK09] propose an auto-
regressive model for film grain removal and synthesis. They point
out that spatial correlation is crucial for producing realistic film
grain. However, they consider that an input grainy image is avail-
able, and that the characteristics of the grain may be extracted. We
also note that other works have looked at simulating various pho-
tographic processes [GK97,EWK∗13], but these are not concerned
with simulating physical film-grain.

A common drawback of the approaches of the digital literature
is that no model based on the physical reality of film grain is pro-
posed. Either a digital example of film grain, with fixed resolution,
is considered to be available (which may not always be possible), or
spatial correlation of the film grain texture is not considered. Fur-
thermore, even if a good example of film grain is available, it is not

obvious how to blend this grain with an input image. In this work,
we propose a realistic film grain model based on physical consid-
erations which requires no example for synthesis, and which does
not need any such blending process.

2.2. The photographic process

The photographic process is based on two steps : film grain sen-
sitization and development. Sensitization takes place when silver
halide crystals are exposed to light for a certain amount of time
and made “developable” by the interaction with incoming photons.
Development is the process which turns the sensitized crystals into
solid grains of silver. These steps produce a negative image, which
is then converted to a positive image with a second photographic
process. Since the grain blocks light, the negative photographic im-
age is in fact a binary function which is equal to 0 in the areas
covered by the grains, and equal to 1 otherwise. The sensitization
and development processes are illustrated in Figure 2.

From negative to positive The final positive image takes form
on photographic (photosensitive) paper. To do this, light is shone
through the negative film onto the photographic paper. During this
step, the image is typically enlarged by a factor of between five
and ten times. After the exposure of the photographic paper, a pos-
itive representation of the original image has been recorded. As a
simplification, we shall consider that the photographic paper is a
continuous recording material, even if the photographic paper can
contain its own “grain”. An illustration of the negative and positive
images can be seen in Figure 3.

3. Review of the Boolean model

We wish to model the photographic process in order to produce a
realistic image with film grain. From the previous section, we know
that a photographic image is made up of microscopic grains of solid
silver. The simplest way of modeling this is to consider that the
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Figure 4: Illustration of the Boolean model. Three different
Boolean models with balls of constant radius (left), balls of ran-
dom radius following a log-normal distribution (middle), and ran-
domly oriented triangles. Observe that the models display “groups”
of grains, as in real film grain.

grains are convex sets which are uniformly distributed in the film
emulsion. This model is implicitly used in much of the “analog”
literature concerning film grain [Nut13, Sel35]. This model, with a
few further hypotheses, corresponds very nicely to a well studied
model from the stochastic geometry literature [CSKM13], known
as the Boolean model.

3.1. The Boolean model

Let us first recall basic definition and properties regarding the ho-
mogeneous Boolean model in R2 which is the most natural and the
most studied example of homogeneous random sets [CSKM13].
Let Φ = {xi, i ∈ N} represent a Poisson process on R2 with inten-
sity λ. These xi represent the centers of our grains. We also define
a sequence of identically and independently distributed (i.i.d.) ran-
dom compact sets in R2, X0,X1, . . . , which will represent the grain
shapes. The Boolean model is the random set Z defined as the union
of all the shapes Xi placed at the locations xi, that is,

Z =
⋃
i∈N

(Xi + xi).

This is a particularly flexible model, as we can choose any sort of
grain shape and size. In practice we shall use 2D balls, in which
case Z =

⋃
i∈NB(xi,ri), where ri is the (possibly random) radius

of the ith ball. We also present some experiments with other shapes
in the supplementary material. Finally let us define the indicator
function of the Boolean model Z as the function 1Z(y) that equals
1 if y ∈ Z and 0 otherwise.

Let Ai = πr2
i stand for the area of the ball indexed by i. Given

the Poisson assumption, the volume fraction of the Boolean model
is given by

P(1Z(y) = 1) = 1− exp(−λE [A1]), (1)

where E [A1] = πE[r2
1] is the common mean area of the i.i.d. balls,

and y ∈ R2. If the grains Xi are balls of constant radius r, we
have P(1Z(y) = 1) = 1−exp(−λπr2). To summarize, the Boolean
model consists of “white” balls on a “black” background, and we
use this model to represent the physical reality of film grain.

Figure 4 shows examples of three different Boolean models. An
important point to note is the well-known tendency of the model
to produce the visual effect of clustering, or “clumping”, which is
crucial to producing realistic film grain. Now, in a film emulsion,

Input pixels (close-up) Inhomogeneous Boolean model

Figure 5: Illustration of inhomogeneous Boolean model. The lo-
cal intensity λ(y) of the inhomogeneous Boolean model is chosen
to respect the input pixel gray-levels.

there will be a varying density of developed grains, which means
the Boolean model as we have presented it is not sufficient yet. In
stochastic geometry, this varying density corresponds to the inho-
mogeneous Boolean model, which we present now.

3.2. The inhomogeneous Boolean model

As in the homogeneous case, the inhomogeneous Boolean model is
built upon a sequence of random positions Φ = {xi, i ∈ N} given by
a Poisson process. However, the intensity λ of the Poisson process
Φ is no longer constant. It is given by a function λ(y) which varies
spatially with y ∈ R2. When the intensity function λ is bounded
from above, one can interpret and simulate such an inhomogeneous
Poisson process by thinning an homogeneous Poisson process hav-
ing a large intensity [CSKM13] (which corresponds to a rejection
method for Poisson processes). However, in what follows, we will
only consider intensity functions λ that are piecewise constant and
thus the corresponding Poisson point process can be easily simu-
lated in a piecewise manner.

Now that we have given a brief description of the Boolean model,
we proceed to see how it can be used to provide realistic film grain
rendering for a given image.

4. Stochastic film grain model and rendering algorithm

As recalled in Section 2.2, at a microscopic level a positive analog
photograph is a binary set of white grains in a black background.
Given an input digital image u, we will define an inhomogeneous
Boolean model such that, when seen at a distance, the correspond-
ing random binary set represents the same image as u, but with the
additional graininess which characterizes analog photography. In
technical terms, we need to define a varying intensity function λ

from an input image u. Also, we will not make any assumption on
the grain radius distribution since, as results show, this is a mean-
ingful parameter for tuning the visual aspect of the grain texture.

Let u : {0, . . . ,m− 1}×{0, . . . ,n− 1} ⊂ N2 → [0,umax] be the
input image, of size m×n. We start by normalizing the input image
u to the interval [0,1) by defining ũ(y) = u(y)

umax+ε
, where ε is a small

parameter, and umax is the maximum possible gray-level value. We
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restrict the image to [0,1), as a Boolean model with P(1Z(y) =
1) = 1 would require a degenerate infinite intensity λ.

4.1. Stochastic film grain model

Ideally, we would like to imitate the photographic process by
choosing λ(y) to reflect the physical concentration of grains in the
emulsion. Unfortunately, for a given input image, we cannot neces-
sarily know how the image was taken and therefore we do not have
access to the average number of photons received.

Our solution to this problem is to define λ(y) so that the average
area covered by the balls of the Boolean model within a pixel lo-
cation equals the input image gray-level. Consequently, the global
contrast of the input image is correctly maintained. A significant
advantage of this approach is that contrast changes can be handled
independently from the rendering of film grain.

Therefore, using Equation (1), we set λ to be the piecewise con-
stant function defined for all y ∈ [0,m)× [0,n) by

λ(y) =
1

E[A1]
log
(

1
1− ũ(byc)

)
, (2)

where byc are the coordinates of the pixel containing the point y.
This provides us with the means to simulate the inhomogeneous
Boolean model for any given input image. However, this model
represents the positive image viewed at infinite resolution. In re-
ality, we perceive images with finite resolution. Furthermore, we
wish to produce an output digital image defined at a chosen resolu-
tion. This requires a filtering step, which we explain further now.

4.2. Filtering the positive image

As explained above we do not view the analog image with infinite
resolution; indeed if we could, all such pictures would be binary
! In reality, we observe a filtered and sampled version that reveals
the gray-levels of the image. To this end, we add a last step which
imitates this effect by filtering and sampling 1Z . This step is in fact
essential for viewing a gray-level image and also in creating the
“grainy” effect.

There are several origins of this filtering effect. One of these is
the optical filtering which takes place during the transition from
negative to positive. A second unavoidable filtering is that of the
human visual system. To illustrate how this affects our model, let
us denote a first filter with ψ acting on the negative image, and
another filter ψ

′ acting on the positive image (which we perceive).
We consider that

∫∞
−∞ψ(y)dy = 1, and similarly for ψ

′. Thus, the
resulting gray-level ν(y) perceived at position y is

v(y) =
(
ψ
′ ∗ [1−ψ∗ (1−1Z)]

)
(y) = (ψ′ ∗ψ∗1Z)(y). (3)

The upshot of this is that we can apply any sort of filter we like,
independently, and a posteriori, to our Boolean model. This is par-
ticularly practical, as we can separate the creation of the Boolean
model from the application of the filter. In our experiments, we
simply apply a single Gaussian low-pass filter to represent the com-
bined blurring steps from the negative image to the perceived im-
age. To summarize, our continuous film grain model consists of a
filtered indicator function of the inhomogeneous Boolean model.

Algorithm 1 Sampling of the inhomogeneous Boolean model from
an input image.
Data: u : {0,1, . . . ,m− 1} × {0,1, . . . ,n− 1} → [0,umax] (input

image)
Parameters:
D(µr,σ

2
r ) : distribution of grain radii

Result:
x: List of grain centers
r: List of grain radii

Sample Boolean model within the whole image domain:
x←∅, r←∅
foreach (i, j) ∈ {0, . . . ,m−1}×{0, . . . ,m−1} do

Convert gray-level to the interval [0,1):
ũ(i, j) = u(i, j)

umax+ε

Compute local value of intensity λ:
λ = 1

π(µ2
r+σ2

r )
log 1

(1−ũ(i, j))
Draw the number of grains Q in the square
[i, i+1)× [ j, j+1):
Q← Poisson(λ)
Sample xi=1...Q from U ( [i, i+1)× [ j, j+1) )
Sample grain radii ri=1...Q ∼D(µr,σ

2
r )

Add the new points to the list:
x← x∪ xi=1...Q ; r← r∪ ri=1...Q

4.3. Film grain rendering algorithm

Equation (3) gives us a theoretical model of the continuous photo-
graphic image v(y) which we perceive. However, we also wish to
render this image at any desired resolution, which is a non-trivial
task. Accordingly, we now present our film grain rendering algo-
rithm, which consists of the two following steps:

• sampling of the inhomogeneous Boolean model;
• evaluation of the filtered inhomogeneous Boolean model;

4.3.1. Realization/sampling of the inhomogeneous Boolean
model

Firstly, we wish to produce a realization of the inhomogeneous
Boolean model, in other words we wish to sample the centers and
radii of the grains throughout the image.

Since the intensity function λ (2) of our inhomogeneous Boolean
model is constant on each pixel (represented by unit squares
[i, i + 1)× [ j, j + 1)), the Poisson process of the centers of our
inhomogeneous model can be partitioned into the disjoint union
of m× n Poisson processes having their points in their respec-
tive pixel square [i, i+ 1)× [ j, j + 1). Then, within a pixel square
[i, i+1)× [ j, j+1), the intensity is constant and given by (2) with
y = (i, j), and one can simulate the centers using the standard Pois-
son process simulation. This consists in drawing the number of
points Q according to a Poisson distribution with parameter λ(i, j)
and then drawing Q grain centers xi from a uniform distribution
U ([i, i+1)× [ j, j+1)) and Q independent radii ri from the radius
distribution (in practice a constant distribution or a log-normal dis-
tribution). This method is described in Algorithm 1. Note that this
pseudo-code describes our algorithm in the case where the grains
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Figure 6: Illustration of the steps of our film grain rendering algorithm.

are balls of possibly random size, but it can be modified to include
arbitrary shapes, as we shall describe in Section 4.4.

Algorithm 2 Evaluation of an inhomogeneous Boolean model with
Monte Carlo simulation.
Data: xi=1...Q, ri=1...Q sampled inhomogeneous Boolean model,

with a total of Q grains
Parameters:
s : output zoom
σ : standard deviation of the Gaussian low-pass filter
N : number of iterations in the Monte Carlo method
Result: v : Rendered film grain image

Initialize the output image to 0:
v = 0
for k = 1 to N do

Draw a random offset from a centered Gaussian distribution of
variance σ

2:
ξk←N (0,σ2I2)
for `= 1 to Q do

y = sx`+ξk
foreach (a,b)∈ {0, . . . ,sm−1}×{0, . . . ,sn−1} s. t. ‖y−
(a,b)‖2 ≤ sr` do

v(a,b) = v(a,b)+1

Average the contributions:
v = 1

N v
return(v)

4.3.2. Evaluation of the inhomogeneous Boolean model

We now have a list of grain centers in a continuous space. The
final step in our algorithm is to evaluate the filtered inhomogeneous
Boolean model. Note that the output discretization grid need not
necessarily be the same as that of the input image; our algorithm
can freely zoom in or out on the model created in Section 4.3.1.
This gives considerable flexibility to our algorithm.

Now, we cannot actually perform the continuous convolution de-
scribed by (3) due to computational limitations. However, it is pos-
sible to approximate the integral required by the convolution using
Monte Carlo simulation. We first define a scalar N representing the
number of samples in the Monte Carlo simulation. For each output
position y, we draw a list of offsets {ξi, i = 1 . . .N} whose row-
column coordinates follow a Gaussian distribution N (y,σ2). We

produce the output pixel value using

v(y) =
1
N

N

∑
k=1

1Z(ξk). (4)

As N increases, according to the law of large numbers :

1
N

N

∑
k=1

1Z(ξk)−−−−−→
N→+∞

E(1Z(ξ1)) =
∫
R2
1Z(t)φ(y− t)dt, (5)

where φ is the pdf of the Gaussian distribution N (0,σ2I2), that is,
the targeted Gaussian blur kernel. I2 represents the identity matrix
of size 2×2.

We denote with s the zoom factor of the output image, such that
the dimensions of the latter is sn×sm. Thus 1

s represents the output
image grid discretization step, with respect to the unit square of the
input. In simple terms, s represents the “zoom” of the output image
resolution with respect to the input image. The pseudo-code for the
Monte Carlo simulation is shown in Algorithm 2. We use the same
set of random offsets for each pixel, which avoids the repeated use
of random number generation, which can be slow.

4.4. Algorithmic details and parallelization

In Section 4.3, we presented the film grain rendering algorithm in
two separate parts: the sampling of the inhomogeneous Boolean
model (Algorithm 1), and the evaluation of the filtered model (Al-
gorithm 2). A disadvantage of this method is that all the grain posi-
tions must be stored in memory and then processed. For example,
if we suppose a grain radius r = 1

40 , with a high resolution image
(2048 × 2048) with constant gray-level values of 128 everywhere,
35 GB of memory is needed to store the grain positions and radii,
if the information is stored with single precision floating point.

We propose two algorithms which address this problem of stor-
ing the grain information. The first generates each grain once only,
determines the effect of this grain on the output image, and then
erases the grain information. We refer to this as the “grain-wise” ap-
proach (see Algorithm 3). Unfortunately, this algorithm is not well-
adapted to parallelization on the GPU, due to excessive memory
accesses. Therefore, we propose a second approach (Algorithm 4)
which we refer to as the “pixel-wise” algorithm, which is suitable
for GPU parallelization. We describe these approaches now.
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Algorithm 3 The proposed “grain-wise” film grain rendering algo-
rithm. The loop colored in blue is parallelized.
Data: u : {0,1, . . .m−1}×{0,1, . . . ,n−1}→ [0,umax]: input im-

age
Parameters:
D(µr,σ

2
r ): distribution of grain radii

s: output zoom
σ: standard deviation of the Gaussian low-pass filter
N: number of iterations in the Monte Carlo method
Result: v: Synthesized, film grain image

Set up N binary images of size ms×ns and draw N random offsets:
for k = 1 to N do

vk = 0
ξk←N (0,σ2I2)

foreach (i, j) ∈ {0, . . . ,m−1}×{0, . . . ,n−1} do

ũ(i, j) = u(i, j)
umax+ε

λ = 1
π(µ2

r+σ2
r )

log 1
(1−ũ(i, j))

Q← Poisson(λ)
Sample xi=1···N from U ( [i, i+1)× [ j, j+1) )
Sample grain radii ri=1...Q ∼D(µr,σ

2
r )

for k = 1 to N do
for `= 1 to Q do

y = sx`+ξk
foreach (a,b) ∈ {0, . . . ,sm−1}×{0, . . . ,sn−1} s. t.
‖y− (a,b)‖2 ≤ sr` do

vk(a,b) = 1

foreach (i, j) ∈ {0, . . . ,sm−1}×{0, . . . ,sn−1} do
v(i, j) = 0
for k = 1 to N do

v(i, j) = v(i, j)+ vk(i, j)

v(i, j) = 1
N v(i, j)

return(v)

4.4.1. Grain-wise algorithm

As previously mentioned, this approach samples the grains sequen-
tially for each pixel, and evaluates the effect of each grain on each
Monte Carlo iteration. Once a grain has been generated and pro-
cessed, its information (position and radius) are erased from mem-
ory. Instead of saving the grain information, we store a sequence of
N binary images vk, k ∈ {1 . . .N}, with each image corresponding
to the result of one Monte Carlo iteration. A Monte Carlo iteration
consists in evaluating the Boolean model on the randomly shifted
grids ξk +{0, . . . ,sm−1}×{0, . . . ,sn−1}, with ξk ∼N (0,σ2I2).
Finally, the result of our algorithm is simply the average of all the
temporary images vk. An advantage of this approach is that the
memory requirement is independent of the grain size, and only de-
pends on the output image size and the number of Monte Carlo
iterations N. This algorithm can be seen in Algorithm 3.

Algorithm 4 The proposed “pixel-wise” film grain rendering algo-
rithm. The loop colored in blue is parallelized.
Data: u : {0,1, . . .m−1}×{0,1, . . . ,n−1}→ [0,umax]: input im-

age
Parameters:
D(µr,σ

2
r ): distribution of grain radii

rm: maximum radius allowed
s: output zoom
σ: standard deviation of the Gaussian low-pass filter
N: number of iterations in the Monte Carlo method
Result: v: Image rendered with film grain

δ = 1
d 1

rm
e

foreach (i, j) ∈ {0, . . . ,sm−1}×{0, . . . ,sn−1} do
v(i, j) = 0
for k = 1 to N do

ξk←N (0,σ2I2)
(ig, jg) = 1

s ((i, j)+ξk)

Get the list of cells which might contain the balls covering
(ig, jg) :

foreach (iδ , jδ) ∈ {b
ig−rm

δ
c, . . . ,b ig+rm

δ
c} × {b jg−rm

δ
c, . . . ,b jg+rm

δ
c}

do
ũ =

u(δ.iδ,δ. jδ)
umax+ε

λ = 1
π(µ2

r+σ2
r )

log 1
(1−ũ)

Q← Poisson(λ)

for `= 1 to Q do
x←U ( [iδ, iδ +1)× [ jδ, jδ +1) )
y = (δ.ig,δ. jg)+δ.s
r = min(D(µr,σ

2
r ),rm)

if ||y−ξ||2 < r then
v(i, j) = v(i, j)+1
Break: go to next Monte Carlo iteration

v(i, j) = 1
N v(i, j)

return(v)

4.4.2. Pixel-wise algorithm

The second algorithm we present here, which we refer to as the
“pixel-wise” approach, also avoids storing the grain information,
but in quite a different manner from the grain-wise approach. The
main reason for proposing another algorithm is that memory ac-
cesses should be limited when using the GPU. Therefore, we can-
not save a large number of intermediate images required by the
Monte Carlo simulation of Algorithm 3. Instead, we employ an
on-the-fly Poisson process generation often used in the procedural
noise literature [LLC∗10]. This type of approach consists in using
a grid partition of the space R2 and generating the Poisson process
on-the-fly within each partition cell using a local pseudo-random
number generator [Wor96, LLDD09]. Given a coordinate pair of a
given partition cell, the pseudo-random number generator can gen-
erate the number of grains whose centers belong to this cell, as well
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Image size

256 × 256 512 × 512 1024 × 1024 2048 × 2048

Grain-wise, non-para. 168.815 s 676.502 s 2718.92 s 10843.0 s

Grain-wise, para. (CPU) 10.749 s 40.992 s 165.433 s 654.696 s

Pixel-wise, non-para. 9.207 s 36.567 s 147.687 s 584.496 s

Pixel-wise, para. (CPU) 0.732 s 2.430 s 9.499 s 37.786 s

Pixel-wise, para. (GPU) 0.137 s 0.429 s 1.275 s 4.534 s

# grains processed 3.58 ×106 14.3 ×106 52.3 ×106 229 ×106

Table 1: Algorithm execution times. In this Table, we show the execution times for our algorithms for different image sizes. We also note
the total number of grains which need to be processed for each image. The images used are of increasing sizes, with a constant gray-level of
128. The grain radius is set to r = 0.05 pixels for all grains, and we use N = 800 Monte Carlo samples.
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Figure 7: Execution times of the proposed algorithms with increasing radius standard deviation. The “grain-wise” approach is imple-
mented with and without parallelization on the CPU, and the “pixel-wise” approach is implemented with and without parallelization on the
CPU, and with parallelization on the GPU. The size of the image used is 1024x1024, with a constant grey-level of 128.

as the positions of these centers. The numbers given by the pseudo-
random number generator are completely reproducible, so there is
no need to store the information pertaining to the grains. Note that
the cell size δ must be a fraction of the input image pixel size.

The main task is to evaluate 1Z(y) at y ∈ R2 for each Monte
Carlo sample. This is equal to 1 if there is a point xi such that
y∈ B(xi,r). Therefore, one only needs to simulate the Poisson pro-
cess in cells intersecting the ball of radius r centered at y to evaluate
1Z(y). Unfortunately, this approach is not valid when using random
radii given by a distribution producing unbounded variates, such
as the log-normal distribution. In this case, we specify a maximal
value of the radii, rm. Therefore, we need to check more cells in or-
der to evaluate 1Z(y), and this number of cells obviously increases
quadratically with a linearly increasing maximum radius. This ap-
proach is described in detail in the pseudo-code of Algorithm 4.

4.5. Performance comparisons

We have extensively tested both the grain-wise and pixel-wise algo-
rithms in different situations in order to identify the speedups which
are achieved. We have tested the following implementations:

• Grain-wise, no parallelization;
• Grain-wise, with parallelization (OpenMP) on a multi-core CPU;

• Pixel-wise, no parallelization;
• Pixel-wise, with parallelization (OpenMP) on a multi-core CPU;
• Pixel-wise, with parallelization on a GPU.

The machine used for these tests has four Intel Xeon 2.00 GHz
processors, each with ten cores (for the purposes of paralleliza-
tion on the CPU). The pixel-wise algorithm was implemented on
a GPU in CUDA using an Nvidia Tesla T10 graphics card. This
GPU implementation is based on the publicly available source code
of [GLM16].

Table 1 shows the execution times for our algorithms. For these
experiments, we rendered film grain on images of increasing sizes,
whose gray-level values are equal to 128 everywhere. We set the
grain radius to r = 0.05 pixel. We have shown the execution times
of the parallelized versions of our code, and show our execution
times with and without this acceleration. It can be seen that, for a
fixed constant gray-level, the complexity of our algorithm is linear
with respect to the number of pixels in the input image. We observe
that it is possible to achieve interactive execution times with the
GPU implementation of our algorithm in the fixed-radius case.

In Figure 7, we analyze the execution times of our algorithms
when the grain radii are variable. As in the rest of the paper, the dis-
tribution of the radii is a log-normal distribution. The standard de-
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Full resolution Zoom 4× Zoom 30×

Full resolution Zoom 4× Zoom 30×

Figure 8: Film grain rendering results on vintage images. Our model and rendering algorithm allows us to create film grain at any desired
resolution, which is not possible with any other grain synthesis approach. In these examples, we have used a constant grain radius r = 0.1.

viation of the grain radii are set to a certain fraction a∈ [0,1) of the
average grain radius. Naturally, the fastest results are achieved with
the pixel-wise algorithm on the GPU. This is several order of mag-
nitudes faster than the grain-based approach without paralleliza-
tion. Another observation is that, with equal processing power, the
pixel-based approach is preferable to the grain-based one when the
grain radii are fixed. However, it becomes slower as the standard
deviation of the radii increases, since each evaluation requires that
more and more cells be visited. Therefore, these two algorithmic
approaches both have strengths and weaknesses in different situa-
tions. Nevertheless, the conclusion is that the considerable process-
ing power of the GPU leads to a faster pixel-wise algorithm, and so
this implementation is preferable in all situations apart from when
we use a very large standard deviation, which is rarely required.

An important parameter which has a great impact on the qual-
ity of the output is the number of iterations of the Monte Carlo
approach N. The trade-off here is obviously execution time versus
accuracy. From Equation 5, we know that the approach converges
to the correct convolution. Therefore, we control the standard de-

viation of 1
N ∑

N
i=11Z(ξi). This standard deviation is bounded by√

1
4N . In our experiments, we set N = 800, giving a standard devi-

ation of 1.77% around the average, which is an acceptable error. For
faster results, the parameter N can be reduced to around 100, which
gives an error of 5%. The visual quality with this parameter is still
quite high, as shown in the supplementary material. For readers
who wish to reproduce similar results to those shown in this work,
the following parameters are advised : µr = 0.1, σr = 0 or σr = 0.02
(for increased graininess), σ = 0.8 and N = 800. The parameter s
should be set on a case-by-case basis, usually s ∈ {1,2,3,4}.

5. Results

In this section, we present the results of our film grain rendering
method. Firstly, we illustrate the advantages of having a model for
film grain rendering, in particular the ability to handle any given
resolution. We illustrate the influence of each of our model’s pa-
rameters on the visual output, and show that using these parame-
ters, it is possible to approximate real examples of film grain emul-
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sions. We also clearly demonstrate that independently distributed
random variables are insufficient to produce realistic film grain.
The C++ implementation of our algorithm is freely available on-
line [NGD17].

5.1. Film grain rendering results

In Figures 1 and 8, we show results of our film grain rendering on
some vintage images which will benefit artistically from added film
grain. One of the main claims of this paper is that our algorithm is
resolution-free. To demonstrate this we show the capacity of our al-
gorithm to render film grain on any digital image and at any desired
resolution. In these experiments, we have used a constant grain ra-
dius r = 0.1 pixels. We have shown an extreme closeup of the eyes
of the subjects in the images, so that the individual grains can be
seen. To the best of our knowledge this capacity to chose any reso-
lution is not proposed by any other grain synthesis algorithm.

5.2. Variability of graininess

A key advantage of having a model is the possibility of tuning pa-
rameters to change the visual grain aspect. Therefore, an important
question is what are the parameters in our model which will allow
us to imitate different types of grain? Note that what we are inter-
ested in here is the subjective visual aspect of film grain “graini-
ness” as opposed to “granularity”, which is an objective measure-
ment of the optical density of the developed film emulsion [Liv45].

The most important parameter which we can use to change the
visual aspect of the film grain is the grain size. Since our algo-
rithm is resolution-free we can provide accurate rendering for any
grain size. Furthermore, the flexibility of our model means that we
can take into account grain radii with any probability distribution
(with finite variance). Let us recall that if the radii ri are distributed
according to a distribution with a mean µr and a variance σ

2
r then

E[A1] = π(µ2
r +σ

2
r ) in Equation (2). In Figure 9, we show the effect

of varying the grain radius. We choose a log-normal distribution, as
indicated in the results reported in [Liv45]. The mean grain radius
is increased, and the standard deviation is increased as a fraction of
µr. The use of random grain sizes as opposed to fixed sizes changes
the visual aspect of the grain considerably. The log-normal distri-
bution means that very large grains have a non-negligible chance
of appearing. This distribution is defined in the following man-
ner. Suppose that a random variable X is normally distributed with
mean µ and variance σ

2, then Y = exp(X) is distributed with a log-
normal distribution. If we wish to specify the effective mean µr and
standard deviation σr of the grain radii, then we specify the mean
and standard deviation of the underlying Gaussian distribution as:

µ = log(µr)−
µ2

r +σ
2
r

2µ2
r

; σ
2 = log

(
µ2

r +σ
2
r

µ2
r

)
. (6)

Another parameter which we can tune in order to change the
visual result of our algorithm is the variance of the Gaussian filter
φ used to represent the blurring processes due to the creation and
perception of the positive image (see Section 4.2). Figure 10 shows
the effect of this parameter on the film grain texture, for a fixed
mean radius and standard deviation. The parameter can be tuned
to produce more or less sharp grain. Finally, given the flexibility of

Comparison (bottom left: noise, above right: grain)

Figure 11: Comparison of our film grain synthesis with signal
dependent noise. We show two closeups of images with our film
grain synthesis approach vs. signal-dependent noise. The latter is
clearly insufficient for realistic film grain synthesis.

our model, we can also use different grain shapes, such as triangles.
The visual effect of different shapes is not very significant, so we
choose to use balls in practice. Nevertheless, we show the results
with different shapes in the supplementary material.

5.3. Grain “dithering”

In the supplementary material to this work, we show a closeup com-
paring our film grain rendering with a compressed input image.
In the input image, compression block artifacts are clearly visible.
However, in the output with film grain, we have the subjective im-
pression that the quality and resolution of the image are improved.
This is linked to the well-known effect called dithering, where noise
is added to a signal in order to avoid problems due to quantization.
Thus, our grain rendering has the added advantage of giving a sub-
jective impression of improved quality.

5.4. Film grain comparisons

We compare our results with those of independently distributed
noise, those of a commercially available product based on scans
of real film grain and finally to other previous academic work. In
Figure 11, we show the comparison of our film grain rendering with
additive independently distributed noise, that is to say where each
pixel acts as a “grain” that has no spatial correlation with other pix-
els. In this experiment, we use Gaussian noise for which the vari-
ance is signal-dependent. We learned the variance from the result
of our algorithm on a series of constant images of gray level values
increasing from 0 to 255. We demonstrate that the covariance of
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µr = 0.025, σr = 0 µr = 0.05, σr = 0 µr = 0.075, σr = 0 µr = 0.1, σr = 0

µr = 0.025, σr =
1
4 µr µr = 0.05, σr =

1
4 µr µr = 0.075, σr =

1
4 µr µr = 0.1, σr =

1
4 µr

µr = 0.025, σr =
1
2 µr µr = 0.05, σr =

1
2 µr µr = 0.075, σr =

1
2 µr µr = 0.1, σr =

1
2 µr

Figure 9: Film grain texture with varying parameters. In this Figure, we show the effect of varying grain size on the results of our grain
synthesis. We vary the average size of the grains as well as the standard deviation of a log-normal grain distribution. It can be seen that using
either constant or random grain sizes has a significant impact on the rendering results.

σ = 0.6 σ = 0.8 σ = 1.0 σ = 1.2

Figure 10: Film grain texture with varying Gaussian blur parameter σ. Increasing the standard deviation of the Gaussian filter results in
a less pronounced graininess. In these experiments, µr = 0.05 pixels and σr =

1
2 r.
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Kodak T-Max 3200 Fuji Neopan 1600 Ilford Delta 3200

Figure 12: Comparisons of film grain. We have compared our work with three other approaches:. From top to bottom: that of Stephenson
and Saunders [SS07], that of Bae et al. [BPD06], the result of the DxO grain tool [DxO16] and finally the proposed approach, outlined in
green. From left to right, we show images with the following constant grey-levels: 50, 128, 200. The parameters used for our results are, from
left to right, (µr = 0.06, σr = 0.024, s = 4), (µr = 0.05, σr = 0.024, s = 4) and (µr = 0.06, σr = 0, s = 4).

the film grain texture is one of its defining characteristics, and any
model which lacks this covariance [Yan97] will not look realistic.

Figure 12 shows the results of film grain synthesis on constant
images of increasing gray-levels with three other approaches: that
of Stephenson and Saunders [SS07], that of Bae et al. [BPD06]
and using the FilmPack software of Dxo [DxO16]. The gray-levels
used are 50, 128 and 200. The first two algorithms are based on
well-known approaches to texture synthesis. That of Stephenson
and Saunders filters the spectrum of an input white noise, and the
second employs the Heeger-Bergen [HB95] film grain synthesis al-
gorithm. We used the implementation of Briand et al. [BVGR14]
of the Heeger-Bergen approach. The FilmPack grain was used as
an approximation of “ground truth” grain, since their algorithm is
scan based. We have tuned the parameters of the other algorithms
to ensure a similar visual aspect at an average grey-level of 128. In
the case of the first two approaches [BPD06, SS07], neither of the
papers specify how their texture is applied to an image, or either an
unspecified multiplicative parameter is included to control the vari-
ance of the texture. Therefore, we set this parameter to a constant
which ensured that the two methods had a similar visual aspect for
the average grey-level 128. We observe that the visual grain aspect
in the two first approaches is quite similar, and that their behav-
ior with different average gray-levels is also consistent with one
other. An extremely important point to notice is that the proposed
approach shows very different behavior when confronted with dark
or light backgrounds. The grain is much more striking and visible
in dark areas than in light ones. This behavior is the result of our
physical modeling of film grain, and is a strong argument in favor
of our algorithm.

In Figure 13, we display approximations of our algorithm of sev-
eral real film emulsion types, available with the FilmPack software
of DxO [DxO16]. In these experiments, we have used an approach
similar to that of DxO, in order to have meaningful comparisons.
More precisely, we produce a grain image from an input image
where the gray-level is equal to 128 everywhere. Then, we apply

this texture additively to the input image, modulating the variance
of the grain so that it attains a maximum value when the input im-
age gray-level is 128, decreasing to zero at both gray-level extrem-
ities (0 and 255), which seems to be a similar procedure to that
of FilmPack. We tune our parameters so that the result closely re-
sembles each emulsion type. Interestingly, for the Kodak T-Max
3200 we find that constant grain sizes are most adequate, whereas
for the Fuji Neopan 1600 the log-normal distribution is more visu-
ally accurate. This may reflect the fact that the size and shape of
T-Max crystals are carefully controlled. These examples show that
our model is realistic enough to approximate real film grain types,
by tuning its physically meaningful parameters.

5.5. Color photography

Naturally, film grain is also present in color photography, and so we
wish to synthesize this as well. Color photographic films are made
of several layers of emulsions of silver halide crystals. Silver halide
crystals are naturally sensitive to blue light. This sensitivity can be
extended to other wavelengths via chemical treatment. Therefore,
the top layer of the emulsion consists of normal silver halide, fol-
lowed by a yellow filter. This is necessary since only a fraction
of the blue light is actually absorbed by the grains, and most of it
would get through otherwise. The next two layers consist of crys-
tals which have been sensitized to green and red light. Note that
these layers are also sensitive to blue light, which explains the need
for the yellow filter. It is a good approximation to consider that the
layers of color film interact independently with light, as each color
is only absorbed by one layer. Thus, we add film grain to a color
image by running our method independently on each color channel.
Figure 14 shows an example of color film grain rendering with two
different grain radii. Figure 15 shows a modern photo which has
been rendered to give it a more vintage look.
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Fuji Neopan 1600 Kodak T-Max 3200 Ilford Delta 3200

Figure 13: Comparison with the DxO FilmPack software. In this figure, we show three closeups of comparisons of our film grain rendering
with different films types available in the FilmPack software of DxO. With this figure, we illustrate that our model is capable of producing
film grain which closely resembles scanned images of grain. On each image, our result is shown on the upper right half, and the result of
FilmPack is shown bottom left half. Please zoom on the electronic version of the paper for the best visual results.

r = 0.05 r = 0.1

r = 0.05, close-up r = 0.1, close-up

Figure 14: Film grain on color images.
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Figure 15: Colour film grain on a modern image. We show the result of our film grain rendering on a modern image, which shows that our
film grain method can be used for personal artistic purposes to give photographs a certain look and feel.

6. Conclusion and future work

In this work, we have proposed a stochastic model based on the
physical reality of silver-halide analog photography. Taking inspi-
ration from the domain of stochastic geometry, our model is based
on the Boolean model which has the advantage of being both ex-
tremely flexible and well understood. This approach allows us to
integrate physically meaningful parameters in our model, such as
grain size. We propose a film grain rendering algorithm which uses
Monte Carlo simulation to produce a digital image with realistic
film grain at any desired resolution.

This work opens up new research directions. In spite of our ac-
celeration of the approach, the algorithm is still not real-time in
many situations, which may not be practical in the case of process-
ing films. One interesting direction would be to approximate the
texture of our current model in a constant image with Gaussian tex-
tures, and apply this texture to the input image. Finally, our model is
completely two dimensional, and does not take into account the 3D
nature of the film emulsion. A more realistic model be a 2D projec-
tion of a 3D “hard-core” model [CSKM13] (a model where grains
cannot overlap), leading to further theoretical and algorithmic chal-
lenges. A promising direction is to build upon the recent work on
the rendering of granular materials by Meng et al. [MPH∗15].
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