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Abstract

We consider the bilinear Schrödinger equation on a bounded one-
dimensional domain and we provide explicit times such that the global
exact controllability is verified. In addition, we show how to construct
controls for the global approximate controllability.
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1 Introduction

In non relativistic quantum mechanics any pure state of a closed system is
mathematically represented by a wave function ψ in the unit sphere of a
Hilbert space H . We consider the evolution of a particle confined in a one
dimensional bounded region and subjected to an external electromagnetic
field that plays the role of a control. A standard choice for such a setting
is H = L2((0, 1),C), while the field is represented by an operator B and
by a real function u, which accounts its intensity. In this framework, the
evolution of ψ is modeled by the bilinear Schrödinger equation{

i∂tψ(t) = Aψ(t) + u(t)Bψ(t), t ∈ (0, T ), T > 0.

ψ(0, x) = ψ0(x).
(BSE)

The operator A = −∆ is the Laplacian with Dirichlet homogeneous bound-
ary conditions (D(A) = H2 ∩ H1

0 ), B is a bounded symmetric operator,
u ∈ L2((0, T ),R) is a control function and ψ0 the initial state of the system.
We call Γut the unitary propagator of the (BSE) when it is defined.
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A natural question of practical implications is whether, given any couple
of states, there exists u steering the quantum system from the first one to the
second. The bilinear Schrödinger equation is said to be exactly controllable
when the dynamics precisely reaches the target. We denote it approximately
controllable when it is possible to approach the target as close as desired.
The (BSE) is said simultaneously controllable when more initial states are
controllable (exactly or approximately) at the same time with the same u.

The controllability of the bilinear Schrödinger equation has already been
studied in the literature and we start by mentioning [BMS82] by Ball,
Mardsen and Slemrod. This seminal work on bilinear systems shows the
well-posedess of the equation in H when u ∈ L1

loc(R) and an import non-
controllability result. In particular, it ensures that the attainable set

Z(ψ0) := {ψ ∈H | ∃T > 0, ∃r > 1,∃u ∈ Lrloc((0, T ),R) : ψ = ΓTuψ0}

from any initial state ψ0 in the unit sphere S of H is contained in a countable
union of compact sets. Therefore, Z(ψ0) has dense complement in S and
the (BSE) is not exactly controllable in H . For this reason, weaker notions
of controllability have been used in order to deal with this equation.

For instance in [BL10], Beauchard and Laurent prove the well-posedness
and the local exact controllability of the (BSE) in Hs

(0) := D(A
s
2 ) for s = 3,

when B is a multiplication operator for suitable µ ∈ H3((0, 1),R).
In [Mor14], Morancey proves the simultaneous local exact controllability of
two or three (BSE) in H3

(0) for suitable operators B = µ ∈ H3((0, 1),R).

In [MN15], Morancey and Nersesyan extend the previous result. They
achieve the simultaneous global exact controllability of finitely many (BSE)
inH4

(0) for a wide class of multiplication operatorsB = µ with µ ∈ H4((0, 1),R).

In [Duc], Duca (or the author) proves the simultaneous global exact con-
trollability in projection of infinite (BSE) in H3

(0) for bounded symmetric
operators B.

Global approximate controllability results for the bilinear Schrödinger
equation are provided with different techniques. Adiabatic arguments are
considered by Boscain, Chittaro, Gauthier, Mason, Rossi and Sigalotti in
[BCMS12] and [BGRS15]. Controllability results are achieved with Lya-
punov techniques by Mirrahimi in [Mir09] and by Nersesyan in [Ner10].
Lie-Galerking arguments are used by Boscain, Boussäıd, Caponigro, Cham-
brion, Mason and Sigalotti in [CMSB09], [BCCS12], [BdCC13] and [BCS14].

Most of the existing results focus their efforts on proving the exact con-
trollability of the bilinear Schrödinger equation without precising the relative
controls and times. In order to exhibit those elements, it is necessary to de-
velop new techniques leading to the local exact controllability. Indeed, the
common approach does not provide explicit neighborhoods where the result
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is valid. As a consequence, when the outcome is extended to the global con-
trollability, any track of the dynamics time and of the corresponding control
is lost. To this purpose, we prove the local exact controllability for specific
neighborhoods and times. The result leads to the global exact controllability
with explicit times and partially explicit control functions.

In more technical terms, the main novelties of the work are the following.
First, for any suitable couple of eigenfunctions φj and φk of A, we construct
controls and times such that the relative dynamics of the (BSE) drives φj
close to φk as much desired with respect to the H3

(0)−norm. Second, we

estimate a neighborhood of φk in H3
(0) where the local exact controllability

is satisfied in a given time. Third, by gathering the two previous results, we
define a dynamics steering any eigenstate of A to any other in an explicit
time. In conclusion, we apply the proved results to an example.

The work represents a contribution to the application of the control the-
ory to the physical systems modeled by the bilinear Schrödinger equation.
Nevertheless, many improvements are still required and the provided esti-
mates are far from being optimal. For example, in Section 4, we consider
an electron trapped in an one-dimensional guide of length ∼ 10−3 meters
and subjected to an external electromagnetic field. We show a suitable con-
trol field driving the state of the electron from the first excited state to the
ground state in a time T ∼ 10116 seconds. The achieved time is way too
large for any practical implementation, however future optimization may
lead to more reasonable estimates as we explain afterwards.

1.1 Framework and main results

Let us consider the (BSE) in the Hilbert space H = L2((0, 1),C) with

D(A) = H2((0, 1),C) ∩H1
0 ((0, 1),C), Aψ = −∆ψ, ∀ψ ∈ D(A).

We denote 〈·, ·〉 the scalar product in H and ‖ · ‖ the corresponding norm.
Let {φj}j∈N∗ be an orthonormal basis composed by eigenfunctions of A
associated to the eigenvalues {λj}j∈N∗ (λk = π2k2) and

(1) φj(t) = e−iAtφj = e−iλjtφj .

For s > 0, we define hs(C) =
{
{xj}j∈N∗ ⊂ C

∣∣ ∑∞
j=1 |jsxj |2 <∞

}
equipped

with the norm
∥∥∥{xj}j∈N∗∥∥∥

(s)
=
(∑∞

j=1 |jsxj |2
) 1

2
for every {xj}j∈N∗ ∈ hs

and

Hs
(0) = Hs

(0)((0, 1),C) := D(A
s
2 ), ‖ · ‖(s) =

( ∞∑
k=1

|(πk)s〈φk, ·〉|2
) 1

2
.
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Let Hm
0 := {ψ ∈ Hm : ∂jxψ(0) = ∂jxψ(1) = 0, ∀j ∈ N∗, j ≤ m} with

Hm := Hm((0, 1),C) and m ∈ N∗. We underline that H2
(0) = H2 ∩H1

0 .

For two Banach spaces X and Y , we denote L(X,Y ) the space of the
linear bounded operators mapping X in Y and equipped with the norm
||| · ||| L(X,Y ). In addition, for s > 0, we call ||| · ||| := ||| · ||| L(H ,H ) and

||| · ||| (s) := ||| · ||| L(Hs
(0)
,Hs

(0)
), ||| · ||| 3 := ||| · ||| L(H3

(0)
,H3∩H1

0 ).

We consider H3∩H1
0 equipped with the norm ‖ · ‖H3∩H1

0
=
√∑3

j=1 ‖∂
j
x · ‖2.

Assumptions I. The bounded symmetric operator B satisfies the following
conditions.

1. For every k ∈ N∗, there exists Ck > 0 such that |〈φj , Bφk〉| ≥ Ck
j3

for
every j ∈ N∗.

2. Ran(B|D(A)) ⊆ D(A) and Ran(B|H3
(0)

) ⊆ H3 ∩H1
0 .

For Bj,k := 〈φj , Bφk〉 with j, k ∈ N∗, we have {Bj,k}j∈N∗ , {Bj,k}k∈N∗ ∈
`2(C). Before proceeding with the main results of the work, we introduce the
following notations. For n, j, k ∈ N∗ and t ∈ [0, T ] with T > 0, we denote

T ∗ :=
π

|Bk,j |
,

un(t) :=
cos
(
(k2 − j2)π2t

)
n

,

b := |||B ||| 6(2) |||B ||| |||B |||
16
3 max

{
|||B ||| , |||B ||| 3

}
,

E(j, k) := e

6 |||B ||| (2)
|Bj,k| |k2 − j2|5k24 max{j, k}24C−16

k |Bj,k|−7,

C ′ := sup
(l,m)∈Λ′

{∣∣∣∣sin(π |l2 −m2|
|k2 − j2|

)∣∣∣∣−1
}
,

(2)

Λ′ :=
{

(l,m) ∈ (N∗)2 : {l,m} ∩ {j, k} 6= ∅, |l2 −m2| ≤ 3

2
|k2 − j2|,

|l2 −m2| 6= |k2 − j2|, 〈φl, Bφm〉 6= 0
}
.

The following theorem represents the main result of the work, which
ensure the global exact controllability between eigenfunctions. We underline
that the control time is explicit and un defines a dynamics steering the initial
data to the target one up to a defined distance when n is sufficiently large.
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Theorem 1.1. Let j, n ∈ N∗ and k ∈ N∗ be such that k 6= j and

(3) m2 − k2 6= k2 − l2, ∀m, l ∈ N∗, m, l 6= k.

Let B satisfy Assumptions I. If n ≥ 251π19b (1 + C ′)E(j, k), then

∃θ ∈ R :
∥∥ΓunnT ∗φj − e

iθφk
∥∥

(3)
≤ 3C2

k(16k3 |||B ||| 23)−1

with Ck from Assumptions I. Moreover, there exists u ∈ L2((0, 4
π ),R) so that

‖u‖L2((0, 4
π

),R) ≤
Ck

|||B ||| 23k3
, Γu4

π

ΓunnT ∗φj = eiθφk.

Proof. See Section 3.

Examples of k ∈ N∗ satisfying the relation (3) are those numbers k ≤ 3.
However, Theorem 1.1 can be generalized for every k ∈ N∗ by defining, for
every φj and φk, a dynamics steering φj in φk and passing through φ1. In
addition, the choice of {un}n∈N∗ can be replaced by other 2π

|λk−λj |−periodic

controls by refering to [Cha12], which is used in the proof of the theorem.

Theorem 1.1 is not optimal and its purpose is to exhibit readable results
for general B, j and k. For any specific choice of B, j and k, it is possible
to retrace the proof in order to obtain sharper bounds by using stronger
intermediate estimates. We briefly treat the example of B : ψ 7→ x2ψ, j = 2
and k = 1 in Section 4. In addition, even though the phase appearing in
the result is not particularly relevant from a physical point of view, it can
be avoided by rotating the state of its phase (provided in [Cha12]).

1.2 Well-posedness

As mentioned in the introduction, Beauchard and Laurent prove in [BL10]
the well-posedness of the bilinear Schrödinger equation in H3

(0). The result
is provided with B a multiplication operator for a suitable function µ ∈
H3((0, 1),R). We rephrase the result in the following proposition.

Proposition 1.2. [BL10, Lemma 1; Proposition 2]
1) Let the function f̃ be so that f̃(s, ·) ∈ H1

0 ∩H3 for almost every s ∈ [0, T ]

with T > 0 and f̃ ∈ L2((0, T ), H1
0 ∩ H3). The map G : t 7→

∫ t
0 e

iAsf̃(s)ds
belongs to C0([0, T ], H3

(0)). Moreover,

‖G‖L∞((0,T ),H3
(0)

) ≤ c1(T )‖f̃‖L2((0,T ),H3∩H1
(0)

),

where the constant c1(T ) is uniformly bounded with T in bounded intervals.
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2) Let µ ∈ H3((0, 1),R), T > 0, ψ0 ∈ H3
(0) and u ∈ L2((0, T ),R). There

exists a unique mild solution of the (BSE) in H3
(0) when B is a multiplication

operator with respect to µ, i.e. there exists ψ ∈ C0([0, T ], H3
(0)) such that

(4) ψ(t) = e−iAtψ0 − i
∫ t

0
e−iA(t−s)u(s)µψ(s)ds, ∀t ∈ [0, T ].

Moreover, for every R > 0, there exists C = C(T, µ,R) > 0 such that, for
every ψ0 ∈ H3

(0), if ‖u‖L2((0,T ),R) < R, then the solution satisfies

‖ψ‖C0([0,T ],H3
(0)

) ≤ C‖ψ0‖(3), ‖ψ(t)‖H = ‖ψ0‖H ∀t ∈ [0, T ].

Remark 1.3. The outcome of Proposition 1.2 is not only valid for mul-
tiplication operators, but also for other suitable operators B. Indeed, the
same proofs of [BL10, Lemma 1] and [BL10, P roposition 2] lead to the well-
posedness of the (BSE) when B is a bounded symmetric operator such that

B ∈ L(H3
(0), H

3 ∩H1
0 ), B ∈ L(H2

(0)),

which are verified if B satisfies Assumptions I, thanks to [Duc, Remark 1.1].

1.3 Scheme of the work

In Section 2, Proposition 2.1 ensures the local exact controllability in H3
(0)

and we exhibit a neighborhood where it is verified in Proposition 2.2. We
prove Theorem 1.1 in Section 3, while we apply the main results to a physical
system in Section 4. In Section 5, we comment the outcomes of Theorem 1.1.
We provide some intermediate results in Appendix A, while in Appendix B,
we expose some tools required in the work.

2 Local exact controllability in H3
(0)

Let us provide a brief proof of the local exact controllability in H3
(0) by

rephrasing the existing results of local exact controllability as [BL10], [Mor14]
and [MN15]. Our purpose is to introduce the tools that we use in the proof
of Theorem 1.1. For ψ ∈ H3

(0) and ε > 0, we define

B̃H3
(0)

(ψ, ε) :=
{
ψ̃ ∈ H3

(0)

∣∣ ‖ψ̃‖ = ‖ψ‖, ‖ψ̃ − ψ‖(3) < ε
}
.(5)

Proposition 2.1. Let B satisfy Assumptions I. For every l ∈ N∗ such that

(6) m2 − l2 6= l2 − n2, ∀m,n ∈ N∗, m, n 6= l,

there exist T > 0 and ε > 0 such that, for every ψ ∈ B̃H3
(0)

(φl(T ), ε), there

exists a control function u ∈ L2((0, T ),R) such that ψ = ΓuTφl.
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Proof. Let S be the unit sphere in H . Proposition 2.1 can be proved by
ensuring the surjectivity, for T > 0 large enough, of the map

Γ
(·)
T φl : L2((0, T ),R)→ B̃H3

(0)
(φl(T ), ε) ⊂ H3

(0) ∩ S

with suitable ε > 0. We prove this property and that the preimage of
B̃H3

(0)
(φl(T ), ε) is a neighborhood of u0 = 0 in L2((0, T ),R). Let

Γut φl =
∑
k∈N∗

φk(t)〈φk(t),Γut φl〉.

Let αl(·) = {αk,l(·)}k∈N∗ be such that αk,l(·) = 〈φk(T ),Γ
(·)
T φl〉 for k ∈ N∗

and
αl : L2((0, T ),R) −→ Q := {x ∈ h3(C) | ‖x‖`2 = 1}.

Let δl := {δk,l}k∈N∗ . The statement follows from the surjectivity of the map
αl : L2((0, T ),R) −→ Qε := {x ∈ h3(C) | ‖x‖`2 = 1, ‖x − δl‖(3) ≤ ε}. We
use the Generalized Inverse Function Theorem ([Lue69, Theorem 1; p. 240])
and we study the surjectivity of the Fréchet derivative of αl

γl := duαl(0) : L2((0, T ),R) −→ TδlQ = {{xk}k∈N∗ ∈ h3(C) | ixl ∈ R},

γl(v) := {γk,l(v)}k∈N∗ , γk,l(v) := −i
∫ T

0
v(s)ei(λk−λl)sdsBk,l, ∀k ∈ N∗.

To this end, we show there exists T > 0 so that, for every {xk}k∈N∗ ∈ TδlQ,

∃u ∈ L2((0, T ),R) :
xk
Bk,l

= −i
∫ T

0
u(s)ei(λk−λl)sds, ∀k ∈ N∗.(7)

The solvability of the moment problem (7) is equivalent to the surjectivity
of γl. As B is symmetric, there holds Bl,l ∈ R and i

(
xl/Bl,l

)
∈ R. Moreover,

{xk/Bk,l}k∈N∗ ∈ `2(C) since {xk}k∈N∗ ∈ h3(C) and thanks to Assumptions
I. The solvability of (7) follows from Lemma B.2 for T large enough, since

{ixk/Bk,l}k∈N∗ ∈ {{ak}k∈N∗ ∈ `2(C) : al ∈ R}.

For X from Lemma B.2, the map γl : X −→ TδlQ is an homeomorphism and
γl : L2((0, T ),R)→ TδlQ is surjective in TδlQ for T large enough. The proof
is achieved as the map αl is surjective in Qε for ε > 0 small enough.

2.1 Local exact controllability in an explicit neighborhood

Let Cl and B̃H3
(0)

(·, ·) be respectively defined in Assumptions I and (5). The

following proposition ensures the local exact controllablity in an explicit
neighborood of H3

(0) for a specific time. The result leads to Theorem 1.1.
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Proposition 2.2. Let B satisfy Assumptions I and l ∈ N∗ be such that

(8) m2 − l2 6= l2 − n2, ∀m,n ∈ N∗, m, n 6= l.

For every ψ ∈ B̃H3
(0)

(
φl
(

4
π

)
,

3C2
l

16l3 |||B ||| 23

)
, there exists u ∈ L2((0, 4

π ),R) so that

ψ = Γu4
π

φl.

Proof. Let us define the following notations

||| · ||| L(L2((0,T ),R),H3
(0)

) = ||| · ||| (L2
t ,H

3
x), ||| · ||| L(H3

(0)
,L2((0,T ),R)) = ||| · ||| (H3

x,L
2
t )
,

‖ · ‖L∞((0,T ),H3
(0)

) = ‖ · ‖L∞t H3
x
, ‖ · ‖L2((0,T ),R) = ‖ · ‖2.

Let T > 2π
G for G = π2 and X be defined in the proof of Lemma B.2.

In the proof of Proposition 2.1, we ensure that γl : X −→ TδlQ is an
homeomorphism and that αl : L2((0, T ),R)→ H3

(0) is locally surjective. Let

Al(·) =
∑
j∈N∗

φj(T )αj,l(·) = Γ
(·)
T φl, Fl(·) :=

∑
j∈N∗

φj(T )γj,l(·),

Al(·) : V ⊆ L2((0, T ),R)→ {ψ ∈ H3
(0) : ‖ψ‖H = 1},

Fl(·) : X → {ψ ∈ H3
(0) : i〈φl(T ), ψ〉 ∈ R}.

By definition, the map Fl is an homeomorphism and Al is locally surjective.
We use [CCM97, Lemma 2.3; p. 42] and we estimate a neighborhood where
Al is surjective as X and {ψ ∈ H3

(0) : i〈φl(T ), ψ〉 ∈ R} are Banach spaces.
In particular, we compute a constant M > 0 such that

(9) ‖Fl(u)− Fl(v)‖(3) ≥M‖u− v‖2, ∀u, v ∈ X.

Fixed T > 0 large enough, we provide U ⊂ X and M1 < M such that

(10) ‖(Al − Fl)(u)− (Al − Fl)(v)‖(3) ≤M1‖u− v‖2, ∀u, v ∈ U.

When (9) and (10) are satisfied, [CCM97, Lemma 2.3; p. 42] ensures that
Al : U −→ Al(U) is an homeomorphism. In addition, the proof of the cited
lemma implies that, if U ⊃ {u ∈ X : ‖u‖2 ≤ r} with r > 0, then

Al(U) ⊃ {ψ ∈ H3
(0) : ‖ψ − φl(T )‖(3) ≤ r(M −M1)}.
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1) We compute M > 0 such that (9) is verified. As Fl is an homeomorphism,
for every ψ ∈ H3

(0), there exist T > 0 and u ∈ X such that, for every j ∈ N∗

(11) 〈φj(T ), ψ〉 = 〈φj(T ), Fl(u)〉 = γj,l(u), F−1
l (ψ) = u.

Now, 〈φk(T ),ψ〉
Bk,l

=
γk,l(u)
Bk,l

= −i
∫ T

0 u(s)ei(λk−λl)sds for every k ∈ N∗, thanks to

the validity of (7). Thus, from the proof of Lemma B.2, we have

u(t) =
〈φl(T ), ψ〉

Bl,l
vl(t) + 2

∑
k∈N∗\l

<
(〈φk(T ), ψ〉

Bk,l
vk(t)

)
for {vk}k∈Z the unique biorthogonal family to {eiλk(·)}k∈Z. In addition, from

(30), there exists C̃(T ) > 0 such that ‖u‖22 ≤ C̃(T )2
∑∞

j=1

∣∣γj,l(u)
Bj,l

∣∣2 and

‖F−1
l (ψ)‖22 = ‖u‖22 ≤

C̃(T )2

C2
l

∞∑
j=1

|j3γj,l(u)|2 ≤ C̃(T )2

C2
l

‖ψ‖2(3).

In conclusion, we set M = Cl/C̃(T ) since, for every ψ,ϕ ∈ H3
(0), there exist

v, w ∈ X such that ψ = Fl(v), ϕ = Fl(w) and

‖v − w‖2 ≤ ‖F−1
l (ψ − ϕ)‖2 ≤

C̃(T )

Cl
‖ψ − ϕ‖(3).

2) We suppose |||B ||| 3 = 1. For u ∈ X, from the Duhamel’s formula,

ΓuTφl = e−iλlTφl − i
∫ T

0
e−iA(T−s)u(s)BΓusφl

= e−iλlTφl − i
∫ T

0
e−iA(T−s)u(s)Be−iλlsφlds

−
∫ T

0
e−iA(T−s)u(s)B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

(12)

Let Hl(u) := −
∫ T

0 e−iA(T−s)u(s)B
∫ s

0 e
−iA(s−τ)u(τ)BΓuτφldτds. From (12),

Al(u) = ΓuTφl = e−iλlTφl + Fl(u) +Hl(u).

We recall that we aim to exhibit a ball U ⊂ X with center u = 0 such that,
for every u ∈ U , the map Al : u ∈ U 7→ ΓuTφl ∈ Al(U) is an homeomorphism
by using [CCM97, Lemma 2.3; p. 42]. To this purpose, we construct U such
that there exists M1 > 0 satisfying (10) and M1 ≤M/2. We notice that

‖(Al−Fl)(u)−(Al−Fl)(v)‖(3) = ‖Hl(u)−Hl(v)‖(3), ∀u, v ∈ L2((0, T ),R),
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Hl(u)−Hl(v) = −
∫ T

0
e−iA(T−s)(u(s)− v(s))B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

−
∫ T

0
e−iA(T−s)v(s)B

(∫ s

0
e−iA(s−τ)(u(τ)− v(τ))BΓuτφldτ

)
ds

−
∫ T

0
e−iA(T−s)v(s)B

(∫ s

0
e−iA(s−τ)v(τ)B(Γuτφl − Γvτφl)dτ

)
ds.

(13)

Thanks to Proposition 1.2 and Remark 1.3, there exists a constant C(T ) > 0
such that, for every ψ ∈ L∞((0, T ), H3

(0)) and u ∈ L2((0, T ),R),

(14)

∥∥∥∥∫ T

0
e−iA(T−s)u(s)Bψds

∥∥∥∥
(3)

≤ C(T )‖u‖2 |||B ||| 3‖ψ‖L∞t H3
x
.

As we assumed |||B ||| 3 = 1, we have

‖Γvtφl − Γut φl‖L∞t H3
x
≤
∥∥∥∫ t

0
e−iA(t−s)B(vΓvtφl − uΓut φl)

∥∥∥
L∞t H

3
x

≤ C(T ) |||B ||| 3‖vΓvtφl − uΓut φl‖L∞t H3
x

≤ C(T )‖v − u‖2‖Γut φl‖L∞t H3
x

+ C(T )‖v‖2‖Γvtφl − Γut φl‖L∞t H3
x
.

Let µ > 1. If U = {u ∈ X : ‖u‖2 ≤ (µC(T ))−1}, then

‖Γvtφl − Γut φl‖L∞t H3
x
≤ µC(T )

µ− 1
‖v − u‖2‖Γut φl‖L∞t H3

x
(15)

for every u, v ∈ U . From (13), when ‖u‖2, ‖v‖2 ≤ (µC(T ))−1,

‖Hl(u)−Hl(v)‖(3) ≤ C(T )2
(
‖v − u‖2(‖u‖2 + ‖v‖2)‖Γut φl‖L∞t H3

x

+ C(T )2‖v‖22‖Γvtφl − Γut φl‖L∞t H3
x

≤ 2µ−1C(T )‖v − u‖2‖Γut φl‖L∞t H3
x

+ µ−2‖Γvtφl − Γut φl‖L∞t H3
x

and, thanks to (15), we have

‖Hl(u)−Hl(v)‖(3) ≤
(2µ− 1)

(µ− 1)µ
C(T )‖v − u‖2‖Γut φl‖L∞t H3

x
.

Thanks to the relation (14) and to the Duhamel’s formula,

‖ΓuTφl‖L∞t H3
x
≤ ‖φl‖(3) + C(T )‖u‖2 |||B ||| 3‖Γ

u
Tφl‖L∞t H3

x
.

We obtain ‖ΓuTφl‖L∞t H3
x
≤ ‖φl‖(3)

1−C(T )‖u‖2 |||B ||| 3
≤ µl3

µ−1 and, for every u, v ∈ U ,

=⇒ ‖Hl(u)−Hl(v)‖(3) ≤
2µ− 1

(µ− 1)2
l3C(T )‖v − u‖2.
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To apply [CCM97, Lemma 2.3; p. 42], we set M1 = 2µ−1
(µ−1)2

l3C(T ) and we

estimate µ such that M1 ≤M/2. The last inequality is true when

(16) µ ≥ al +
√
al(al + 1) + 1, al := 2C(T )C̃(T )l3C−1

l .

Let T = 4
π . We notice that al ≤ 6

5 ãl for ãl := l3/Cl as

C
( 4

π

)
C̃
( 4

π

)
≤ 3

5
.

We study the constants C1, C2 appearing in (26) that is valid thanks to the

Ingham’s Theorem ([KL05, Theorem 4.3]). Let |I ′| := G
π T = 4, β = π2

4 ,

G(0) = π
2 , I0 = [−1,+1], m =

(
|I ′||I0|−1

)
= 2, α = 4R2, Ĝ(0) = (R2−1)π

2

and R = |I′|
2 = 2. By substituting these parameters in the proof of Ingham’s

Theorem [KL05, pp. 62− 65]), we obtain

C2
2 =

2mπG(0)π

βG
=

8

π
, C2

1 =
2πĜ(0)π

αG
=

3π

16
.

The proof of Proposition 1.2 and (30), imply

(17) C(T ) = C
(
4/π

)
= 3π−3 max

{√
2C2,

√
4/π

}
= 3π−3

√
2C2.

In addition, we have C̃
(

4
π

)
= 2C−1

1 , C
(

4
π

)
C̃
(

4
π

)
≤ 3

5 and al ≤ 6
5 ãl. Now,

Cl ≤ |〈φ1, Bφl〉| ≤ |||B ||| = 1, =⇒ ãl > 1.

We need to define µ such that (16) is verified and we notice that

al +
√
al(al + 1) + 1 ≤

(6

5
ãl +

√
6

5
ãl

(6

5
ãl + 1

)
+ 1
)
≤ 22

5
ãl =

22

5

l3

Cl
.

If we set µ = 22
5
l3

Cl
, then µ ≥ al +

√
al(al + 1) + 1 as required in (16) and

U =
{
u ∈ X : ‖u‖2 ≤ (µC(4/π))−1}.

Since M1 ≤M/2, we have the validity of [CCM97, Lemma 2.3; p. 42], which
implies that Al : U ⊆ L2((0, 4/π),R)→ A(U) ⊆ H3

(0) is an homeomorphism.

3) We show a neighborhood of φl in H3
(0) contained in Al(U). Let

BX(x, r) := {x̃ ∈ X
∣∣ ‖x̃− x‖L2((0, 4

π
),R) ≤ r}.

We notice that µC
(

4
π

)
< l3

Cl
and we set Ũ = BX

(
0, Cl

l3

)
⊂ U. From the

proof of [CCM97, Lemma 2.3; p. 42], we know that Al(U) contains a ball of
center Al(0) = φl

(
4
π

)
and radius (M −M1)Cl

l3
. As M1 ≤M/2, we have

M −M1 ≥
1

2
M ≥ Cl

2C̃
(

4
π

) =
3Cl
16

,
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Al

(
BX

(
0,
Cl
l3

))
⊇ B̃H3

(0)

(
Al(0), (M −M1)

Cl
l3

)
⊇ B̃H3

(0)

(
φl

( 4

π

)
,

3C2
l

16l3

)
.

In the second part of the proof, we suppose |||B ||| 3 = 1, but we can
generalize the result for |||B ||| 3 6= 1 thanks to the identity A + uB =
A+u |||B ||| 3

B
|||B ||| 3

.We consider the operator B
|||B ||| 3

and the control u |||B ||| 3,

while we substitute Cl with Cl |||B |||−1
3 (from Assumptions I). In addition,

if |||B ||| 3u ∈ BX
(

0, Cl
l3 |||B ||| 3

)
, then u ∈ BX

(
0, Cl

l3 |||B ||| 23

)
. In conclusion,

∀ψ ∈ B̃H3
(0)

(
φl

( 4

π

)
,

3C2
l

16l3 |||B ||| 23

)
, ∃ u ∈ BX

(
0,

Cl

l3 |||B ||| 23

)
: Al(u) = ψ.

3 Proof of Theorem 1.1

Let T ∗, un, b, E(j, k) and C ′ be defined in (2). The proof follows from
Proposition 2.2 and Proposition A.3. From Proposition A.3, we have

R′′n := ‖ΓunnT ∗φj − e
iθφk‖8(3) ≤

22032π24e

6 |||B ||| (2)
Bj,k |k2 − j2|5 max{j, k}24

|Bj,k|7n
·

(1 + C ′) |||B ||| 6(2) |||B ||| max{ |||B ||| , |||B ||| 3}
|Bj,k|7n

.

We know limn→∞R
′′
n = 0. Let us provide an explicit n∗ so that

(18) Γ
un∗
n∗T ∗φj ∈ B̃H3

(0)

(
eiθφk,

3C2
k

24k3 |||B ||| 23

)
, R′′n∗ ≤

38C16
k

232k24 |||B ||| 16
3

.

For 0 ≤ s < 3 and j, k ∈ N∗, |||B ||| (s) ≥ Ck and |||B ||| (s) ≥ |Bj,k|. If

n∗ ≥ 251π19e

6 |||B ||| (2)
Bj,k b(1 + C ′)|k2 − j2|5k24 max{j, k}24

C16
k |Bj,k|7

then (18) is valid with b from (2). Thanks to Proposition 2.2 and to the
time reversibility of the (BSE) (see [Duc, Section 1.3]), we obtain

(19) ∃u ∈ L2
((

0,
4

π

)
,R
)

: Γu4
π

Γ
un∗
n∗T ∗φj = eiθφk.

4 Application of the main result

In the current section, we briefly propose a possible application of Theorem
1.1. Let us consider an electron trapped in a one-dimensional guide of length
∼ 10−3 m and represented by the quantum state ψ. We suppose that the

12



electron is subjected to an external time-depending electromagnetic field
V(τ) with τ ∈ [0,T] and T a positive time. Let me ∼ 10−30 Kg be the mass

of the electron and ~ ∼ 10−34 m2 Kg
s with ~ the reduced Planck constant.

The dynamics of ψ is modeled by the Schrödinger equation

i~
d

dτ
ψ(τ) = − ~2

me

d2

dx
ψ(τ) + V(τ)ψ(τ), τ ∈ (0,T).(20)

We substitute x := x 103 m−1, t := τ 102 s−1 and ψ(t, x) := ψ(τ, x). Now,

V (t) := V(τ) 1032 s2

m2 Kg
, (t, x) ∈ (0, T )× (0, 1), T := T 102 s−1

are dimensionless (without unit of measurement) and (20) corresponds to

i
d

dt
ψ(t) = − d2

dx2
ψ(t) + V (t)ψ(t), t ∈ (0, T ).

If the potential V (t, x) is equal to u(t)x2 , then we obtain the (BSE)

i∂tψ(t, x) = Aψ(t, x) + u(t)x2ψ(t, x).

We point out that the last equation can be used to model the dynamics of
an electron subjected to two external fields. The first one forces its behaviour
to a quantum harmonic oscillator with time dependent intensity. The second
field instead traps the electron in a potential well.

We exhibit u driving the state of the particle from the first excited state
to the ground state. For this reason, we retrace the proof of the first point
of Theorem 1.1 with B : ψ 7→ x2ψ. Let φ1 and φ2 be eigenstates of A.
We define a control function driving φ2 in φ1. We notice that 〈φj , x2φk〉 =

2
∫ 1

0 x
2 sin(πjx) sin(πkx)dx and Assumptions I are satisfied since

|〈φj , x2φk〉| =
∣∣∣ (−1)j−k

(j − k)2π2
− (−1)j+k

(j + k)2π2

∣∣∣ =
4jk

(j2 − k2)2π2
, j 6= k,

|〈φk, x2φk〉| =
∣∣∣1
3
− 1

2k2π2

∣∣∣, k ∈ N∗.

For ψ ∈ H3
(0), we have x2ψ ∈ H3 ∩H1

0 , ‖xψ‖ ≤ ‖ψ‖, ‖x2ψ‖ ≤ ‖ψ‖ and

‖∂xψ‖2 = ‖|A|
1
2ψ‖2 =

∑
k∈N∗

|πk〈φk, ψ〉|2 ≤
∑
k∈N∗

|(πk)2〈φk, ψ〉|2 = ‖∂2
xψ‖2.

From the Poincaré inequality, ‖ψ‖ ≤ 1
π‖∂xψ‖ and ‖∂2

xψ‖ ≤ 1
π‖∂

3
xψ‖. Thus,

‖∂x(x2ψ)‖ ≤ ‖2xψ‖+ ‖x2∂xψ‖ ≤
2

π2
‖∂3

xψ‖+
1

π
‖∂3

xψ‖ ≤
2 + π

π2
‖|A|

3
2ψ‖,

‖∂2
x(x2ψ)‖ ≤ ‖2ψ‖+ ‖4x∂xψ‖+ ‖x2∂2

xψ‖ ≤
2 + 5π

π2
‖|A|

3
2ψ‖,

‖∂3
x(x2ψ)‖ ≤ ‖6∂xψ‖+ ‖6x∂2

xψ‖+ ‖x2∂3
xψ‖ ≤

12 + π

π
‖|A|

3
2ψ‖,
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|||B ||| 3 = sup
ψ∈H3

(0)
‖ψ‖(3)≤1

√
‖∂x(x2ψ)‖2 + ‖∂2

x(x2ψ)‖2 + ‖∂3
x(x2ψ)‖2 ≤ 5.2 .

Similarly, |||B ||| (2) ≤ 1.64 and |||B ||| ≤ 1. Moreover, C ′ = 0 and

|B1,1| = C1 =
2π − 3

6π2
, |B1,2| = C2 =

8

9π2
, I =

4

3π2
.

If we retrace the proof of Proposition 2.2 by substituting the previous
constants, then we see that the local exact controllability is verified in
B̃H3

(0)
(φ1, 2.14 10−5). Let T = 2

3π , u(t) = cos(3π2t), T ∗ = 9π3

8 , K = 9π2

4 .

By repeating the proof of Theorem 1.1 and Proposition A.3, for un := u
n ,

∃θ ∈ R : ‖eiθφ1 − ΓunnT ∗φ2‖8(3) ≤ 1080n−1.

In the neighborhood B̃H3
(0)

(
φ1, 2.14 10−5

)
, the local exact controllability is

verified, while the first point of Theorem 1.1 holds for n = 2.3 10117. Let

u(t) = (2.3 10117)−1 cos(3π2t), T = (2.3 10117)
9π3

8
.

There exists θ ∈ R such thats
∥∥eiθφ1 − ΓuTφ2

∥∥
(3)
≤ 2.14 10−5. In addition,

∃ũ ∈ L2((0,
4

π
),R) : ΓuTΓũ4

π

φ2 = eiθφ1.

In conclusion, the dynamics of (20) drives the state of the electron from the
first excited state to the ground state in a time T ∼ 10116 s.

5 Conclusion

The results provided in the work represent a contribution for the application
of the control theory to the physical experimentation for systems modeled
by the bilinear Schrödinger equation. Given any couple of bounded states,
we provided controls and times such that the dynamics of the (BSE) drives
the first state close as much desired to the second one with respect to the
H3

(0)−norm. After, we estimated a neighborhood in H3
(0) of any bounded

state where the local exact controllability is satisfied in a given time. In
conclusion, for any couple of bounded state, we have defined a dynamics
steering the first one into the second in explicit time.

Given two bounded states, every aspect of the dynamics driving the first
one to the second is explicit (up to the control function ruling the very last
part of the dynamics). Nevertheless, the estimates introduced in the work
are far from being optimal and one might be interested in optimizing them
in order to study meaningful physical systems. The first try is to repeat
the steps of the proof of Theorem 1.1 by considering, from the beginning,
specific B, j and k. However, other possible improvements are the following.
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� For instance, Theorem 1.1 is stated for the control function un(t) =
n−1 cos((λk−λj)t) with n, j, k ∈ N∗. However, this choice is arbitrary.
Indeed, the provided theory is based on [Cha12] that considers generic

2π
|λk−λj |−periodic controls. By retracing the proof of Theorem 1.1 with

a different suitable control, sharper results may be obtained.

� In Proposition 2.2, the controllability may be obtained in a larger
neighborhood. Instead of Ingham’s Theorem, one may use the “Ha-
raux’s Theorem” [KL05, Theorem 4.6] and change the time T = 4

π .

Acknowledgments. The author thanks Thomas Chambrion for suggesting
him the problem and for the explanations provided on the work [Cha12].
He is also grateful to the colleagues Nabile Boussäıd, Lorenzo Tentarelli and
Riccardo Adami for the fruitful discussions. This work has been partially
supported by the ISDEEC project by ANR-16-CE40-0013.

A Appendix: Explicit controls and times for the
global approximate controllability

For j, k ∈ N∗, let T ∗, un, b, E(j, k) and C ′ be defined in (2). We denote

T =
2π

|λk − λj |
, I =

4

|λk − λj |
, K =

2

|Bj,k|
,

In the following proposition, we provide a global approximate controllability
result with explicit controls and times with respect to the H -norm.

Proposition A.1. Let B satisfy Assumptions I. For every j, k ∈ N∗, j 6= k,
and n ∈ N∗ such that

(21) n ≥
3(1 + C ′)|Bj,k|−1 |||B ||| 2

|k2 − j2|
,

there exist Tn ∈ (nT ∗ − T, nT ∗ + T ) and θ ∈ R such that

‖ΓunTnφj − e
iθφk‖2H ≤

32|Bj,k|−1(1 + C ′) |||B ||| 2

n|k2 − j2|
.

Proof. Thanks to [Cha12, P roposition 6], for any n ∈ N∗, there exists Tn ∈
(nT ∗ − T, nT ∗ + T ) such that

(22)
1− |〈φk,ΓunTnφj〉|

1 + 2K |||B |||
≤ (1 + C ′) ||| (φj〈φj , ·〉+ φk〈φk, ·〉)B ||| I

n
.
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We underline that the definition of T ∗ given in [Cha12, P roposition 6] is
incorrect and our formulation follows from [Cha12, P roposition 2]. As a

consequence of (22), 1− |〈φk,ΓunTnφj〉| ≤
(1+2K |||B ||| )(1+C′) |||B ||| I

n =: Rn and∑
l 6=k
|〈φl,ΓunTnφj〉 − 〈φl, φk〉|

2 ≤
(
1− |〈φk,ΓunTnφj〉|

)(
1 + |〈φk,ΓunTnφj〉|

)
≤ 2Rn.

Afterwards, fixed n ∈ N∗, there exists θ ∈ R (depending on n) such that
|〈φk, eiθφk〉 − 〈φk,ΓunTnφj〉|

2 ≤ R2
n and R′n := ‖eiθφk − ΓunTnφj‖

2 ≤ 2Rn +R2
n.

As |Bj,k|−1 |||B ||| = |||B |||
|〈φj ,Bφk〉| ≥ 1, we have

Rn =
(1 + 2K |||B ||| )(1 + C ′) |||B ||| I

n
≤

3(1 + C ′)|Bj,k|−1 |||B ||| 2

n|k2 − j2|
.

If n ≥ 3(1+C′)|Bj,k|−1 |||B ||| 2
|k2−j2| for j 6= k, then Rn ≤ 1, R2

n ≤ Rn and

‖eiθφk − ΓunTnφj‖
2 ≤ 2Rn +R2

n ≤ 3Rn ≤
32|Bj,k|−1(1 + C ′) |||B ||| 2

n|k2 − j2|
.

Proposition A.2. Let B satisfy Assumptions I. Let j, k ∈ N∗, j 6= k, and
n ∈ N∗ verify the hypothesis of Theorem 1.1. There exists Tn ∈ (nT ∗ −
T, nT ∗ + T ) and θ ∈ R such that

‖ΓunTnφj − e
iθφk‖8(3) ≤

21232π24|k2 − j2|5 max{j, k}24(1 + C ′)

|Bj,k|7n
·

e

6 |||B ||| (2)
|Bj,k| |||B ||| 6(2) |||B |||

2

|Bj,k|7n
.

Proof. 1) Propagation of regularity from H2
(0) to H4

(0): We show that

the propagator ΓuT preserves H4
(0) and B ∈ L(H2

(0)). Let us denote

‖f‖BV (T ) := ‖f‖BV ((0,T ),R) = sup
{tj}j≤n∈P

n∑
j=1

|f(tj)− f(tj−1)|

for f ∈ BV ((0, T ),R), where P is the set of the partitions of (0, T ) such
that t0 = 0 < t1 < ... < tn = T. Fixed n ∈ N∗, we denote

λ > 0, λ̃ = λ+
|||B ||| (2)

n
, Ĥ4

(0) := D(A(iλ̃−A)).

We refer to [Kat53] and we prove that the propagator Uunt generated by

A+ un(t)B − i‖un‖L∞((0,T ),R) |||B ||| (2)
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satisfies the condition ‖Uunt ψ‖(4) ≤ C‖ψ‖(4) for every ψ ∈ H4
(0) and suit-

able C > 0. Indeed, −i(A + un(t)B − i‖un‖L∞((0,T ),R) |||B ||| (2)) is not just

dissipative in H2
(0), but also maximal dissipative thanks to Kato-Rellich’s

Theorem [Dav95, Theorem 1.4.2]. Now, Hille-Yosida Theorem implies that
the semi-group generated by −i(A + un(t)B − i‖un‖L∞((0,T ),R) |||B ||| (2)) is
a semi-group of contraction and the techniques adopted in the proofs of
[Kat53, Theorem 2; Theorem 3] are valid. As λ̃ ≥ |||B ||| (2)/n, we have

|||un(t)B(iλ̃−A)−1 ||| (2) ≤ |||B ||| (2) ||| (iλ̃−A)−1 ||| (2)n
−1 ≤

|||B ||| (2)

nλ̃
< 1.

We introduce M := supt∈[0,Tn] ||| (iλ̃−A− un(t)B)−1 |||
L(H2

(0)
,Ĥ4

(0)
)

and

M = sup
t∈[0,Tn]

||| (I − un(t)B(iλ̃−A)−1)−1 ||| (2)

= sup
t∈[0,Tn]

|||
+∞∑
l=1

(un(t)B(iλ̃−A)−1)l ||| (2) =
nλ̃

nλ̃− |||B ||| (2)

.
(23)

As ‖k + f(·)‖BV ((0,T ),R) = ‖f‖BV ((0,T ),R) for f ∈ BV ((0, T ),R) and k ∈ R,

N := ||| iλ̃−A− un(·)B |||
BV
(

[0,Tn],L(Ĥ4
(0)
,H2

(0)
)
) = n−1‖u‖BV (Tn) |||B ||| L(Ĥ4

(0)
,H2

(0)
)
.

Now, as ‖(A− iλ̃)ψ‖2(2) = ‖Aψ‖2(2) + λ̃2‖ψ‖2(2), for every ψ ∈ Ĥ4
(0),

‖Bψ‖2(2) ≤ λ̃
−2 |||B ||| 2(2)

(
‖Aψ‖2(2) + λ̃2‖ψ‖2(2)

)
≤ λ̃−2 |||B ||| 2(2)‖ψ‖

2
Ĥ4

(0)

and N ≤ |||B ||| (2)‖u‖BV (Tn)

λ̃n
. Thanks to [Kat53, Section 3.10], there holds

‖(A+ un(Tn)B − iλ̃)UunTn φj‖(2) ≤MeMN‖(A− iλ̃)φj‖(2) ≤MeMN (π2 + λ̃)j4.

In addition, thanks to the relation (23),

|||A(A+ un(Tn)B − iλ̃)−1 ||| (2) ≤M + ||| λ̃(A− iλ̃)−1 ||| (2)M ≤ 2M.

For every j ∈ N∗, we know that

‖ΓunTnφj‖(4) ≤ e
Tn
n
|||B ||| (2)‖Uunt φj‖(4) = e

Tn
n
|||B ||| (2)2M2eMN (π2 + λ̃)j4.

Now, MN ≤ |||B ||| (2)‖u‖BV (Tn)

nλ̃− |||B ||| (2)
=
|||B ||| (2)‖u‖BV (Tn)

nλ and, if we choose λ =

|||B ||| (2)‖u‖BV (Tn)

n , then MN ≤ 1 and λ̃ =
|||B ||| (2)(‖u‖BV (Tn)+1)

n . Now, u is
periodic and its total variation in a time interval long half-period is 2. We
compute d the quarters of period for u contained in [0, nT ∗ + T ] and

un(nT ∗+T ) =
1

n
cos
(
π2(k2−j2)(nT ∗+T )

)
⇒ d =

(
π2|k2−j2|(nT ∗+T )

) 2

π
.
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As d = 2(nπ2|k2 − j2|+ 2|Bk,j |)|Bk,j |−1, for the chosen n, we have

‖u‖BV (Tn) ≤ ‖u‖BV (nT ∗+T ) ≤ d+ 1 ≤ 2(nπ2|k2 − j2|+ 4|Bk,j |)|Bk,j |−1,

M2 =

(
|||B ||| (2)(‖u‖BV (Tn) + 1)

|||B ||| (2)‖u‖BV (Tn)

)2

≤

(
2(nπ2|k2 − j2|+ 6|Bk,j |)|Bk,j |−1

2(nπ2|k2 − j2| − 4|Bk,j |)|Bk,j |−1

)2

,

π2 + λ̃ = π2 +
|||B ||| (2)(‖u‖BV (Tn) + 1)

n
,

‖ΓunTnφj‖(4) ≤ e
Tn
n
|||B ||| (2)2

( |||B ||| (2)(‖u‖BV (Tn) + 1)

|||B ||| (2)‖u‖BV (Tn)

)2
e(π2 + λ̃)j4

≤ e
|||B ||| (2)
|Bj,k|

+
2 |||B ||| (2)
nπ|k2−j2|

+1
2
( |||B ||| (2)(‖u‖BV (Tn) + 1)

|||B ||| (2)‖u‖BV (Tn)

)2
(π2 + λ̃)j4.

(24)

2) Conclusion: Let fn := eiθφk − ΓunTnφj . First, we point out that, for
every s > 0, we have ‖fn‖2(s) ≤ (ks + ‖ΓunTnφj‖(s))

2. As φj , φk ∈ Hs
(0), for

every s > 0, the point 1) ensures that ΓuTφj and ΓuTφj belong to H4
(0) for

u ∈ BV (0, T ). Thanks to the Cauchy-Schwarz inequality,

‖A
3
2 fn‖4 =

(
〈A

3
2 fn, A

3
2 fn〉

)2 ≤ (〈A2fn, Afn〉
)2 ≤ ‖A2fn‖2‖Afn‖2,

‖Afn‖2 = 〈Afn, Afn〉 ≤ ‖A2fn‖‖fn‖, =⇒ ‖fn‖8(3) ≤ ‖fn‖
2‖fn‖6(4).

For Rn defined in the proof of Proposition A.1, the relation (24) implies

‖fn‖8(3) ≤ 3Rn(‖ΓunTnφj‖(4) + k4)6 ≤
32|Bj,k|−1(1 + C ′) |||B ||| 2

n|k2 − j2|
·

·
(
e

|||B ||| (2)
|Bj,k|

+
2 |||B ||| (2)
nπ|k2−j2|

+1
2
( |||B ||| (2)(‖u‖BV (Tn) + 1)

|||B ||| (2)‖u‖BV (Tn)

)2
(π2 + λ̃)j4 + k4

)6

≤
21232π24(1 + C ′)e

6 |||B ||| (2)
|Bj,k| |||B ||| 6(2) |||B |||

2|k2 − j2|5 max{j, k}24

n|Bj,k|7
.

Proposition A.3. Let B satisfy Assumptions I and n ∈ N∗ introduced in
Theorem 1.1. For every j, k ∈ N∗ such that j 6= k, there exists θ ∈ R so that

‖ΓunnT ∗φj − e
iθφk‖8(3) ≤

22032π24e

6 |||B ||| (2)
Bj,k |k2 − j2|5 max{j, k}24

|Bj,k|7n
·

(1 + C ′) |||B ||| 6(2) |||B ||| max{ |||B ||| , |||B ||| 3}
|Bj,k|7n

.
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Proof. We notice that the hypotheses of Proposition A.2 are verified. We
estimate supt∈[nT ∗−T,nT ∗+T ] ‖Γunt φj − ΓunTnφj‖(3) and we consider the argu-
ments leading to (24). The uniformly bounded constant C(·) is increasing

and (17) implies supt∈[nT ∗−T,nT ∗+T ]C(|t− Tn|) ≤ C(2T ) ≤ C(4/π) = 24
√

2
π4 .

Thanks to Proposition 1.2 and Remark 1.3,

sup
{

sup
t∈[nT ∗−T,Tn]

‖Γunt φj − ΓunTn−tΓ
un
t φj‖(3), sup

t∈[Tn,nT ∗+T ]
‖Γunt−TnΓunTnφj − ΓunTnφj‖(3)

}
≤ C

( 4

π

)
|||B ||| 3

∫ nT ∗+T

nT ∗−T
|un(s)|ds sup

{
‖ΓunTnφj‖(4), sup

t∈[nT ∗−T,Tn]
‖Γunt φj‖(4)

}
.

The techniques adopted in the proof of Proposition A.2 lead to

sup
t∈[nT ∗−T,Tn]

‖Γunt φj‖(4) ≤ 22e

|||B ||| (2)
|Bj,k| |||B ||| (2)π

3|k2 − j2||Bk,j |−1j4,

which implies

sup
t∈(nT ∗−T,nT ∗+T )

‖Γunt φj − ΓunTnφj‖(3) ≤ C
( 4

π

)
|||B ||| 3

2T

n
π522e

|||B ||| (2)
|Bj,k| |||B ||| (2)

|k2 − j2||Bk,j |−1j4 ≤ 25 3
√

2e

|||B ||| (2)
|Bj,k|

|||B ||| 3
n

|||B ||| (2)|Bj,k|
−1j4.

Now, for R′′n := ‖ΓunnT ∗φj − eiθφk‖8(3),

R′′n ≤ 27 sup
t∈(nT ∗−T,nT ∗+T )

‖Γunt φj − ΓunTnφj‖
8
(3) + 27‖ΓunTnφj − e

iθφk‖8(3)

≤ 27
(

25 3
√

2e

|||B ||| (2)
|Bj,k|

|||B ||| 3
n

|||B ||| (2)|Bj,k|
−1j4

)8
+ 27‖fn‖8(3).

(25)

Now, |||B ||| , |||B ||| (2) ≥ |Bj,k| for j, k ∈ N∗. For the chosen n ∈ N∗, we have

R′′n ≤ 27

(
25 3

√
2e

|||B ||| (2)
|Bj,k|

|||B ||| 3
n

|||B ||| (2)|Bj,k|
−1j4 + ‖fn‖8(3)

)

≤
22032π24(1 + C ′)e

6 |||B ||| (2)
|Bj,k| |||B ||| 6(2) |||B |||

2|k2 − j2|5 max{j, k}24

n|Bj,k|7
.

B Appendix: Moment problem

In this appendix, we briefly adapt some results concerning the solvability of
the moment problem (as the relation (7)). Let [BL10, P roposition 19; 2)]
be satisfied and {fk}k∈Z be a Riesz Basis (see [BL10, Definition 2]) in

X = span{fk : k ∈ Z} H ⊆H ,
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with H an Hilbert space. For {vk}k∈Z the unique biorthogonal family to
{fk}k∈Z ([BL10, Remark 7]), {vk}k∈Z is also a Riesz Basis ofX ([BL10, Remark 9]).
If {fk}k∈Z is the image of an orthonormal family {ek}k∈Z ⊂ H by an iso-
morphism V : H →H , then {vk}k∈Z is the image of {ek}k∈Z ⊂H by the
isomorphism (V ∗)−1 : H →H . Indeed,

δk,j = 〈vk, fj〉H = 〈vk, V (ej)〉H = 〈V ∗(vk), ej〉H , ∀k, j ∈ Z,

that implies (V ∗)−1(ek) = vk for every k ∈ Z. We point out that in
[BL10, relation (71)] there is a misprint as there exist C1, C2 > 0 such that

(26) C1

∑
k∈Z
|xk|2 ≤ ‖u‖2H ≤ C2

∑
k∈Z
|xk|2,

for every u(t) =
∑

k∈Z xkfk(t) with {xk}k∈N∗ ∈ `2(C). The arguments of
the proof of [BL10, P roposition 19; 2)] and the relations

(V ∗)−1 = (V −1)∗, |||V ∗ ||| L(H ) = |||V ||| L(H ), ||| (V
−1)∗ ||| L(H ) = |||V −1 ||| L(H )

implies that, for every u(t) =
∑

k∈Z xkvk(t) with {xk}k∈N∗`2(C), we have

C−2
2

∑
k∈Z
|xk|2 ≤ ‖u‖2H ≤ C−2

1

∑
k∈Z
|xk|2.

The constants C1, C2 > 0 are the same appearing in (26). Moreover, for
every u ∈ X, we know that u =

∑
k∈Z vk〈fk, u〉H since {fk}k∈Z and {vk}k∈Z

are reciprocally biorthonormal (see [BL10, Remark 9]) and

(27) C−1
2

(∑
k∈Z
|〈fk, u〉H |2

) 1
2 ≤ ‖u‖H ≤ C−1

1

(∑
k∈Z
|〈fk, u〉H |2

) 1
2
.

Remark B.1. Let {λk}k∈N∗ ⊂ R+ be so that G := infk 6=j |ωk − ωj | > 0.
Thanks to the Ingham’s Theorem [KL05, Theorem 4.3], for T > 2π

G , the fam-

ily of functions {eiλk(·)}k∈Z is a Riesz Basis in X = span{eiλk(·) : k ∈ Z}
L2

.
In the current remark, we consider H = L2((0, T ),C). From (27), we have

(28) C−1
2

(∑
k∈Z
|〈eiλk(·), u〉H |2

) 1
2 ≤ ‖u‖H ≤ C−1

1

(∑
k∈Z
|〈eiλk(·), u〉H |2

) 1
2
.

The relation (28) ensures that F : u ∈ X 7−→
{
〈eiλk(·), u〉H

}
k∈Z ∈ `

2(C) is

injective. Let {vk}k∈Z be the unique biorthogonal family to {eiλk(·)}k∈Z. The
surjectivity of the map F follows as, for every {xk}k∈Z ∈ `2(C) and N ∈ N∗,

uN (t) =
∑
k≤N

vkxk ∈ X,
{
〈eiλk(·), uN 〉H

}
k≤N = {xk}k≤N .
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Since
{
{xk}k≤N

}
N∈N∗ is a Cauchy sequence, {uN}N∈N∗ is also a Cauchy

sequence in L2((0, T ),R) thanks to (28). The completeness of X implies

u(t) =
∑
k∈N∗

vkxk ∈ X,
{
〈eiλk(·), u〉H

}
k∈N∗ = {xk}k∈N∗ .

Thus, F : u ∈ X 7−→
{
〈eiλk(·), u〉H

}
k∈Z ∈ `

2(C) is an homeomorphism and,

for every {xk}k∈Z ∈ `2(C), there exists a unique u ∈ X such that

xk =

∫ T

0
u(s)e−iλksds, ∀k ∈ Z.

Lemma B.2. Let {µk}k∈N∗ = {π2(k2 − l2)}k∈N∗ for l ∈ N∗ such that

(29) µ−k = π2(k2 − l2) 6= π2(l2 − j2) = −µj , ∀k, j ∈ N∗.

For T > 2/π, for every {xk}k∈N∗ ∈ `2(C) such that xl ∈ R,

∃u ∈ L2((0, T ),R) : xk =

∫ T

0
u(s)eiµksds, ∀k ∈ N∗.

In addition, there exists X ⊆ L2((0, T ),R) such that the map

J̃ : u ∈ X 7−→ {〈u, eiµk(·)〉}k∈N∗ ∈ {{xk}k∈N∗ ∈ `2(C) : xl ∈ R}

is an homeomorphism.

Proof. For k > 0, we call ωk = −µk, while we impose ωk = µ−k for k < 0
and k 6= −l. We denote Z∗ = Z \ {0}. The sequence {ωk}k∈Z∗\{−l} satisfies
the hypotheses of [KL05, Theorem 4.3] as G := infk 6=j |ωk−ωj | ≥ π2 thanks
to the relation (29). Thus, Remark B.1 is valid. Given {xk}k∈N∗ ∈ `2(C), we
introduce {x̃k}k∈Z∗\{−l} ∈ `2(C) such that x̃k = xk for k > 0, while x̃k = x−k
for k < 0 and k 6= −l. For T > 2π/G , there exists u ∈ L2((0, T ),C) so that

x̃k =
∫ T

0 u(s)e−iωksds for each k ∈ Z∗ \ {−l}. Then{
xk =

∫ T
0 u(s)eiµksds =

∫ T
0 u(s)eiµksds, k ∈ N∗ \ {l},

xk =
∫ T

0 u(s)ds, k = l,

which implies that u is real when xl ∈ R. For {vk}k∈N∗ the biorthogonal
family to {eiµk(·)}k∈N∗ , we have vl ∈ R and {vk}k∈N∗ is the biorthogonal fam-
ily to {e−iµk(·)}k∈N∗ . Thus, u(t) =

∑
k∈N∗ x̃kvk(t) +

∑
k∈N∗\{l} x̃−kvk(t) =

xlvl(t) + 2
∑

k∈N∗\l <(xkvk(t)) and (28) leads to

C−1
2

( ∑
k∈N∗

|xk|2
) 1

2 ≤ ‖u‖2 ≤ 2C−1
1

( ∑
k∈N∗

|xk|2
) 1

2
.(30)
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For x := {xk}k∈Z∗\{−l} belonging to `2l (C) := {{xk}k∈Z∗\{−l} : {xk}k∈N∗ ∈
`2(C); x−k = xk, ∀k ∈ −N∗ \ {−l}; xl ∈ R}, we define

ux(t) = xlvl + 2
∑

k∈N∗\{l}

<(xkvk), X := {ux : x ∈ `2l (C)}.

From (30), J : u ∈ X 7−→ {〈u, eiωk(·)〉}k∈Z∗\{−l} ∈ `2l (C) is an homeomor-
phism (for {ωk}k∈N∗ defined above), which implies the result.
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