N

N

Controllability of bilinear quantum systems in explicit
times via explicit control fields

Alessandro Duca

» To cite this version:

Alessandro Duca. Controllability of bilinear quantum systems in explicit times via explicit control
fields. 2018. hal-01520173v3

HAL Id: hal-01520173
https://hal.science/hal-01520173v3

Preprint submitted on 2 Jun 2018 (v3), last revised 2 May 2019 (v5)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-01520173v3
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Controllability of bilinear quantum systems in
explicit times via explicit control fields

Alessandro Duca

Laboratoire de Mathématiques de Besangon, Université Bourgogne Franche-Comté
16, Route de Gray, 25000 Besancon, France
aduca@unito.it
SPHINX team, Inria, 54600 Villers-les-Nancy, France

ORCID: 0000-0001-7060-1723

Abstract

We consider the bilinear Schrodinger equation on a bounded one-
dimensional domain and we provide explicit times such that the global
exact controllability is verified. In addition, we show how to construct
controls for the global approximate controllability.
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1 Introduction

In non relativistic quantum mechanics any pure state of a system is math-
ematically represented by a wave function 1) in the unit sphere of a Hilbert
space .

We consider the evolution of a particle confined in a one dimensional bounded
region and subjected to an external electromagnetic field that plays the role
of a control. A standard choice for such a setting is # = L?((0,1), C), while
the field is represented by an operator B and by a real function « which ac-
counts its intensity. In this framework, the evolution of ¢ is modeled by the
bilinear Schrédinger equation contained in the following Cauchy problem

100 (t) = Ap(t) + u(t) Bo(t), te(0,T), T > 0.
(0, x) = ¢°(x).

The operator A = —A is the Laplacian with Dirichlet homogeneous bound-
ary conditions (D(A) = H? N H}), B is a bounded symmetric operator,

(BSE) {



u € L*((0,T),R) is a control function and +° the initial state of the system.
We call T} the unitary propagator of the (BSE) when it is defined.

A natural question of practical implications is whether there exists u
steering the quantum system from any initial state to any target one and
how to build explicitly this control function.

The (BSE) is said to be globally (locally) exactly controllable in M C
A if, for any ! % € M (in a neighborhood of M) unitarily equivalent,
there exists u € L?((0,T),R) so that the bilinear Schrédinger equation drives
P! to ¥? in a time T > 0.

The (BSE) is said to be globally approximate controllable in M C 42 if|
for any ¢!, 4? € M unitarily equivalent, the bilinear Schrédinger equation
steers ¢! as close as desired to ¥? with suitable v € L?((0,T),R) and T > 0.

The controllability of the (BSE) has already been studied in the liter-
ature and we start by mentioning [BMS82] by Ball, Mardsen and Slemrod.
The work shows the well-posedness of the (BSE) in ¢ for controls be-
longing to L} ((0,7),R) and an important non-controllability result. In
particular, let S be the unit sphere in .7 and

Z(”(/}()) = {¢ € %‘ 3r>0, Ir>1,3ue L;oc((OaT)vR) Y= Fg%}

For every v € 9, the attainable set Z(1)g) is contained in a countable union
of compact sets and it has dense complement in S.

However, despite this non-controllability feature, many authors have ad-
dressed the problem for weaker notions of controllability.

For instance in [BL10], Beauchard and Laurent prove the well-posedness of
the bilinear Schrédinger equation in H (30) = D(A%), when B is a multipli-
cation operator for u € H3((0,1),R).

Another outcome ensured by Beauchard and Laurent is the local exact con-
trollability. They show that for suitable B = u € H?((0,1),R), the bilinear
Schrodinger equation is locally exactly controllable in a neighborhood of the
first eigenfunction of A in H, (30).

Global approximate controllability results for the (BSE) are provided with
different techniques. Adiabatic arguments are considered by Boscain, Chit-
taro, Gauthier, Mason, Rossi and Sigalotti in [BCMS12] and [BGRS15]
The result is achieved with Lyapunov techniques by Mirrahimi in [Mir09],
while by Nersesyan in [Ner10].

Lie-Galerking arguments are used by Boscain, Boussaid, Caponigro, Cham-
brion, Mason and Sigalotti in [CMSB09], [BCCS12], [BACC13] and [BCS14].

The most of the existing results focus on proving the controllablity of
the (BSE) without precising the relative controls and times.
To explicit those elements for the global exact controllability, the main ob-
stacle is that the common techniques adopted to prove the local exact con-
trollability do not provide explicit neighborhoods where the result is valid.



Hence, when the outcome is extended to the global exact controllability, any
track of the dynamics time and of the relative control is lost.

For this reason, we prove the local exact controllability of the (BSE) for spe-
cific neighborhoods and times, which leads to the global exact controllability
in explicit times and partially explicit control functions.

In more technical terms, the main novelties of the work are the following.
First, for any suitable couple of eigenfunctions ¢; and ¢ of A, we construct
controls and times such that the relative dynamics of the (BSE) drives ¢;
close to ¢ as much desired with respect to the H, (30)71101"111.

Second, we estimate a neighborhood of ¢y in H (30) where the local exact
controllability is satisfied in a given time.

Third, by gathering the two previous results, we define a dynamics steering
any eigenstate of A to any other in an explicit time.

In conclusion, we apply the proved results to an example.

The work represents a preliminary step for the application of the control

theory to the physical systems modeled by the bilinear Schrédinger equa-
tion. Nevertheless, many improvements are still required and the provided
estimates are far from being optimal. For example in Section 5, we consider
an electron trapped in a one-dimensional guide of length ~ 1073 meters
and subjected to an external electromagnetic field. We show a suitable con-
trol field driving the state of the electron from the first excited state to the
ground state in a time 7" ~ 10" seconds. The achieved time is way too
large for any practical implementation, however future optimization may
lead to more reasonable estimates as we explain afterwards.
Moreover, the work allows to study the (BSFE) from a numerical point of
view. Indeed, as the control function u is explicit for the global approximate
controllability, it is possible to implement algorithm confuting the provided
estimates, as the one on the time 7'

1.1 Framework and main results

Let us consider the (BSE) in the Hilbert space s = L?((0,1),C). We
denote (-, -) the scalar product in # and || - || the corresponding norm. Let
{9;}jen be an orthonormal basis composed by cigenfunctions of A associated
to the eigenvalues {\;}jen (A = 72k?) and

(1) ¢;(t) = e Moy = e Mg,
We define the following spaces for s > 0
IS 0o 1
(€)= {{hen € €] Y lmlP <oof, -l = (18- 1)7,
j=1 k=1



[SIE

Let H® := H*((0,1),C) and H{ := H§((0,1),C) with s > 0 and

I = 0y WMy = W sy gy s s = s, o

In the current chapter, we consider the space H? N H& equipped with the
3 .
norm || - || gangy = /2251 102 - [|2-

Assumptions (I). The bounded symmetric operator B satisfies the follow-
ing conditions.

1. For every k € N, there exists C, > 0 such that [(¢;, Béy)| > C’“ for
every j € N.

2. Ran(B|p(a)) € D(A) and Ran(B|H<3O)) C H*n H}.

Before proceeding with the main results of the work, we need to introduce
few further notations.
Let Bj_’k) = (¢j,B¢k> with k,j € N. We have {Bj,k}jENv{Bj7k}k€N c
¢%(C) and we denote, for n € N,
* m

Byl

sl Bl (o)

bi= (I Bl % 1B Bl 3* max { | BII, | Bl 5},

E(j, k) ==e Pirl (k> — ° POk By |~ max{j, k}*,
Nl (L ) S {<%> }
No={(m) €N Lm0 G R £, [P - m? < SR )

n (I,m)eA’
12 —m?| £ |k* — 52|, (1, Bém) # 0}

The following theorem represents the main result of the work, which
ensure the global exact controllability between eigenfunctions. We underline
that the control time is explicit and u,, defines a dynamics steering the initial
data to the target one up the well-known distance when n is sufficiently large.

Theorem 1.1. Let j,n € N and k € N be such that k # j and
(2) m? —k? £ k? - 12, vm,l e N, m,l #k.

Let B satisfy Assumptions I. If n > 64271120 (1+C")E(j, k), then there exists
0 € R such that

[T 65 — €| 5) < CROK I B 5) "



with Cy defined in Assumptions I. Moreover, there exists u € L?((0, %),R)
such that

Ck
31 B3k
Proof. See Section 3. O

||U||L2((o7%),R) < I4T. ¢ = ..

Examples of &k € N satisfying the relation (15) are k& < 3. However,
Theorem 1.1 can be generalized for every & € N by defining, for every ¢;
and ¢, a dynamics steering ¢; in ¢ and passing through ¢.

Moreover, the choice of {uy,}nen can be replaced by other p\kQ—_”)\”—periodic
controls by refering to [Chal2], which is used in the proof of the theorem.

Theorem 1.1 is not optimal and its purpose is to exhibit readable results
for generic B, j and k. For any specific choice of B, j and k, it is possible
to retrace the proof in order to obtain sharper bounds by using stronger
intermediate estimates. We briefly treat the example of B : ¢ — 2%, j = 2
and k = 1 in Section 5. In addition, we present in Section 4 how to compute
and remove the phase appearing in the target state, even though this is not
particularly relevant from a physical point of view.

1.2 Well-posedness

As mentioned in the introduction, Beauchard and Laurent prove in [BL10]
the well-posedness of the (BSFE) in H, (30) when B is a multiplication operator

for a suitable function p € H?((0,1),R). We rephrase the result in the
following proposition.
Proposition 1.2. [BL10, Lemma 1; Proposition 2] N
1) LetT > 0 and f € L*((0,T), HiNH?). The function G : t fg s f(s)ds
belongs to C’O([O,T],H(go)). Moreover,

HGHL?C((O)T),H(?’O)) < CI(T)||f||L2((O,T),H3ﬂH(10))7
where the constant ¢1(T') is uniformly bounded with T in bounded intervals.
2) Let u € H3((0,1),R), T > 0, ¥° € H(?’O) and w € L?((0,T),R). There
exists a unique mild solution of the (BSE) in H(?’O) when B = p, i.e. ¢ €
c([o, 1), H(g’o)) such that

(3) ¥(t,z) = e_iAtwo(m)—i//e_iA(t_S)(U(S)M(fCW(S,m))d& vt € [0,T].

0

Moreover, for every R > 0, there exists C = C(T,u, R) > 0 such that, for
every 0 € Hgo)’ if llull2(0,1m),r) < R, then the solution satisfies

[ llgoo.m.mg,) < Clel@, — I10@)llr = 1¥°r vt e [0,T].



Remark 1.3. The outcome of Proposition 1.2 is not only valid for mul-
tiplication operators, but also for suitable B. Indeed, the same proofs of
[BL10, Lemma 1] and [BL10, Proposition 2] lead to the well-posedness of
the (BSE) when B is a bounded symmetric operator such that

B e L(Hyy, H*NHy),  Be L(Hp),

which are verified if B satisfies Assumptions I, thanks to [Duc, Remark 1.1].

1.3 Scheme of the work

In Section 2, Proposition 2.1 ensures the local exact controllability in H, (30)
and we exhibit a neighborhood where it is verified in Proposition 2.2.

We prove Theorem 1.1 in Section 3, while in Section 4, we estimate the
phase appearing in the statement of Theorem 1.1.

In Section 5, we apply the main results to a physical system and, in Section
6, we conclude with few comments on the outcomes of Theorem 1.1.

We provide some intermediate results in Appendix A, while in Appendix B,
we expose some tools required in the work.

2 Local exact controllability in H (30)

Let us provide a brief proof of the local exact controllability in H (30) by
rephrasing the existing results of local controllability as [BL10], [Morl4]
and [MN15]. Our purpose is to introduce the tools that we use in the proof
of Theorem 1.1. For ¢y € H, (30) and € > 0, we define

(4) BH3 ,€) == {¢ € Hy| 18]l = 0], 1 = lla) < e}
Proposition 2.1. Let B satisfy Assumptions I. For every | € N such that
(5) m?— 12412 —n? Vm,n € N, m,n # 1,

there exist T > 0 and € > 0 such that, for every ¢ € BH;, (1(T),¢€), there
exists a control function u € L?((0,T),R) such that 1) = F ¢l

Proof. The statement of Proposition 2.1 is equivalent to the local surjectivity
of the map ¢y : u € L2((0,T),R) — Dy € H for T > 0. We consider

Ti¢ = Zm Tien)

and the function og(u) = {ag(u)}ren such that oy (u) = (op(T), I er)
with £ € N. We know that I'.¢; € H (0) for every u € L?((0,7).R) and



then o;(u) € h3(C) for every v € L?((0,T),R). Proving Proposition 2.1 is
equivalent to prove the local surjectivity for 7' > 0 large enough of the map

ar: LA((0,T),R) — Q = {x := {zx}ren € 1*(C) | |xle = 1}.

To this end, we use the Generalized Inverse Function Theorem ([Lue69,
Theorem 1; p. 240]) and we study the surjectivity of the Fréchet deriva-
tive of oy, 1(v) = (duy(0)) - v, the sequence with elements vy ,(v) =
—i [ v(s)efOs=AsdsBy ) with k € N. We notice that

v L2((0,T),R) — T5,Q = {{zx}ren € B*(C) | iz; € R}

and the surjectivity of +; consists in the solvability of the moment problem

T
(6) g—:l = —i/ u(s)e'Me=Ms g, {2k} ken € T5,Q.
, 0

As B is symmetric, we have Bj; € R and i(xl/Bu) € R. Moreover,
{ka,;ll}keN € (2(C) since {zp}reny € h*(C) and thanks to Assumptions
I. Thanks to the relation (5), for every k,j € N with k,j # [, we know
that Ay — A = 72(k? — 12) # 72(12 — j2) = A\, — A;. The solvability of (6) for
u € L*((0,T),R) is guaranteed by Remark B.1, which follows from Ingham’s
Theorem ([KLO05, Theorem 4.3]) for T > 2% and ¢ := n2. In particular, for
X defined in Remark B.1, the map v; : X — T5,Q is an homeomorphism,
thus v : L2((0,7),R) — T5,Q is surjective in T5,@Q for T large enough. O

2.1 Local exact controllability neighborhood estimate

Let C; and B H3, (+,-) be respectively defined in Assumptions I and (4). The

following proposition ensures the local exact controllablity in an explicit
neighborood of H 30 and for a specific time. The result is crucial for the
proof of Theorem 1.1, which is proved by extending it.

Proposition 2.2. Let B satisfy Assumptions I and | € N be such that
(7) m? —12 412 —n?, VYm,n €N, m,n # 1.
For every
v e By (a0(a/m), /6 | BII3) ).
there exists u € L?((0, %),R) such that ¥ =T .

ki

Proof. Let us define the following notations

I ez oy sy = Wl zmgys W nes, e2orymy = Wl g 2

Iz om.mg, ) = I lzgemss - Iz my = - -



Let T > 2(} for 4 = 72 (as in the proof of Proposition 2.1). We consider
the space X defined in Remark B.1 (Appendix B) and equipped with the
L?—norm. The local exact controllability provided in the proof of Proposi-
tion 2.1 is equivalent to the local surjectivity of the map

A() =T L2((0,7),R) = {v € Hy « ]l =1}

such that A;(u) = e N gy — szT e AT =9)y(s) BT U¢yds. Indeed, from the
proof of Proposition 2.1, the map

Fi(): X = { € Hiy - {{65(T),¥)}jen € T5,Q} = {9 € Hipy : i(au(T), ) € R}

such that Fj(u) := ((dyA4;(v = 0)) - u) is an homeomorphism, which im-
plies the local surjectivity of A; thanks to the Generalized Inverse Function
Theorem ([Lue69, Theorem 1; p. 240]).

Thanks [GC97, Lemma 2.3; p. 42, we estimate the radius of the neigh-
borhood where A; is surjective. We consider that X and {¢ € H(o) :
i(¢i(T),v) € R} are Banach spaces and F; : X — {¢ € H(o) s (), ) €

R} is an homeomorphism for 7" large enough. We compute a constant M > 0
such that

(®) 1AW= Al 2 M- vlzong, — VeveX.

Fixed T' > 0 large enough, we provide a neighborhood U C X and a constant
M, < M such that

1CAr = ) () = (A = F) () g, < Mallu = vllz2 o) m) Vu,v e U.

Thanks to [GCI7, Lemma 2.3; p. 42], the map A; : U — A)(U) is an
homeomorphism and, from the proof of [GC97, Lemma 2.3; p. 42], we de-
duce that if U D {u € X : ||ul|z2¢(0,7),r) < 7} with 7 > 0, then

AU) D {9 € H « |l — 61Tl g, < (M — M)}

1) We compute M > 0 such that (8) is verified. Let us suppose || B = 1.
The surjectivity of F; in H, ?0) is equivalent to the surjectivity of 4, in h® and,
for every v € H, (30), there exist T" > 0 and v € X such that, for every j € N

(9) (05(1),9) = vju(u) = (¢;(T), Fi(w).  F (%) =u.

From the relation (32)(Remark B.1), there exists C(T") > 0 such that

_ ~ 7, 2 C T > C(T)?
I g =l < Gy U < & > < S0 i,
=1 l

j= =1



In conclusion, we set M = C;/ 5(T) since, for every ¢, ¢ € H, (30), there exist
v,w € X such that ¢ = Fj(v), ¢ = Fj(w) and

_ _ C(T)
lo—wll2 < 151 =@z < N E Il iz i) [10 = ¢lls) < TZW —¢ll(s)-
2) Let Hj(u) :== — fOT e ATy (s)B [ ey (1) B Yydrds with u €
X. Thanks to the Duhamel’s formula,

T
Aj(u) =They = e_i’\ngbl — z/ e_ZA(T_S)u(S)Be_“\lsgblds
0

T s
- / e_iA(T_S)u(s)B(/ e_iA(S_T)u(T)BI”T‘qbZdT) ds = e Mgy + Fy(u) + Hy(u).
0 0

We exhibit a ball U C X with center v = 0 such that, for every uw € U,
the map A; : v € U — 'ty € A(U) is an homeomorphism thanks to
[GCI7, Lemma 2.3; p. 42] and

(A = F)(w) — (A = F)@) gy = I Hiw) = Hi(@)ly Vs € X.

We define U as the neighborhood such that there exists M; < M /2 so that
| Hy(u) — Hy(v)]l(3y < Mil|u —vl[z2 for every u,v € U. First, we notice that

Hi(u) — Hy(v) — — / L AT () o()B( / e~ A=) BLbgydr ) ds

0 0

T s
- /0 e-“‘@—s)v(s)B( /O e—“‘@-ﬂ(u(f)—U(T))BrgqsldT)ds

T s

— / e AT=9)y(5)B (/ e ATy () BTy — Fi(b[)d?) ds.
0 0

Thanks to Proposition 1.2 and Remark 1.3, there exists a constant C(T") > 0

such that, for every ¢ € H* N H} and u € L?((0,T),R),

T
/6_2A(T_5)H(S)de8 < C(M)l[ull2 1 B 3191 pge rz-

0

a0

3)

As we assumed || B||5 = 1, we have

t
ITpor =Tl s < || [ e 409 BGuLtor - urpon)|
N 0 L HE
<CMI Bl vl dr — uly bl ooz
< Ol = ull2l[T¥ ]l gz + CT)[0l|2lITF = T oo prz-
Let p>1. IfU ={ue X: |ulls < (uC(T))" '}, then

, uC(T)
1T 1 — T énll oz < 1 v = ull2IT¥ 1l 5o 112




for every u,v € U. Now,
[1Hi(u) = Hi(v)lls) < CT) o = ulla(l[ull2 + [0l T 1 oo 2

2p—1)
mC(T)HU —ull2|T¥ il Loe -

Thanks to the relation (10) and to the Duhamel’s formula,

IT7 el Lgemz < oullsy + CD)ull2 | B 5[ Tl Lo prz-

+ O 0l3IITY ¢ — Tyl ez <

l9ull(s) ul3
We obtain [|[I¢y][ Loz < el TET; < = and

— ||Hl<u>—Hz<v>||<3>s(i“—)z3c< o — ulla.

To apply [GC97, Lemma 2.3; p. 42], we set M; = —2/%136’( ) and we

estimate p such that M; < M/2. The last inequality is true when
(11) w>ap+ Vag(ag +1) 41, aj := 20(T)C(T)PC; .

Let us establish an upper bound for C(T)C~'(T) by studying the constants
C4,Cy appearing in Ingham’s Theorem ([KLO05, Theorem 4.3]). First, we
refer to Remark B.1 (Appendix B) and we set T' = g?' = 4 for 4 = 72, Let

2

=0T =4, f= = GO) =%, Iy = [~1,+1), m = (|[Io] ") =2, 0 =
~ 2 !
4R?% G(0) = w and R = II_2| = 2. By substituting the constants in the

proof of Ingham’s Theorem [KLO05, pp. 62 — 65]), we obtain Cy = m%ﬂ =

£ and O = ngg) Ir 37 The proof of Proposition 1.2 (presented in [BL10])
and the relation (32) (Remark B.1; Appendix B) imply

(12) C(4/7) = 37~  max {V2Cs, \/4/7} = 24v/27 %
In addition, we have 6’(%) = 20_1 and C(4>5<%) < §. Now, we know
that a; = % and q; < —al for @, := 13/C; (O is defined in As-

sumptions T). Moreover C < |<¢1,B¢l>| < |I B =1, which ensures that
a; > 1. We need to define p such that (11) is verified and

12 /12 34 34 13
a; +/ai(ap + 1) +1<<—al \/gal(gal—i—l) 1)<gal T
1

If we choose p = 37£— then p > a; + v/ai(a; + 1) + 1 as required in (11).
We recall U = {u € X : [jullz < (uC’(4/7r))_1} and, as My < M/2,
[GCI7, Lemma 2.3; p. 42] is satisfied.

In conclusion, 4; : U C L?((0,4/7),R) — A(U) C H?o) is an homeomor-
phism.

10



3) We show a neighborhood of ¢; in H, ?0) contained in A;(U). Let

We notice that ,uC’(%) < 3}—31 and we set U = By (0,3%3) C U. From
the proof of [GCY7, Lemma 2.3; p. 42], we know that A;(U) contains a ball

of center 4;(0) = gzﬁl(%) and radius (M — Ml)% Thanks to the relation
My < M/2, we know that

1
=T S - > 6%,

A <BX (o%)) D E;H?O) <A,(0) (M — Ml)SB) 2 By, <¢z(4> 662’;3>

In the first part of the proof, we suppose || B[ 5 = 1, but we can generalize
the result for || B || 4 # 1 thanks to the identity A+uB = A+u || B || 3”|BLi"3.
To this purpose, we consider the operator mBng, and the control u || B| 4
and we substitute to C; with Cp || B 5 ! (defined in Assumptions I). We also
notice that if || B || su € Bx (0 ), then v € By (O

conclusion, we obtain

C? @ ) _

3 Proof of Theorem 1.1

In

e J_> ,
3B BT, "33 B3

Proposition 3.1. Let B satisfy Assumptions I. For every j,k € N, j # k,
and n € N such that n > 6%27'2b (1 + C")E(j, k), there exists 0 € R so that

10,5 — 1%y <
S131 ¢
6212 ik (1+C) || Bl (y I Bl maX{ B M Bl 53> = 577 max{j, k}**
1Bkl '
Proof. See Appendix A. O

Proof of Theorem 1.1. The proof follows from Proposition 2.2 and Proposi-
tion 3.1. Let R}, := ||[T)7.. 5 ewqbk”?g) be estimated in Proposition 3.1. We

know lim, .~ R), = 0 and there exist n* and 6 (depending on n*) such that
o

(13) T35.65 € Byy ("o, CHER I BID™), Ri < b
62424 B}

11



For 0 < s <3 and j, k € N, we know that [| B[ ) = Cr and [| Bf ) =
|Bjkl- For b:= || Bl {y | BII I Bl 3 max { || BII, || Bll3}, the relation
(13) is valid when

61 Bl (2
oo 6%mt2e Pir b1+ COIR? — PR max{j, k}*!

n* >
CiO|Bji|"

a k2_ 2,2

For uu=(t) = COb((n—*J)ﬁt) and n*T* = n* |Bﬂ-k|’ thanks to Proposition 2.2
7y

and to the time reversibility of the (BSE) (see [Duc, Section 1.3]), there

exists u € L?((0,2),R) such that

s

(14) T4, b = e oy O

4 Computing the phase

Let k,j, N € N. We define the N x N matrix M"Y such that, for I,m € N,

l2_ 2
Z=m] N,

B Lo .
Ml{\rfn = (¢, ]WNfbm> = _;m /0 e m2)v(r)dl’v if k2 — 2| 5

for v(t) the reciprocal function of ¢ fot | cos(m2(k? — j2)s)|ds, otherwise

]\/IZJXH = 0. Let 0¥ € RT be the smallest value such that " = (¢r, 2B |71 MY o5)
and

QN
- (gm*
In the following proposition, we provide a similar result of Proposition 3.1
without the presence of the phase ambiguity in the target state. The propo-
sition leads to the subsequent Corollary which ensures a similar result to
Theorem 1.1.

TN

Proposition 4.1. Let B satisfy Assumptions I. Let j,k € N, j # k, and
n € N such that n > 6*2 10 72b (1 + C") || B|| E(j, k)|Bjx|~*. For N € N
such that

L (5 w5 )« 2L
IBisl \\ S - k2 = g2

we have that
Tt Lo &5 — Iy <

10 6%712(1 4 C) || Bl () Il B *max{ || BII, || Bl 3}1k* — j|° max{j, k}**

| Bj '

8n

12



By following the proof Theorem 1.1, we have that Proposition 2.2 and
Proposition 4.1 imply the next corollary.

Corollary 4.2. Let j,n,N € N and k € N be such that k # j and
(15) m? —k? £ k% - 12, vm,le N, m,l #k.
Letn > 6% 10 7120 (14 C") || B|| E(j, k)|B;x|~'. If N > max{j,k} and

2 S 2\ ? 2 Alll Bl
Bul’) (30 1mf)") < ,
| Bjkl (( Z Bul”) Z 1Bigl ~ nm?lk? — 52

I=N+1 [=N+1

(16)

then
T3 T 8 — k| 5) < CRO*K* | B 5)

Moreover, there exists u € L%((0, %),R) such that [lul| 2, 1)p) < m

and
I FZ:”r* Inbj = Ok

5 Application of the main result

In the current section, we briefly propose a possible application of Theorem
1.1. Let us consider an electron trapped in a one-dimensional guide of length
~ 1073 m and represented by the quantum state 1. We suppose that the
electron is subjected to an external time-depending electromagnetic field
V(1) with 7 € (0, T) and T a positive time. Let m, ~ 1073° Kg be the mass
of the electron and A ~ 10734 @ with A the reduced Planck constant.
The dynamics of 1 is modeled by the Schrédinger equation

R d?
Cme d

A7) b b(r) = () E VR, T e (0T).

We substitute
z:=x-10> m™, ti=7-10% s, P(t, ) == P(1,%).

The quantity V (t) := V(7 ) 1032 % and the coordinates (t,z) € (0,T) x
(0,1) with 7" := T - 10? s~! are dimensionless. By computation, we obtain
2

. d d
i () =~ g+ Vet),  te(0,T).

If the control potential V(t,z) is equal to u(t)z? where z? represents the
action of the field and u its time-dependent intensity, then we obtain the
bilinear Schrédinger equation

iOpb(t, ) = AY(t, ) + u(t) x> (t, ).

13



We exhibit u driving the state of the particle from the first excited
state to the ground state. For this reason, we retrace the proof of the
first point of Theorem 1.1 with B : ¢ + z21. Let ¢, and ¢» be eigen-
states of A. We define a control function driving ¢2 in ¢;. First, for
(pj, 2% ¢p) = 2]01 x? sin(mjx) sin(mkz)dz, we notice that Assumptions I are
satisfied since

T G ) S G VAL B V) )
(@5, 2" dr)| = ’(j —k)2r2 (Gt k)e2n2l (72 — k2)2n2’ JFk,
1 1
2 = |2 -
|<¢k,(1) ¢k>| - ’3 2k272 | ke N.

For every 1 € H?o)v we have 2y € H3 N H{, |0, < [|0%4| and, from the
Poincaré inequality, [|1|| < 71|02 and |02 < 771 034||. Thus,

' 2v/5 + /31 2
IBIZ= sup (1wl + o2 + oba*y]?) < (22T
YEHT,, V157
¢l (g)<1
N <2\/15 +4v6m + \/377)2 N (6\/15 + 657 + \/§7T)2 <503
5,93.
V1572 V157 -
Equivalently [| Bf ) < 3,4 and || B|| = 1/4/5. Moreover, C' = 0 and
2r -3 8 4
1Buil =C1=——5~  |Bi2| =C2 =5, 52

If we retrace the proof of Proposition 2.2 by substituting the previous con-
stants, then we obtain that in BH3 (ngl, 7,76 - 10_6) the local exact con-

trollability is verified. Let T = 3 ; u(t) = cos(37%t), T* = 3, K = 9”
By repeating the proof of Theorem 1.1 and Proposition 3.1, we see that, for
u, := 7, there exists ¢ € R such that

le® 61 — Tyt 23y < 2,61- 1010071,

In the neighborhood B 3, (61, 2,4-1075) . the local exact controllability is
verified and the first point of Theorem 1.1 is satisfied for n = 2,38 - 108,
In conclusion, there exists 8 € R such that for

8 )
there holds ||ew¢>1 — 1“1}¢2||(3) < 2,4-107%. In addition, there exists @ €
L?((0, %), R) such that

u(t) = (2,38 -1018%) "L cos(37%t), T = (2,38-10'%%)

TUT% o = €.

In conclusion, the dynamics of (17) drives the state of the electron from the
first excited state to the ground state in a time T ~ 104 s

14



6 Conclusion

The estimates introduced in the work are far from being optimal and one
might be interested in optimizing them in order to study meaningful physical
systems.

The first try is to repeat the steps of the proof of Theorem 1.1 for specific
B, j and k, but other possible ideas can be the following. For instance,
Theorem 1.1 can be stated for other |/\k2+>\]|—periodic controls by using the
theory exposed in [Chal2].

Moreover, in Proposition 2.2, one can look for a larger neighborhood of
validity of the local exact controllability. A try is to use “Haraux’s Theorem”
([KLO5, Theorem 4.6]) instead of Ingham’s Theorem ([KLO05, Theorem 4.3])
and change the time T' = %.

Even though an optimization work is required for any physycal appli-
cation, numerical results can be provided by following the developed tech-
niques. Indeed, as the dynamics time and the relative control function are
explicit for the global approximate controllability, suitable algorithms can
be implement in order to confute the provided estimates.

Acknowledgments. The author thanks Thomas Chambrion for suggesting
him this problem and for the explanations given about the work [Chal2].
He is also grateful to the colleagues Nabile Boussaid, Lorenzo Tentarelli and
Riccardo Adami for the fruitful discussions.

A Explicit controls and times for the global ap-
proximate controllability

For j, k € N, we recall the definition of Bj = (¢;, Boy) and we denote

T T o 27 ot = cos ((k* — j2)7r2t)7
| Bj k| Ak — Ay n
4 2 . [N — Al |~
I=———— K=—— C'= sup ’sm " ‘ ,
Ak — A | Bj x| (1L,m)eA’ { ( |A\x — >\j|) }

3
A= {(m) € N2 {Lm} 0 (kY # 0, 12— | < 51k = g,

|>‘l - )‘m| 7é |)‘k - )‘j|: Bl,m 7é 0}-
In the following proposition, we provide a global approximate controllability

result with explicit controls and times with respect to the .7#-norm.

Proposition A.1. Let B satisfy Assumptions 1. For every j, k € N, j # k,
and n € N such that
3(L+C)Bisl I B
n > . ,
k> — 52

(18)
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there exist T, € (nT* — T, nT* 4+ T) and 6 € R such that

_ 2
3|Bjkl 1+ I Bl
nlk? — 57| '

T gy — e?erl|3, <

Proof. Thanks to [Chal2, Proposition 6], for any n € N, there exists T), €
(nT* — T,nT* + T) such that

Lo, Do)l (14 C) 1l (65405, ) + Snldw. DB
L+2K || B~ n '

We point out that the definition of 7™ provided in [Chal2, Proposition 6] is
incorrect and the formulation that we provide can be deduced from [Chal2, Proposition 2].

In addition, we have 1 — |(¢x, Iy ¢5)| < U+2K || B )751+C/) IBIL _. R, and

l#k

Afterwards, fixed n € N, there exists # € R (depending on n) such that
[(r: €P0r) — (9n, T2 05)|* < Rp and Ry, := [|e®¢y, — 7 ¢5]|* < 2R, + Ry

- B
As |Bj k| ! Bl = % > 1, we have

L+2K ([ BIDA+ ) BIIL _ 3L+ C")|B;i || BJ?
n - n|k? — 52| ’

R, =

Ifn> for j # k, then R,, <1, R?L < R,, and

3(L4CY) Bl I B
=71

3Bl M1+ O || B ?

||ew¢k - Pg":qﬁjnz < 2R, + R?L < 3R, < n|k? — ;2|

O

Proposition A.2. Let B satisfy Assumptions 1. For every j, k € N, j # k,
and n € N satisfying (18) such that

(19) n 22 Bl (3,
there exists Ty, € (nT* — T, nT* +T) and 6 € R such that

2183%0712(1+ ") || B ?2) Il B|*%* — 52> max{, &}**
|Bjk|™n '

L5205 — drllfs) <
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Proof. 1) Propagation of regularity from H(QO) to HE‘O): In the first
part of the proof, we show that the propagator I'% preserves H Elo) and B €
L(H{,)- Let us denote || fll pv(zry == | flBv(0.1) %) = $UPgt,},cnep 2jmr | (E)—
f(tj—1)| for f € BV((0,T),R), where P is the set of the partitions of (0,7)
such that to =0 < t1 < ... < by =T. R
Let € > 0, Ac = [| Bl ()€™ Ae = Ac + [lunll (0.7 ) | Bl (2) and H(40) =
D(A(iAe — A)). We refer to [Kat53] and we prove that the propagator U™
generated by

A+ un(t)B — il[unl| L0 ») 1 Bl (2)

satisfies the condition ||U/ 9|4y < C|[¢]|(4) for every ¢ € H(40) and suit-
able C' > 0. Indeed, —i(A + un(t)B — illun|| L= ((0,r) &) | B [l (2)) is not just
dissipative in H(QO), but also maximal dissipative thanks to Kato-Rellich’s
Theorem [Dav95, Theorem 1.4.2]. Now, Hille-Yosida Theorem implies that
the semi-group generated by —i(A + un(t)B — il|unl|Lo(0.1) ) Il Bl (2)) is
a semi-group of contraction and the techniques adopted in the proofs of

[Kat53, Theorem 2; Theorem 3] are valid. For n > 3¢, |[|un(t)B(ile —

B iAe—A)~1 B .
A @ < Bl (2 III(n ) e < I nﬂl:z) < 1 and we introduce

M= sup || (A~ A= un®)B) Ml g g

t€[0,Ty]
= sup |[|(Z = un(t)B(ir —A)"H7
20) o ¢ (t)B( )7 e
+o00 ~ N n
= sup || up(t)B(iAe — A)™ = < 2.
o I ;:1( n(t)B(iAe = A)7 ) lll @) = ——

We know that [|k+f ()| sv(om)r) = [lf I Bv(0.1) R) forevery f € BV((0,T),R)
and k € R. The same idea leads to

N = Nk = A= OB Wy (i ) = Ieelave 1Bl gy i
Thanks to [Kat53, Section 3.10], there holds

(A + un(T) B — i) U b5l 2) < MeMN[[(A — id) sl o)
< MMV (N + X)j? < MeMN (4 A+ [|ull Loy ) | B (2))j4-

Now, as [[(A — i5\€)1/1||%2) = ||A11J||%2) + S\EH@bHé), for every 1 € flf‘o),

2 ~
BTy < (el Al )+ I Bl 191l 2))” < 26 (14017 + A2 1411 F)) < 28|\¢||§;(40)
and N < ev/2||u,|| BV(T,)- In addition, thanks to the relation (20),

I AA +un(T)B = ix) ™ | (g) < M + | A(A=id) ™! | M < 4.

17



For every j € N, we know that
‘|Utun¢j ”(4) _ e—t||un||Lx((0«T)«R) 1Bl (o ||I‘?n¢j||(4) < e—% B (2 \|F?”¢j|l(4)
and, for n satisfying (19) and € = (2v/2[|un| py(1,,)) ", we have

(21)

Tn || B i\
0% 651l 4y = [IATE 5l 2y < den VBN @ (A + un(T0) B — iA) UL 65l o)
< e 1Bl @t 2v2ellunllovern (12 4 5 ) j4

1By | 2Bl (2
< Se [Bj k| nr|k2—j2|

+2v2¢|lunll By (1, - .
P (2 4 || B| (2)(€ b [t oo 0,1 ) i

Il Bl (2)
S Se [Bj k!
Il Bl (2

—=+3/2 _1y .
<8 P (14 2Vl gy 1 Bl ) + I Bl g™

1.9./2 n ]
+142v2e|lu IIBV(Tn)(ﬂ.Q + I Bl (et +n))5"

The interval [0,nT* + T| contains less than d quarters of period of the
function uy, for d := 2n?n|k? — j2||B; x| ! + 4 since

i (NT*+T) = %Sin (PR (T +T)) = d= (x2(k— j2)(nT*+T))%.
From (19), n > || B| (57 2|5 — k[~1), 7°n|k* — j?||Bjx| ™! > 5 and

(22)  unllpviry) < lunllpvr+r) < (d+1)/n < 3x2(k* — 52||B; |~

(also the assumption n > 3¢ is verified). Thanks to || B[ ) > [Bj| and
[l Bl > |Bjkl, the relation (21) becomes

(23)
Il Bl 2
TS 51| 4y < 8e TP

+3/2 j -
(7% + 3 2V21 || B[ () |k* = 72|| Bjsl "

1Bl )

+57 B o 1 BII 5 = K2)5* < 223 5T || B ) k2 — 7211 Byl 5.

When u € BV(T), the propagator I'}, preserves H(40) if Be L(H(QO)).

2) Conclusion: Let f, := ¢¢y — FZ}Z(/ﬁj. First, we point out that, for
every s > 0, we have an||%s) < (k* + ||F“Z¢j||(5))2. As ¢, 0 € Hfp,, for
every s > 0, the point 1) ensures that I'}.¢; and I'.¢; belong to H(40) for
u € BV(0,T). Thanks to the Cauchy-Schwarz inequality,

A2 full* = ((A2 fny A2 £))° < ((A2fns AF))? < A2l 2l A1,

IASal? = (Afn, Afa) S NA2FMISall, = W falliy < IFalll1FallCay-
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For R,, defined in the proof of Proposition A.1, the relation (23) implies

‘ EIr )

| £allfy < 3Ra(2°8'm%e il ||| B | () |k* — 5| Bjse| ! max{j, k}*)°
61151l )

_ 2183W712(1 4 e il || B {y Il Bl *[%* = 52| max{j, k}24

- n|B; k|7

O

Proof of Proposition 3.1. We notice that the hypotheses of Proposition A.2

are verified. We estimate supycinpe 7 pnreir) [T1" 05 — 77 ¢5ll(3) and we

consider the arguments leading to (21). The uniformly bounded constant

C(-) is increasing and (12) implies supycpp«—7 407 C([t=15[) < C(2T) <
C4/m) = 24‘[ . Thanks to Proposition 1.2 and Remark 1.3,

sup{ s 00~ T Lol sup T3, Do, — sl }
tenT*=T,Ty] te[Tp nT*+T

nT*+T
<c(Bl [ s s (ol s 06 ).
T T te[nT* ~T.Ty)]

The techniques adopted in (21) lead to

Bl (2

+3/2 ;
sup [Tyl < 8e B (1 +2V2[unllay ) Il Bl 29)3°,
te [’ILT* *T-,Tn
e sup ||F? 753 _Fu ¢j||(3
te(nT*—TnT*+T)
Bl
4 2) 1379
<o(d)em 18,2 . L 223022 | B | gy K2 — 52| By~
[ B (2) 32 Il B
<ot NN g2y gy By
n
Now, for R}, := [|T)5. ¢ €w¢k||?3)
Ri<2T  sup  |Tingy —Tireyly + 27Ty — o}
n < t Pj 711(3) Tn "I kll(3)
te(nT™* =T nT*+1T)
(24) BN o 8
<27 (e Tl Y By 652 | Bl gy Bisl T Nt) + 27l

We underile that || B[, [| Bl = [B;, i, ke N If

1B ()

n > 62712 (14 CE(j, k) > e Bisl

+3/2 1.
1B I 572 6 | Bl (3| Bjxl 5",
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1Bl (2

TE0e) |5 o
= Ry <27 (e B1kl I Bl 5 6= B 2| Bjkl In~lit 4+ ||fn||?3)>
26,12 ! 6‘”:& 6 2 215 . 24
_ 622 (L + Ce Fikl || Bl o) Il Bl max{ || BII, || Bl 3}k - j°|° max{j, k}
- |Bjkl™n '

O

Proof of Proposition 4.1. The proof follows from [Chal2] that defines the
phase @ introduced in the propositions 3.1, A.1 and A.2. By referring to
[Chal2, Section 3.1], we estimate N > max{j, k} such that

(25) K||(1 = 7n)B(¢j(d, ) + ¢r(Pk: ) < Rn,
for () := SN, oo, -). We have
K||(1 = 7n)B(gj{(9), ) + drlon, )| < K|[(1 — 7n5)B(¢j (b5, )|l

PR ) Blowlon NI < o (( > Buk) + ( S By

| Bjiil I=N+1 I=N+1

)<

As %% < R, we impose that N > max{j, k} is such that

2 (( i 2\ 2 - 2\ 2 4 Bl
=T |B1.k| ) +( | B4 ) ) < —i5—3
|Bjk] l:%;i-l l:%;ﬂ ’ n?|k? — 57
Let X ("N) (t, s) be the finite-dimensional propagator defined in the first part of
[Chal2, Section 2.1]. Thanks to the proof of [Chal2, Proposition 2|, there
exists T;, € (nT* — T,nT* 4+ T') such that

(26) [ M ) — (04, X5 (T, 0)65)| < Rn, V€N

We point out that |{¢g, eKMN<bj)| = Lsince MY = i) for M a N x N matrix
with real entries (see also [Chal2,p. 5]). Now, 8" € R¥ is the smallest value
such that " = <¢k,eKMN¢j>, which follows from [Chal2,relation 11].
Indeed, M Nzn(()) appearing in the mentioned equation corresponds to the
free finite-dimensional propagator after a time reparameterization and the
averaging procedure performed in the first part of [Chal2, Section 2]. More-
over, from [Chal2, relation (14)] and the following one, the time reparam-
eterization maps K in T,,. Now, we use [Chal2, relations (18), (19)] as in
[Chal2, relation (20)] and we obtain

(27)
(1. X053 (T 0)65) — (00, T )| < K1~ ) B(6 (5, ) + 0, )
4K Ry (1~ 7)) Brnl| < R+ 8Byl ™ | Bl R < 9|Bjl ™ | B| R

20



Hence, from (26) and (27), it follows

AN
1= [{on, T es)| < 1€ — (bp, Tiir o5)]
T Un Un Un,
< Ry + 9B | Bl B < 10|Bjs| " || B|| By =: Ry

In conclusion, e—i0% ;= FOT ~¢j for ™ = )\;191\7 and we substitute R,, with

R, in the proofs of the propositions 3.1, A.1 and A.2 which leads to change
the relation (24) as follows

‘gN
T Ty 65 — dkllls) = [T — € oillfs
_ 106720+ CY Bl I BI wax{ 1| BII, I B}k — 5P max{j, k}*!
- | Bj k[0 '

O

B Moment problem

In this appendix, we briefly adapt some results concerning the solvability of
the moment problem (as the relation (6)). Let [BL10, Proposition 19; 2)]
be satisfied and {fx}rez be a Riesz Basis (see [BL10, Definition 2]) in

X = span{fi : kGZ}%Q%,

with ¢ and Hilbert space. For {wvp}rez the unique biorthogonal fam-
ily to {fr}trez ([BL10, Remark 7)), {vi}rez is also a Riesz Basis of X
([BL10, Remark 9]). 1If {fi}rez is the image of an orthonormal family
{ek}rez C 7 by an isomorphism V : .27 — 5, then {vy }rez is the image
of {ex}rez C H by the isomorphism (V*)~1: 5 — 5. Indeed, for every
k,n € Z, we have

Orj = (ks fj)ow = (vr, V(€)= (V7 (ur), )

that implies (V*)~l(ex) = vy, for every k € Z. We point out that in
[BL10, relation (71)] there is a misprint as there exist C7, Co > 0 such that

(28) C1Y il < flul%e < C2 Y fal?,
keZ keZ

for every u(t) = Y, oy @i fr(t) with {z}rent?(C). The arguments of the
proof of [BL10, Proposition 19; 2)] and the relations

VI =TS IV ey = IV eee, TV M oey = 1V e
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lead to a similar relation as C; > Srez lzrl? < lul?, < or? >z [wk]? for
every u(t) = Y cpxkvk(t) with {zg}rent?(C). The constants Cl,Cg >
0 are the same of (28). Moreover, for every u € X, we know that u =
Y ke Vk(fr, u) s since { fi}rez and {v }rez are reciprocally biorthonoromal
(see [BL10, Remark 9]) and

@) G () < lullr < O (X ).

kEZ kEZ

When Ingham’s Thoerem [KLO05,Theorem 4.3] is verified, for T > 0
large enough, the family of functions {ei’\k(')}kez is a Riesz Basis in X =
2

. L
span{ex() . ke Z} = C L*((0,T),C). For {vj}rez the unique biorthog-
onal family to {e*()};cz and # = L?((0,T),C), we have

(30) (Z| (e (), ) < ullw <C5 <Z|<ei)\k('),u>ﬂ‘2>%'

kEZ kEZ

(NI

Then, the map F : v € X — {(e“‘k’('),u),%ﬂ}kez € £2(C) is invertible. For
every {xy}rez € ¢2(C), there exists a unique « € X such that

T
TE = / u(s)e M ds, Vk € Z.
Jo

Remark B.1. We refer to the proof of Proposition 2.1 and we consider
{ktken = {72(k? — 1?)}ren for | € N such that

(31) M- N=7mRE 1) £ -2 =N, Vk,j € N.

For k > 0, we call wy, = —M\g, while we impose wy, = A_y for k < 0 and
k# —l. We call Z* = 7\ {0}. The sequence {w}rez-\{—1} Satisfies the
hypotheses of [KL05, Theorem 4.3] thanks to the relation (31), which im-
plies G = infk;,,gj lwp — w;| > 72 Given {zp}ken € £2(C), we introduce
{Trtrez\f-y € (%(C) such that T, = xp, for k > 0, while T), = T_j, for
k<0 and k 7é —l. ForT > 2n /G, there exists u € LQ((O T),C) such that

T = fo Ye~“kSds for every k € Z* \ {—1}. Then
T = fOT )eMkSds = fOTﬂ(s)e“‘ksds, ke N\ {l},
T = fo ds k=1,

which implies that, if x; € R, then u is real. For {vg}ren the biorthogonal
family to {e*()}en, we have v) € R and {Ty re is the biorthogonal family
to {e™ O pen. Thus, u(t) = Y pen Thvr(D) + 2 pem oy Tk (E) = zyui(t)+
23 reny Rlzpvr(t)) and (30) leads to

(32) <Z|xk|2) < lull L2,y m) < 2CT (lekI )%.

keN keN
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For x 1= {wp}rez-\({-1) belonging to 2(C) = Uz tvez(—1y * {Zr}ren €
2(C); x_p =75, —k € N\ {l}; 2; € R}, we define

ux(t) = o +2 Y R(apw), X = {ux: xeZ(C)}

keN\{1}

From (32), J : u € X — {(u, eiwk(‘)>}kez*\{4} € ¢2(C) is an homeo-
morphism (for {wytren defined above), which implies that J : v € X —
{{u, e NV ey € {{aptren € 2(C) : xp € R} is also an homeomorphism.
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