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Abstract

We consider the one dimensional bilinear Schrödinger equation in
a bounded domain. We exhibit how to construct controls and times
for the global exact controllability.

AMS subject classifications: 35Q41, 93C20, 93B05, 81Q15.

Keywords: Schrödinger equation, global exact controllability, inversion
problems, control estimate, time estimate.

1 Introduction

In non relativistic quantum mechanics any pure state of a system is math-
ematically represented by a wave function ψ in the unit sphere of a Hilbert
space H . If we consider of a particle constrained in a one dimensional
bounded region in presence of an external field (e.g a laser) then we choose
H = L2((0, 1),C) while the field is represented by an operator B and by a
real function u which accounts its intensity. In this framework the evolution
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of ψ is modeled by the Cauchy problem{
i∂tψ(t, x) = Aψ(t, x) + u(t)Bψ(t, x), x ∈ (0, 1), t ∈ (0, T ).

ψ(0, x) = ψ0(x).
(1)

where A = −∆ is the Laplacian with Dirichlet homogeneous boundary con-
ditions (D(A) = H2 ∩ H1

0 ), B is a bounded symmetric operator, u is a
control function and ψ0(x) the initial state of the system.
A natural question of practical implications is whether there exists u steering
the quantum system from any given initial wave function to any given target
one and how to build explicitly this control function.

We say that Problem (1) is globally (locally) exactly controllable in a
normed space M ⊂ H if for any ψ1, ψ2 ∈ M (in a neighborhood of M)
there exists a control so that the dynamics of (1) steers ψ1 into ψ2.
We also say that Problem (1) is globally approximately controllable in M
if for any ψ1, ψ2 ∈ M there exists a control such that the related dynamics
drives ψ1 infinitesimally close to ψ2.
The global (local) exact controllability is said to be simultaneous if, given
two arbitary sequences inM (in a neighborhood ofM), there exists a control
mapping each element of the first into the corresponding of the second.

The controllability of Problem (1) has been widely studied in the litera-
ture starting by the seminal work on bilinear systems of Ball, Mardsen and
Slemrod [2]. We refer the reader to [11, P roposition 1] for two important
consequences of the results proved in [2]: well-posedness conditions and a
non-controllability result, both for Problem (1) in H . For further charac-
terization on the well-posedness and the time reversibility of the problem
see also [11, Section 1.2] and [11, Section 1.3]. However despite this non-
controllability feature many authors have addressed the problem for weaker
notions of controllability.
For instance in [3] and [4], local exact controllability results are ensured in
Hs

(0) := D(|A|
s
2 ) for some s ≥ 3.

Global approximate controllability in a Hilbert space has been studied in
[7], [8], [9] and in Hs

(0) for s > 0 in [5], [6], [10], [17] and [18].

In [16] simultaneous local exact controllability up to phase shifts in H3
(0) is

provided, while [15] proves the simultaneous global exact controllability for

n-tuples in H4
(V ) := D(|A+ V |

4
2 ) is ensured.

In [11] the author proves the simultaneous global exact controllability in
projection for sequences of elements in H3

(0).

The main novelties of the work are the following. First, we estimate the
controllability time for a dynamics steering a given eigenfunction of A into
another. Second, we explicit the control function in such dynamics driving
the initial eigenvalue into the second on up to well-known distance.
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In details we prove the following results.
First, we show how to construct a neighborhood in H3

(0) of any eigenfunction
of A in which the local exact controllability is satisfied.
Second, for any couple of eigenfunctions φj and φk, we study how to con-
struct controls such that the relative dynamics of (1) drives φj close to φk
as much desired with respect to the H3

(0)−norm.
Third by gathering the two previous results we define a dynamics steering
any eigenstate of A into any other and we provide the exact time required
to get to the target state.

In more technical terms, for any φj and φk we show how to construct a
sequence of control functions un and a sequence of times Tn > 0 such that

∃ θ ∈ R : lim
n→∞

‖ΓunTnφj − e
iθφk‖H3

(0)
= 0

for Γut the unitary propagator of Problem (1). We also establish a neigh-
borhood of φk with radius r where the local exact controllability is satisfied
and such that there exist n∗ ∈ N and u ∈ L2

((
0, 4

3π

)
,R
)

so that

‖Γun∗Tn∗
φj − eiθφk‖H3

(0)
< r, Γu4

3π

Γ
un∗
Tn∗

φj = eiθφk.

In conclusion we show how to remove the phase ambiguity and we provide
a time T1 > 0 such that

Γu4
3π

Γ
u′
n∗
Tn∗

Γ0
T1φj = φk.

This work represents a step for using the control theory into the ex-
perimentation of the quantum systems modeled by the bilinear Schrödinger
equation. Indeed almost the entirety of the previous works focus the atten-
tion in proving the existence of controls and times so that the controllability
is satisfied without making the two explicit. The main reason is that it was
not still clear how to establish the radius of the neighborhood where the
local exact controllability is verified.

1.1 Scheme of the work

In Section 2 we expose the main results of the work in Theorem 1 which is
divided in two parts.
In Section 3, Theorem 2 ensures the local exact controllability in H3

(0) and
we provide the proof of Theorem 1 in Section 4.
In Section 5 we present an example in which we apply the techniques devel-
oped and in Section 6 we discuss some open problems.
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2 Framework and main results

We consider an orthonormal basis {φj}j∈N composed by eigenfunctions of
A associated with the eigenvalues {λj}j∈N and

(2) φj(t, x) = e−iAtφj(x) = e−iλjtφj(x).

Let the spaces for s ≥ 0

Hs
(0) = Hs

(0)((0, 1),C) := D(A
s
2 ), ‖ · ‖(s) := ‖ · ‖Hs

(0)
=
( ∞∑
k=1

|ks〈·, φk〉|2
) 1

2
,

`∞(H ) =
{
{ψj}j∈N ⊂H

∣∣ sup
j∈N
‖ψj‖ <∞

}
,

`2(H ) =
{
{ψj}j∈N ⊂H

∣∣ ∞∑
j=1

‖ψj‖2 <∞
}
,

hs(H ) =
{
{ψj}j∈N ⊂H

∣∣ ∞∑
j=1

(js‖ψj‖)2 <∞
}
.

We equip the space H3 ∩H1
0 with the norm ‖ · ‖2

H3∩H1
0

=
∑3

j=1 ‖∂
j
x · ‖2 and

we define the following norms for 0 < s < 3

||| · ||| := ||| · ||| L(H ,H ), ||| · ||| (s) := ||| · ||| L(Hs
(0)
,Hs

(0)
),

||| · ||| 3 := ||| · ||| L(H3
(0)
,H3∩H1

0 ).

Assumptions (I). Let B be a bounded symmetric operator.

1. ∀k ∈ N, ∃Ck > 0 such that |〈φj , Bφk〉| ≥ Ck
j3

for every j ∈ N.

2. Ran(B|D(A)) ⊆ D(A) and Ran(B|H3
(0)

((0,1),C)) ⊆ H3 ∩H1
0 ((0, 1),C).

Remark 1. If B satisfies Assumptions I then B ∈ L(H2
(0), H

2
(0)) thanks to

[11, Remark 1]. The same argument implies that B ∈ L(H3
(0), H

3 ∩H1
0 ).

Let us define b := |||B ||| 6(2) |||B ||| |||B |||
16
3 max

{
|||B ||| , |||B ||| 3

}
only de-

pending on the operator B and for every k, j ∈ N, n ∈ N

E(j, k) := |k2 − j2|5C−16
k k24|Bj,k|−7 max{j, k}24,

un(t) :=
cos
(
(k2 − j2)π2t

)
n

, C ′ := sup
(l,m)∈Λ′

{∣∣∣∣sin(π |l2 −m2|
|k2 − j2|

)∣∣∣∣−1
}

for

Λ′ :=
{

(l,m) ∈ N2 : {l,m} ∩ {j, k} 6= ∅, |l2 −m2| ≤ 3

2
|k2 − j2|,

|l2 −m2| 6= |k2 − j2|, 〈φl, Bφm〉 6= 0
}
.
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Let N ∈ N and Bj,k := 〈φj , Bφk〉 ({Bj,k}j∈N ∈ `2), we define the N × N
matrix MN

j,k
(
MN
j,k

)
l,m

:=
Bl,m(iµ−2iµ+e4iµ(sin(4)+iµ cos(4)))

4(µ2−1)
, |l2−m2|

|k2−j2| = µ ∈ N \ { 1},(
MN
j,k

)
l,m

:=
Bl,m((−8+3i)+ie8i+2π)

16 , |l2−m2|
|k2−j2| = 1,(

MN
j,k

)
l,m

:= 0, |l2−m2|
|k2−j2| /∈ N.

Let θ ∈ R+ be the smaller value so that e−iθ = 〈φk, e2|Bk,j |−1MN
j,kφj〉

Tn :=
nπ

|Bk,j |
, T̃N :=

−θ
(jπ)2

.

Theorem 1. Let k, j, n,N ∈ N and B satisfy Assumptions I.

1) If n ≥ 634π12b (1 + C ′)E(j, k), then∥∥ΓunTnφj − e
iθφk

∥∥
H3

(0)

≤ C2
k(6k3 |||B ||| 23)−1.

Moreover there exists u ∈ L2((0, 4
3π ),R) such that ‖u‖ ≤ 2Ck

7 |||B ||| 23k3
and

Γu4
3π

ΓunTnφj = ei
(
θ+ 4k2π

3

)
φk.

2) If n ≥ 63410 π12b (1 + C ′) |||B |||E(j, k)|Bj,k|−1, N ≥ max{j, k} and

2

|Bj,k|

(( ∞∑
l=N+1

|Bl,k|2
) 1

2
+
( ∞∑
l=N+1

|Bl,j |2
) 1

2
)
<

4 |||B |||
nπ2|k2 − j2|

,(3)

then there holds∥∥ΓunTnΓ0

T̃N+
4λk
3πλj

φj − φk
∥∥
H3

(0)

≤ C2
k(6k3 |||B ||| 23)−1.

Moreover there enoindexists u ∈ L2((0, 4
3π ),R) such that ‖u‖ ≤ 2Ck

7 |||B ||| 23k3
and

Γu4
3π

ΓunTnΓ0

T̃N+
4λk
3πλj

φj = φk.

Remark 2. The results of Theorem 1 are not optimal. The aim of the work is
to show how to proceed for this type of problems and we present an approach
that one can use in order to establish times and controls for the global exact
controllability in H3

(0).
The purpose of Theorem 1 is to exhibit readable results for generic operators
B and levels j, k. For any specific choice of B, j and k, it is possible to
retrace the proof by using stronger estimates and obtain sharper bounds.
We briefly treat the example of B : ψ → x2ψ, j = 2 and k = 1 in Section 5.
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Remark 3. In the proof of Theorem 1 the choice of the control function
u comes from the techniques developed in [9]. We point out that one can
ensure similar results for other 2π

|λk−λj |−periodic controls by using the theory

exposed in [9].

3 Local exact controllability in H3
(0)

In this section we provide a brief proof of the local exact controllability in
H3

(0) by rephrasing the existing results of local controllability as [3], [4], [11],

[15] and [16]. Our purpose is to introduce the tools that we use in the proof
of Theorem 1. Let ψ ∈ H3

(0) and U(H ) the space of the unitary operators
on H , we define

BH3
(0)

(ψ, ε) :=
{
ψ̃ ∈ H3

(0)

∣∣ ∃Γ̂ ∈ U(H ) : ψ̃ = Γ̂ψ, ‖ψ̃ − ψ‖H3
(0)
< ε
}
.

Theorem 2. Let B satisfy Assumptions I. For every l ∈ N there exist
T > 0 and ε > 0 such that for every ψ ∈ BH3

(0)
(φl(T ), ε) there exists a

control function u ∈ L2((0, T ),R) so that ψ = ΓuTφl.

Proof. Let the decomposition Γut φl =
∑∞

k=1 φk(t)〈φk(t),Γut φl〉 and the map
αl(u), the sequence with elements

αk,l(u) = 〈φk(T ),ΓuTφl〉, k ∈ N.

Ensuring the local existence of the control function is equivalent to prove the
local right invertibility of the map αl for a T > 0 (in other words the local
surjectivity). To this end, we want to use the Generalized Inverse Function
Theorem ([14], p. 240) and we study the surjectivity of the Fréchet derivative
of αl, γl(v) := (duαl(0)) · v, the sequence with elements

γk,l(v) : =

〈
φk(T ),−i

∫ T

0
e−iA(T−s)v(s)Be−iAsφlds

〉
= −i

∫ T

0
v(s)ei(λk−λl)sdsBk,l, k ∈ N,

for Bk,j = 〈φk, Bφj〉 = 〈Bφk, φj〉 = Bj,k. The right invertibility of the map
γl consists in proving the resolvability of the moment problem

xk
Bk,l

= −i
∫ T

0
u(s)ei(λk−λl)sds.(4)

for each x ∈ `2(C) such that {xkB−1
k,l }k∈N ∈ `

2. Now thanks to Assumptions

I and to the fact that {xk}k∈N ∈ h3, the resolvability of the moment problem
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(4) is due to Ingham Theorem ([13, Theorem 4.3]) for T > 2π
G and

G := inf
k,j∈N
k 6=j

|λk − λj | = 3π2 > 0.

Then γl is surjective for T large enough and the proof is achieved thanks
to the Generalized Inverse Function Theorem ([14], p. 240), which provides
the local surjectivity of the map αl at the same time T .

Remark. We point out that one can achieve the result of Theorem 2 for
any positive time T > 0 by using Haraux Theorem ([13, Theorem 4.5]),
instead of Ingham Theorem ([13, Theorem 4.3]) as made in the proof of
[11, Theorem 8].

4 Proof of Theorem 1

The proof follows by gathering a local exact controllability result with a
global approximate controllability one. In particular it consists in the fol-
lowing steps.

� For any generic eigenfunction φl of A we construct a neighborhood
BH3

(0)
(φl, r) of radius r in which the local exact controllability is veri-

fied.

� We consider a generic couple of eigenfunctions φj , φk. We define a
sequence of control functions un and a sequence of times Tn such that
ΓunTnφj is close to φk up to a known distance in the H −norm depending
on n.

� By establishing this distance with respect to the H3
(0)−norm, we pro-

vide a lower bound for n so that it is smaller than the radius of
BH3

(0)
(φk, r).

� The local exact controllability in BH3
(0)

(φk, r) and the time reversibil-

ity (see [11, Section 1.3]) allow to define a dynamics steering φj in
BH3

(0)
(φk, r) and after in φk.

4.1 Neighborhood estimate

Let us define the following terminology

||| · ||| L(L2((0,T ),R),H3
(0)

) = ||| · ||| (L2
t ,H

3
x), ||| · ||| L(H3

(0)
,L2((0,T ),R)) = ||| · ||| (H3

x,L
2
t )
,

‖ · ‖L∞((0,T ),H3
(0)

) = ‖ · ‖L∞t H3
x
, ‖ · ‖L2((0,T ),R) = ‖ · ‖2,

‖ · ‖L1((0,T ),R) = ‖ · ‖1, ‖ · ‖BV ((0,T ),R) = ‖ · ‖BV (T ),
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for ‖f‖BV ((0,T ),R) = sup
{tj}j≤n∈P

n∑
j=1

|f(tj)− f(tj−1)|

and P the set of the partitions of (0, T ) so that t0 = 0 < t1 < ... < tn = T .

Let T > 0 and the space X̃ := span{eiλkt, k ∈ N}
L2

⊂ L2((0, T ),R) equipped
with the L2−norm. The local exact controllability is equivalent to the local

surjectivity of the map Al(·) := Γ
(·)
T φl : X̃ → H3

(0) so that

Al(u) = e−iλlTφl − i
∫ T

0
e−iA(T−s)u(s)BΓusφlds.

The proof of Theorem 2 is equivalent to the surjectivity of the Fréchet deriva-
tive of Al(u), the map Fl(u) :=

(
(dvAl(v = 0)) · u

)
∈ H3

(0) which implies the
local surjectivity of Al thanks to the Generalized Inverse Function Theorem
([14], p. 240). We want to estimate the radius of a neighborhood in which
the map Al is surjective. For this reason, we use [10, Lemma 2.3; p. 42] by
considering the quotient space X := X̃/Ker(Fl) with the L2−norm.

1) The map Fl : X → H3
(0) is an homeomorphism and we want to estimate

a constant M > 0 such that

‖Fl(v)− Fl(w)‖(3) ≥M‖v − w‖L2 , ∀v, w ∈ X.

Let us suppose |||B ||| 3 = 1. By recalling the proof of Theorem 2 we know
that the surjectivity of Fl in H3

(0) is equivalent to the surjectivity of γl in

h3. For every ψ ∈ H3
(0), there exist T > 0 and u ∈ X such that 〈φj(T ), ψ〉 =

γj,l(u) and such that F−1
l (ψ) = u.

For Cl defined in Assumptions I, thanks to [3, P roposition 19; (ii)] and to
Ingham Theorem ([13, Theorem 4.3]), there exists C̃(T ) > 0 such that

‖F−1
l (ψ)‖22 = ‖u‖22 ≤ C̃(T )2

∞∑
j=1

∣∣∣γj,l(u)

Bj,l

∣∣∣2 ≤ C̃(T )2

C2
l

∞∑
j=1

|j3γj,l(u)|2

≤ C̃(T )2

C2
l

‖ψ‖2(3).

For each v, w ∈ X, there exist ψ,ϕ ∈ H3
(0) so that ψ = Fl(v), ϕ = Fl(w) and

‖v − w‖2 ≤ ‖F−1
l (ψ − ϕ)‖2 ≤ |||F−1

l ||| (H3
x,L

2
t )
‖ψ − ϕ‖(3),

which imply that we can choose M = |||F−1
l |||

−1
(H3

x,L
2
t )

= Cl
C̃(T )

.
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2) Let u ∈ X, thanks to the Duhamel’s formula

ΓuTφl = e−iλlTφl − i
∫ T

0
e−iA(T−s)u(s)Be−iλlsφlds

−
∫ T

0
e−iA(T−s)u(s)B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

= e−iλlTφl + Fl(u) +Hl(u)

for Hl(u) := −
∫ T

0
e−iA(T−s)u(s)B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds.

We exhibit a ball U ⊂ X with center u = 0 where the map Al : u 7→ ΓuTφl is
surjective thanks to [10, Lemma 2.3]. However e−iλlTφl is constant and it
is sufficient to study the surjectivity of Fl+Hl. We define the neighborhood
U so that there exists M1 ≤M/2 such that for every v, w ∈ U

‖Hl(v)−Hl(w)‖(3) ≤M1‖v − w‖L2 .

First, we notice

Hl(u)−Hl(v) = −
∫ T

0
e−iA(T−s)u(s)B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

+

∫ T

0
e−iA(T−s)v(s)B

(∫ s

0
e−iA(s−τ)v(τ)BΓvτφldτ

)
ds

= −
∫ T

0
e−iA(T−s)(u(s)− v(s))B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

−
∫ T

0
e−iA(T−s)v(s)B

(∫ s

0
e−iA(s−τ)(u(τ)− v(τ))BΓuτφldτ

)
ds

−
∫ T

0
e−iA(T−s)v(s)B

(∫ s

0
e−iA(s−τ)v(τ)B(Γuτφl − Γvτφl)dτ

)
ds.

Thanks to [11, P roposition 5], there exists a constant C(T ) > 0 such that
for every ψ ∈ H3 ∩H1

0 and u ∈ L2((0, T ),R)∥∥∥∥∫ T

0
e−iA(T−s)u(s)Bψds

∥∥∥∥
(3)

≤ C(T )‖u‖2 |||B ||| 3‖‖ψ‖L∞t H3
x
.

Then

‖Hl(u)−Hl(v)‖(3) ≤ C(T )2‖v − u‖2 |||B ||| 23(‖u‖2 + ‖v‖2)‖Γut φl‖L∞t H3
x

+ C(T )2‖v‖22 |||B |||
2
3‖Γ

v
tφl − Γut φl‖L∞t H3

x

≤ C(T )2‖v − u‖2(‖u‖2 + ‖v‖2)‖Γut φl‖L∞t H3
x

+ C(T )2‖v‖22‖Γvtφl − Γut φl‖L∞t H3
x
.

(5)
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One can show by using the same technique adopted in (5) that

‖Γvtφl − Γut φl‖L∞t H3
x
≤
∥∥∥∫ t

0
e−iA(t−s)B(vΓvtφl − uΓut φl)

∥∥∥
L∞t H

3
x

≤ C(T ) |||B ||| 3‖vΓvtφl − uΓut φl‖L∞t H3
x
≤ C(T )‖v − u‖2‖Γut φl‖L∞t H3

x

+ C(T )‖v‖2‖Γvt − Γut ‖L∞t H3
x
≤ C(T )‖v − u‖2‖Γut φl‖L∞t H3

x

+ C(T )2‖v‖2‖v − u‖2‖Γut φl‖L∞t H3
x

+ C(T )2‖v‖22‖Γvtφl − Γut φl‖L∞t H3
x
≤

‖v − u‖2‖Γut φl‖L∞t H3
x

( N∑
n=0

C(T )n+1‖v‖n2
)

+ C(T )N‖v‖N2 ‖Γvtφl − Γut φl‖L∞t H3
x
.

In addition, [5, P roposition 6] implies that the couple (A,B) is (2)-weakly
coupled thanks to Remark 1. Then [6, P roposition 30; (ii)] is satisfied and

(6) ‖Γvtφl − Γut φl‖L∞t H3
x
<∞.

Let µ > 1, if U ⊆ {u ∈ X : ‖u‖2 ≤ (µC(T ))−1}, then for u, v ∈ U

lim
N→∞

C(T )N‖v‖N2 ‖Γvtφl − Γut φl‖L∞t H3
x

= 0,

lim
N→∞

N∑
n=0

C(T )n(T )‖v‖n2 ≤
µ

µ− 1

=⇒ ‖Γvtφl − Γut φl‖L∞t H3
x
≤ µC(T )

µ− 1
‖v − u‖2‖Γut φl‖L∞t H3

x
.

The relation (5) becomes

‖Hl(u)−Hl(v)‖(3) ≤ C(T )2‖v − u‖2(‖u‖2 + ‖v‖2)‖Γut φl‖L∞t H3
x

+
µ

µ− 1
C3(T )‖v‖22‖v − u‖2‖Γut φl‖L∞t H3

x
≤ 2

µ
C(T )‖v − u‖2‖Γut φl‖L∞t H3

x

+
C(T )

(µ− 1)µ
‖v − u‖2‖Γut φl‖L∞t H3

x
≤ (2µ− 1)

(µ− 1)µ
C(T )‖v − u‖2‖Γut φl‖L∞t H3

x
.

Thanks to [11, P roposition 5] and to the Duhamel’s formula

‖ΓuTφl‖L∞t H3
x
≤

‖φl‖(3)

1− C(T )‖u‖2 |||B ||| 3
≤ µl3

µ− 1
,

=⇒ ‖Hl(u)−Hl(v)‖(3) ≤
2µ− 1

(µ− 1)2
l3C(T )‖v − u‖2.(7)

Let M1 = 2µ−1
(µ−1)2

l3C(T ). We estimate µ such that M1 ≤ 1
2M , in other words

2µ− 1

(µ− 1)2
l3C(T ) ≤ 1

2

Cl

C̃(T )
,

10



and for a = 2C(T )C̃(T )l3

Cl
, the inequality is satisfied when

µ ≥ a+
√
a(a+ 1) + 1.

Let us establish an upper bound for C(T )C̃(T ). By keeping in mind the
proof of [3, P roposition 19; (ii)], we set T = 4

3π and thanks to the proof of
Ingham Theorem [13, Theorem 4.3]

C̃(T ) =
8

3π
, Ĉ(T ) =

16

π
.

The proof of the first point of [11, P roposition 5] (see [3]) implies

C(T ) = 3π−3 max
{√

2Ĉ(T ),
√
T
}

= 3π−3
√

2Ĉ(T ) =
48
√

2

π4
,

then C(T )C̃(T ) ≤ 2
3 and a ≤ 4

3 ãl for ãl := l3

Cl
. Afterwards by recalling the

definition of Cl provided in Assumption I, we have Cl ≤ 〈φ1, Bφl〉 ≤ |||B |||
which ensures that ãl > 1 and

C(T )
(4

3
ãl +

√
4

3
ãl

(4

3
ãl + 1

)
+ 1
)
≤ C(T )

(4

3
ãl +

(4

3
ãl + 1

)
+ 1
)
≤ 7

2
ãl.

LetBX(x, r) := {x̃ ∈ X
∣∣ ‖x̃−x‖X ≤ r}, one can consider U = BX(0, 2(7ãl)

−1),

we know thatM−M1 ≥ (2C̃(T ))−1Cl and thanks to the proof of [10, Lemma 2.3]

Al(BX(0, 2(7ãl)
−1)) ⊃ BH3

(0)
(Fl(0), (M −M1)2(7ãl)

−1) ⊃

BH3
(0)

(φl(T ), Cl(6ãl)
−1) ⊃ BH3

(0)

(
φl(T ),

C2
l

6l3

)
.

We supposed |||B ||| 3 = 1 but we can generalize for |||B ||| 3 6= 1 thanks to

A+ uB = A+ u |||B ||| 3
B

|||B ||| 3
.

One can consider the operator B
|||B ||| 3

and the control u |||B ||| 3. By recalling

that T = 4
3π we substitute Cl with Cl |||B |||−1

3 and

∀ψ ∈ BH3
(0)

(
φl

( 4

3π

)
,

C2
l

6l3 |||B ||| 23

)
, ∃ u ∈ BX

(
0,

2Cl

7l3 |||B ||| 23

)
: Al(u) = ψ.

4.2 Control function for the global approximate controllabil-
ity in the H −norm

Let φj , φk for j, k ∈ N, we exhibit a control function driving the dynamics
of (1) from φj close to φk by using [9, P roposition 6]. Let T ∗ = π

|Bj,k| ,

11



T = 2π
|λk−λj | and u(t) = cos((λk − λj)t). For any n ∈ N there exists Tn ∈

(nT ∗ − T, nT ∗ + T ) such that

1− |〈φk,Γ
u/n
Tn

φj〉|
1 + 2K |||B |||

≤ (1 + C ′) ||| (φj〈φj , ·〉+ φk〈φk, ·〉)B ||| I
n

,

for I = 4
|λk−λj | , K = 2

|Bj,k| , C
′ = sup(l,m)∈Λ′

{∣∣∣ sin(π |λl−λm||λk−λj |

)∣∣∣−1}
and

Λ′ =
{

(l,m) ∈ N2 : {l,m} ∩ {j, k} 6= ∅, |λl − λm| ≤
3

2
|λk − λj |,

|λl − λm| 6= |λk − λj |, Bl,m 6= 0
}
.

We point out that the definition of T ∗ provided in [9, P roposition 6] is in-
correct and its formulation is provided above.

Remark. As mentioned in Remark 3, one can state similar results for other
control functions 2π

|λk−λj |−periodics by adopting the theory from [9].

For un := u
n and Rn := (1 + 2K |||B ||| )(1 + C ′) |||B ||| In−1 there holds∑

l 6=k
|〈φl,ΓunTnφj〉 − 〈φl, φk〉|

2 =
∑
l 6=k
|〈φl,ΓunTnφj〉|

2 = 1− |〈φk,ΓunTnφj〉|
2

≤
(
1− |〈φk,ΓunTnφj〉|

)(
1 + |〈φk,ΓunTnφj〉|

)
≤ 2Rn.

(8)

Afterwards, there exists θn ∈ C such that

(9) |〈φk, eiθnφk〉 − 〈φk,ΓunTnφj〉|
2 ≤ R2

n.

From (8), (9)

(10) R′n := ‖eiθnφk − ΓunTnφj‖
2 ≤ 2Rn +R2

n,

hence |Bj,k|−1 |||B ||| ≥ 1 implies

Rn ≤
(1 + C ′)(|Bj,k|−1 + 4|Bj,k|−1) |||B ||| 2I

nCk
≤

5(1 + C ′)|Bj,k|−1 |||B ||| 2I
n

,

(11) Rn ≤
3(1 + C ′)|Bj,k|−1 |||B ||| 2

n|k2 − j2|
.

4.3 Global approximate controllability with respect to the
H3−norm

Now, we exhibit a control function driving the dynamics of (1) from φj
to BH3

(0)
(φk, C

2
l (6l3 |||B ||| 23)−1) by using the previous subsection. Let us

consider the relation (11), if

(12) n ≥
3(1 + C ′)|Bj,k|−1 |||B ||| 2

|k2 − j2|
, j 6= k,

12



then Rn ≤ 1, R2
n ≤ Rn and

R′n = ‖eiθnφk − ΓunTnφj‖
2 ≤ 2Rn +R2

n ≤ 3Rn ≤
32|Bj,k|−1(1 + C ′) |||B ||| 2

n|k2 − j2|
.

(13)

For fn := eiθnφk−ΓunTnφj there holds ‖fn‖2(s) ≤ (ks+‖ΓunTnφj‖(s))
2 and thanks

[5, relation (9)] it follows

‖fn‖4(3) = ‖fn‖4( 12
4

) ≤ ‖fn‖2( 4
2

)‖fn‖2( 8
2

) ≤ ‖fn‖‖fn‖3(4).(14)

If we establish an upper bound for ‖fn‖(4) independent from n, then ‖fn‖
n→+∞−−−−−→

0 implies that ‖fn‖(3)
n→+∞−−−−−→ 0 up to a rest that we can bound from above.

Let ε > 0, λε = |||B ||| (2)ε
−1 and Ĥ4

(0) := D(A(iλε − A)). We proceed as

in the proof of [6, P roposition 30] that follows from [12, Section 3.10]. Let
n ≥ 3ε and

M := sup
t∈[0,Tn]

||| (iλε −A− un(t)B)−1 |||
L(H2

(0)
,Ĥ4

(0)
)

= sup
t∈[0,Tn]

||| (iλε −A)(iλε −A− un(t)B)−1 ||| (2)

= sup
t∈[0,Tn]

||| (I − un(t)B(iλε −A)−1)−1 ||| (2).

Now |||un(t)B(iλε −A)−1 ||| (2) ≤
|||B ||| (2)
nλε

= ε
n < 1 and

M = sup
t∈[0,Tn]

|||
+∞∑
l=1

(un(t)(iλε −A)−1B)l ||| (2)

≤
+∞∑
l=1

|||n−1(iλε −A)−1B ||| l(2) =
1

1− |||B |||n−1λ−1
ε

=
n

n− ε
≤ 2.

(15)

Let us consider

N := ||| iλε−A−un(·)B |||
BV
(

[0,Tn],L(Ĥ4
(0)
,H2

(0)
)
) ≤ ‖un‖BV (Tn) |||B ||| L(Ĥ4

(0)
,H2

(0)
))
,

there holds

‖(A+un(Tn)B−iλε)ΓunTnφj‖(2) ≤MeMN‖(A−iλε)φj‖(2) ≤MeMN (1+λε)j
4.

Now for every ψ ∈ Ĥ4
(0)

‖Bψ‖2(2) ≤
(
ε‖Aψ‖(2) + |||B ||| (2)‖ψ‖(2)

)2 ≤ 2ε2
(
‖Aψ‖2(2) + λ2

ε‖ψ‖2(2)

)
.

13



As ‖(A − iλε)ψ‖2(2) = ‖Aψ‖2(2) + λ2
ε‖ψ‖2(2), it follows ‖Bψ‖2(2) ≤ 2ε2(‖(A −

iλε)ψ‖2(2)) and N ≤ ε
√

2‖un‖BV (Tn). In addition, thanks to the techniques

of relation (15), it is verified

|||A(A+ un(Tn)B − iλε)−1 ||| (2) ≤ 4.

Thus

‖ΓunTnφj‖(4) = ‖AΓunTnφj‖(2) ≤ 4‖(A+ u(Tn)B − iλε)ΓunTnφj‖(2)

≤ 8e2
√

2ε‖un‖BV (Tn)(1 + λε)j
4 ≤ 8e2

√
2ε‖un‖BV (Tn)(1 + |||B ||| (2)ε

−1)j4

and for ε = (2
√

2‖un‖BV (Tn))
−1

‖ΓunTnφj‖(4) ≤ 8e
(
1 + 2

√
2‖un‖BV (Tn) |||B ||| (2)

)
j4.(16)

The interval [0, nT ∗ + T ] contains less than d half-periods of the function u
for d := 2π2n|k2 − j2||Bj,k|−1 + 4 and if

(17) n ≥ |||B ||| (5π−2|j2 − k2|−1)

(18)
=⇒ ‖un‖BV (Tn) ≤ ‖un‖BV (nT ∗+T ) ≤ (d+ 1)/n ≤ 3π2|k2 − j2||Bj,k|−1.

Thanks to |||B ||| (2) ≥ |Bj,k|, the relation (16) becomes

‖ΓunTnφj‖(4) ≤ 8e(1 + 3 · 2
√

2π2 |||B ||| (2)|k
2 − j2||Bj,k|−1)j4

≤ 2234π2 |||B ||| (2)|k
2 − j2||Bj,k|−1j4

and (14) changes into

‖fn‖8(3) ≤ R
′
n(2334π2 |||B ||| (2)|k

2 − j2||Bj,k|−1 max{j, k}4)6

≤
(
218326π12 |||B ||| 6(2)|k

2 − j2|6|Bj,k|−6 max{j, k}24
)(1 + C ′)|Bj,k|−1 |||B ||| 2

n|k2 − j2|
≤
(
218326π12(1 + C ′) |||B ||| 6(2) |||B |||

2|k2 − j2|5|Bj,k|−7 max{j, k}24
)
n−1.

After, for I := [nT ∗ − T, nT ∗ + T ] we estimate supt∈I ‖Γunt φj − ΓunTnφj‖(3)

so that one can use any time in I as final time for the dynamics, since Tn
(defined in [9]) is not always easy to compute.
Let us consider the argument used in (16). The function C(·) introduced in
[11, P roposition 5] is increasing (see the proof of Appendix B.3, Corollary
4, [3]). It follows supt∈I C(t− Tn) ≤ C(nT ∗ + T − Tn) ≤ C(2T ) ≤ C( 4

3π ) =

14



48
√

2π−4. Thus one can notice that

sup
t∈I
‖Γunt φj − ΓunTnφj‖(3) ≤ sup

t∈I
C(t− Tn) |||B ||| 3

∫ t

Tn

|un(s)|ds‖ΓunTnφj‖(3)

≤ C(nT ∗ + T − Tn) |||B ||| 3
∫ nT ∗+T

nT ∗−T
|un(s)|ds‖ΓunTnφj‖(4)

≤ C(nT ∗ + T − Tn) |||B ||| 3
2T

n
2234π2 |||B ||| (2)|k

2 − j2||Bj,k|−1j4

≤ C
( 4

3π

)
|||B ||| 3

2T

n
2234π2 |||B ||| (2)|k

2 − j2||Bj,k|−1j4

≤
|||B ||| 3
n

63π2 |||B ||| (2)|Bj,k|
−1j4.

Then we use nT ∗ as final time for the dynamics and we keep in mind that
|Bj,k| is smaller than |||B ||| , |||B ||| (2) and |||B ||| 3. If

(19) n ≥ |||B ||| 3π
2 63 |||B ||| (2)|Bj,k|

−1j4,

there holds

R′′n := ‖ΓunnT ∗φj − e
iθnφk‖8(3) ≤ 27

(
‖ΓunnT ∗φj − ΓunTnφj‖

8
(3) + ‖fn‖8(3)

)
≤ 27

((
|||B ||| 3 63π2 |||B ||| (2)|Bj,k|

−1n−1j4
)8

+ ‖fn‖8(3)

)
≤ 27

(
|||B ||| 3 63π2 |||B ||| (2)|Bj,k|

−1n−1j4 + ‖fn‖8(3)

)
≤ 27

π2 |||B ||| 363 |||B ||| (2)j
4

n|Bj,k|

+
225326π12(1 + C ′) |||B ||| 6(2) |||B |||

2|k2 − j2|5 max{j, k}24

|Bj,k|7n

≤
626π12(1 + C ′) |||B ||| 6(2) |||B ||| max{ |||B ||| , |||B ||| 3}|k2 − j2|5 max{j, k}24

|Bj,k|7n
.

(20)

Now limn→∞R
′′
n = 0, hence there exists n∗ such that

Γ
un∗
n∗T ∗φj ∈ BH3

(0)

(
eiθn∗φk, C

2
k(6k3 |||B ||| 23)−1

)
=⇒ R′′n∗ ≤

C16
k

68k24 |||B ||| 16
3

.

For 0 ≤ s < 3 and j, k ∈ N it follows |||B ||| (s) ≥ Ck and |||B ||| (s) ≥ |Bj,k|.
Defined b := |||B ||| 6(2) |||B ||| |||B |||

16
3 max

{
|||B ||| , |||B ||| 3

}
, one can assume

that n∗ is an integer number larger than

634π12b(1 + C ′)|k2 − j2|5k24 max{j, k}24

C16
k |Bj,k|7

.

In conclusion the conditions (12), (17) and (19) are satisfied. We point out
that the local exact controllability is verified in a neighborhood of φk(4/3π)
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while our dynamics is pointing eiθn∗φk. For this reason we have to pay
attention to the phase of the target state. For

un∗(t) =
cos
(
(k2 − j2)π2t

)
n∗

, T ∗n∗ = n∗T = n∗
π

|Bj,k|
,

thanks to the first point of the proof and to the time reversibility of the
system (1) (see [11, Section 1.3]), there exists u ∈ L2((0, 4

3π ),R) such that

(21) Γu4
3π

Γ
un∗
T ∗
n∗
φj = eiθn∗φk

(
− 4

3π

)
= eiθn∗eiλk

4
3πφk.

4.4 Eliminating the phase ambiguity

In order to obtain a phase-shift eiθn we retrace the steps of previous subsec-
tion and we adopt the theory from [9] that explains how to define it.
By referring to [9, Section 3.1] we estimate N ≥ max{j, k} so that

K‖(1− πN )B(φj〈φj , ·〉+ φk〈φk, ·〉)‖ ≤ CRn(22)

for C ∈ (0, 1), πN (·) :=
∑N

k=1 φk〈φk, ·〉. We have

K‖(1− πN )B(φj〈φj , ·〉+ φk〈φk, ·〉)‖
≤ K‖(1− πN )B(φj〈φj , ·〉)‖+K‖(1− πN )B(φk〈φk, ·〉)‖

≤ 2

|Bj,k|

(( ∞∑
l=N+1

|Bl,k|2
) 1

2
+
( ∞∑
l=N+1

|Bl,j |2
) 1

2
)
≤ CRn.

If Rn ≥ 4C |||B ||| (nπ2|k2 − j2|)−1, then t
he relation (3) implies (22) if C is small enough. By using [9, relations (13), (18), (19)]

as made for [9, relation (20)], we consider n large enough so that

1− |〈φk,Γ
u
n
Tn
φj〉| ≤ K‖(1− πN )B(φj〈φj , ·〉+ φk〈φk, ·〉)‖

+ 4KRn‖(1− πN )BπN‖+Rn ≤ CRn + 8|Bj,k|−1 |||B |||Rn +Rn

≤ CRn + 9|Bj,k|−1 |||B |||Rn ≤ 10|Bj,k|−1 |||B |||Rn =: R̃n.

(23)

Thus we substitute Rn with R̃n in the relation (13). The argument of the
previous section leads to ensure that n∗ ∈ N has to be larger than

63410π12b(1 + C ′) |||B ||| |k2 − j2|5k24 max{j, k}24

C16
k |Bj,k|8

.

By referring to the proofs of [9, P roposition 2] and [9, Corollary 3], we in-
troduce the N ×N matrix M such that for l,m ∈ N

Ml,m = 〈φl,Mφm〉 =
Bl,m
I

∫ I

0
ei(λl−λm)x|u(x)|dx if

|λl − λm|
|λk − λj |

∈ N

16



otherwise Ml,m = 0. Now for every l,m such that |λl − λm||λk − λj |−1 =
µ ∈ N \ {1}

Ml,m =
Bl,m

4

∫ 4

0
eiµx| cos(x)|dx =

Bl,m(iµ− 2iµ + e4iµ(sin(4) + iµ cos(4)))

4(µ2 − 1)
,

while if |λl − λm| = |λk − λj |

Ml,m =
Bl,m

4

∫ 4

0
eix| cos(x)|dx =

Bl,m((−8 + 3i) + ie8i + 2π)

16
.

Thanks to [9, p. 5] there holds |〈φk, eKMφj〉| = 1 and θn∗ is the real value so
that e−iθn∗ = 〈φk, eKMφj〉. In conclusion thanks to [9] and to the relation

(21) for T̃n∗ = −λ−1
j θn∗ , there follows

Γ
un∗
T ∗
n∗

Γ0
T̃n∗

Γ0
λk
λj

4
3π

φj ∈ BH3
(0)

(φk, C
2
k(6k3 |||B ||| 23)−1).

The proof is achieved thanks to the local exact controllability and the time
reversibility (see [11, Section 1.3]) since ∃u ∈ L2((0, 4

3π ),R) so that

Γu4
3π

Γ
un∗
T ∗
n∗

Γ0
T̃n∗

Γ0
λk
λj

4
3π

φj = φk.

5 Example: dipolar moment

In the current section we retrace the proof of the first point of Theorem 1
by fixing B and j, k ∈ N. Let B : ψ 7→ x2ψ, we define a control function
and a time so that the dynamics of (1) drives the second eigenstate φ2 into
the first φ1.
First, Assumptions I are satisfied since

|〈φj , x2φk〉| =
∣∣∣ (−1)j−k

(j − k)2π2
− (−1)j+k

(j + k)2π2

∣∣∣ =
4jk

(j2 − k2)2π2
, j 6= k,

|〈φk, x2φk〉| =
∣∣∣1
3
− 1

2k2π2

∣∣∣, k ∈ N.

Now for every ψ ∈ H3
(0) we know that x2ψ ∈ H3 ∩H1

0 , ‖∂xψ‖ ≤ ‖∂2
xψ‖ and

thanks to the Poincaré inequality ‖ψ‖ ≤ π−1‖∂xψ‖, ‖∂2
xψ‖ ≤ π−1‖∂3

xψ‖. In
addition ‖xψ‖ ≤ 1√

3
‖ψ‖, ‖x2ψ‖ ≤ 1√

5
‖ψ‖ and

‖∂x(x2ψ)‖ ≤ ‖2xψ‖+ ‖x2∂xψ‖ ≤
2√
3
‖ψ‖+

1√
5
‖∂xψ‖

≤
( 2√

3π
+

1√
5

)
‖∂xψ‖ ≤

(2
√

5 +
√

3π√
15π2

)
‖∂3

xψ‖,

‖∂2
x(x2ψ)‖ ≤ ‖2ψ‖+ ‖4x∂xψ‖+ ‖x2∂2

xψ‖ ≤
(2
√

15 + 4
√

5π +
√

3π√
15π2

)
‖∂3

xψ‖,

‖∂3
x(x2ψ)‖ ≤ ‖6∂xψ‖+ ‖6x∂2

xψ‖+ ‖x2∂3
xψ‖ ≤

(6
√

15 + 6
√

5π +
√

3π√
15π

)
‖∂3

xψ‖.
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=⇒ |||B ||| 23 = sup
ψ∈H3

(0)
‖ψ‖(3)≤1

(‖∂xx2ψ‖2 + ‖∂2
xx

2ψ‖2 + ‖∂3
xx

2ψ‖2)

≤ sup
ψ∈H3

(0)
‖ψ‖(3)≤1

(2
√

5 +
√

3π√
15π2

)2
‖∂3

xψ‖2 +
(2
√

15 + 4
√

5π +
√

3π√
15π2

)2
‖∂3

xψ‖2

+
(6
√

15 + 6
√

5π +
√

3π√
15π

)2
‖∂3

xψ‖2 ≤
(2
√

15 + 4
√

5π +
√

3π√
15π2

)2

+
(2
√

5 +
√

3π√
15π2

)2
+
(6
√

15 + 6
√

5π +
√

3π√
15π

)2

and |||B ||| 3 ≤ 5, 93 . Equivalently |||B ||| (2) ≤ 3, 4, |||B ||| = 1/
√

5, C ′ = 0.
Then there holds

|B1,1| = C1 =
2π − 3

6π2
, |B1,2| = C2 =

8

9π2
, I =

∫ 2
3π

0
|u(s)|ds =

4

3π2
.

We retrace the proof of the first point of Theorem 1. Let T = 2
3π , u(t) =

cos(3π2t), T ∗ = 9π3

8 , K = 9π2

4 , for un := u
n there exists θn ∈ C such that

‖eiθnφ1 − ΓunTnφ2‖2 ≤
32|B−1

1,2 | |||B |||
2

n|22 − 12|
=

27π2

40n
.

Afterwards, for n large enough thanks to (18)

‖un‖BV (0,nT ∗+T ) ≤ 3π2|k2 − j2||Bj,k|−1 ≤ 342−3π4.

By following the proof of Theorem 1 for I := [nT ∗ − T, nT ∗ + T ] we have

‖eiθnφ1 − ΓunT ∗nφ2‖8(3) ≤ 27
(
‖eiθnφ1 − ΓunTnφ2‖6(4)‖e

iθnφ1 − ΓunTnφ2‖2
)

+ sup
t∈I

(
27‖ΓunTnφ2 − Γunt φ2‖8(3)

)
≤ 27

(27π2

40n
(8e(1 + 34

√
2 · 2−2 · 3, 4 · π4)24 + 1)6

+ 5, 93 · 3, 4 · 63 · 2 · 9π4n−1
)
≤ 1, 11 · 1042n−1.

In the neighborhood BH3
(0)

(
φ1(T ), 1, 5 · 10−3

)
the local exact controllability

is verified and the first point of Theorem 1 is satisfied for n = 4, 31 · 1064.
In conclusion, there exists θ ∈ R such that for

un(t) = (4, 31 · 1064)−1 cos(3π2t), T = (4, 31 · 1064)
9π3

8
,

=⇒
∥∥eiθφ1 − ΓunT φ2

∥∥
H3

(0)

≤ 1, 5 · 10−3.

Moreover there exists ulcl ∈ L2((0, 4
3π ),R) so that

ΓunT Γu
lcl

4
3π

φ2 = eiθφ1.
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6 Moving forward

The nature of the work opens several questions, first and foremost, if the
techniques developed may be adopted in the simultaneous global exact con-
trollability together with the approaches of the works [11] and [15].
Moreover, the results provided in Theorem 1 are far from being optimal and
one might be interested in optimizing them.

1. As already mentioned in Remark 3, Theorem 1 can be stated for other
2π

|λk−λj |−periodic controls by using the theory exposed in [9]. A natural

question is when we can retrace the theory of the work with different
controls and obtain sharper estimates for n.

2. By using the techniques adopted in Section 4.1, one can look for a
larger neighborhood of validity of the local exact controllability. A try
is to change the time 4

3π and study the variation of the radius as a
time depending function.

3. One can adopt Haraux Theorem ([13, Theorem 4.5]) instead of Ing-
ham Theorem ([13, Theorem 4.3]) in order to prove the local exact
controllability. By retracing the steps of Section 4.1, one can establish
the new constants and study how the neighborhood changes according
to the time.

4. By referring to Section 4.3, the result of Theorem 1 is also valid if we
change the dynamics time from nT to Tn as explained in its proof. In
this framework the lower bound required for n decreases.

Another interesting question is how to simplify the matrix M and then the
estimate of θ, since the more n grows, the more the size of the matrix M
does, making the computation of eKM more difficult.
One can numerically approximate the phase ambiguity θn by defining a value

θ̃ such that
∥∥eiθ̃φk − eiθnφk∥∥H3

(0)

≤ ε. Then for R′′n introduced in (20)

‖ΓunT ∗φj − e
iθ̃φk‖(3) ≤ ε+ (R′′n)1/8.

Now for ε small enough one can establish n∗ large enough so that

Γ
un∗
T ∗
n∗
φj ∈ BH3

(0)

(
eiθ̃φk, C

2
k(6k3 |||B ||| 23)−1

)
and proceed as in the proof of Theorem 1.
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