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1 Introduction

In quantum mechanics any pure state of a system is mathematically repre-
sented by a wave function ψ contained in the unit sphere of a Hilbert space
H . If we consider a particle constrained in a one dimensional bounded
region then one can choose H = L2((0, 1),C) and the evolution of ψ is
modeled by the Cauchy problem

{
i∂tψ(t, x) = Aψ(t, x) + u(t)Bψ(t, x), x ∈ (0, 1), t ∈ (0, T ),

ψ(0, x) = ψ0(x)
(1)
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where A = −∆ is the Laplacian with Dirichlet homogeneous boundaries
(D(A) = H2 ∩ H1

0 ), B is a bounded symmetric operator, u is a control
function and ψ0(x) is the initial state of the system.

We say that Problem (1) is globally (locally) exactly controllable in M ⊂
H if for any ψ1, ψ2 ∈ M (in a neighborhood of M) there exists a control
such that the related dynamics of (1) steers ψ1 into ψ2.
We also say that Problem (1) is globally approximately controllable in M
if for any ψ1, ψ2 ∈ M there exists a control such that the related dynamics
drives ψ1 infinitesimally close to ψ2.
The global (local) exact controllability is said to be simultaneous if, given
two arbitary sequences inM (in a neighborhood ofM), there exists a control
mapping each element of the first into the corresponding of the second.

The controllability of Problem (1) has been widely studied in the lit-
erature starting by the seminal work on bilinear systems of Ball, Mardsen
and Slemrod [2]. We refer the reader to [11, P roposition 1] for two impor-
tant consequences of the results proved in [2]: well-posedness conditions and
a non controllability result, both for Problem (1) in H (see also Turinici
[21]). However despite this non controllability feature many authors have
addressed the problem for weaker notions of controllability.
For instance in [3] and [4], local exact controllability results are ensured in
Hs

(0) := D(|A| s2 ) for some s ≥ 3.
Global approximate controllability in a Hilbert space has been studied in
[7], [8], [9], in Sobolev spaces in [18], [19] and in Hs

(0) for s > 0 in [5], [6],

[10].
Global exact controllability of one dimensional Schrödinger equation inH6

(V ) :=

D(|A+V | 62 ) for V ∈ H6 is proved in [15] while [17] proves the simultaneous
local exact controllability up to phase shifts for triples in H3

(0).

In [16] simultaneous global exact controllability for n-tuples in H4
(V ) is en-

sured and in [11] the author proves the simultaneous global exact controlla-
bility in projection for sequences in H3

(0).

The novelties of the present work are the following.
First, we show how to construct a neighborhood in H3

(0) of any eigenfunction
of A in which the local exact controllability is satisfied.
Second, for any couple of eigenfunctions φj and φk, we show how to construct
controls such that the relative dynamics of (1) drives φj close to φk as much
desired with respect to the H3

(0)−norm.
Third by using together the two previous results we define a dynamics steer-
ing any eigenstate of A into any other and we provide the exact time required
to get to the target state.

In more technical terms, for any φj and φk we show how to construct a
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sequence of control functions un and a sequences of times Tn > 0 such that

∃ θ ∈ R : lim
n→∞

‖ΓunTnφj − eiθφk‖H3
(0)

= 0

for Γut the unitary propagator of Problem (1). We also establish a neighbor-
hood of φk of radius r where the local exact controllability is satisfied and
such that there exist n∗ ∈ N and u ∈ L2

((
0, 43
)
,R
)
so that

‖Γun∗Tn∗
φj − eiθφk‖H3

(0)
< r, Γu4

3π

Γ
un∗
Tn∗

φj = eiθφk.

In conclusion we show how to get rid of the phase ambiguity and we provide
a time T1 > 0 such that

Γu4
3π

Γ
u′
n∗

Tn∗
Γ0
T1
φj = φk.

This work represents a step for using the control theory into the exper-
imentation of the quantum systems modelized by the bilinear Schrödinger
equation. Indeed almost the entirety of the previous works focus the at-
tention into proving the existence of controls and times such that the con-
trollability is satisfied but none of them make the two explicit except for
[9].

1.1 Scheme of the work

In Section 2 we start by exposing the main results of the work in Theorem
1. We also prove few features of Problem (1) as the well-posedness in H3

(0)
and the time reversibility.
In Section 3, Theorem 5 ensures the global exact controllability in H3

(0).
The result is proved by using together the global approximate controllabil-
ity exposed in Proposition 3 and the local exact controllability assured in
Proposition 4, both in H3

(0).
In Section 4 we provide the proof of Theorem 1. First for any generic
eigenfunction φl of A we construct a neighborhood B(φl) ⊂ H3

(0) in which

the local exact controllability holds (Section 4.1). Second we consider a
generic couple of eigenfunctions φj, φk and we define a sequence of control
functions un and a sequence of times Tn such that ΓunTnφj is close to φk up to a
well known distance in the H −norm depending on n (Section 4.2). Third,
we refine the previous result and we provide the distance with respect to
the H3

(0)−norm. In conclusion we establish a lower bound for n such that

this distance is smaller than the radius of B(φk). By using the local exact
controllability, the proof of the first point of Theorem 1 is accomplished
(Section 4.3). The second point is achieved by acting a phase-shift in order
to eliminate a phase ambiguity appearing in the previous steps (Section 4.4).
In Section 5 we discuss the issues appearing during the application of the
proved results and we provide few methods that one can adopt in order to
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get rid of them. We also present an example in which we apply the developed
techniques (Section 5.1).

2 Framework and main results

We denote H = L2((0, 1),C), its norm ‖·‖ and its scalar product 〈·, ·〉. The
operator A is the Dirichlet Laplacian (A = − d2

dx2
and D(A) = H1

0 ((0, 1),C)∩
H2((0, 1),C)), B is a bounded symmetric operator and u is a L2((0, T ),R)
control function.
We consider an orthonormal basis {φj}j∈N composed by eigenfunctions of
A associated with the eigenvalues {λj}j∈N and

(2) φj(t, x) = e−iAtφj(x) = e−iλjtφj(x).

Let the spaces for s ≥ 0

Hs
(0) = Hs

(0)((0, 1),C) := D(A
s
2 ), ‖ · ‖(s) := ‖ · ‖Hs

(0)
=
( ∞∑

k=1

|ks〈·, φk〉|2
) 1

2
,

ℓ∞(H ) =
{
{ψj}j∈N ⊂ H

∣∣ sup
j∈N

‖ψj‖ <∞
}
,

ℓ2(H ) =
{
{ψj}j∈N ⊂ H

∣∣
∞∑

j=1

‖ψj‖2 <∞
}
,

hs(H ) =
{
{ψj}j∈N ⊂ H

∣∣
∞∑

j=1

(js‖ψj‖)2 <∞
}
,

we define the following operatorial norms for 0 < s < 3

||| · ||| := ||| · ||| L(H ,H ) = ||| · ||| L(H0
(0)
,H0

(0)
), ||| · ||| (s) := ||| · ||| L(Hs

(0)
,Hs

(0)
),

||| · ||| 3 := ||| · ||| L(H3
(0)
,H3∩H1

0 )
.

Assumption (I). Let B be a bounded symmetric operator.

1. For any k ∈ N there exists Ck > 0 such that

∀j ∈ N, |〈φj , Bφk〉| ≥
Ck
j3
.

2. Ran(B|D(A)) ⊆ D(A) and

Ran(B|H3
(0)

((0,1),C)) ⊆ H3((0, 1),C) ∩H1
0 ((0, 1),C).

3. For each j, k, l,m ∈ N such that (j, k) 6= (l,m) and j2−k2−l2+m2 = 0
it is true that

〈φj , Bφj〉 − 〈φk, Bφk〉 − 〈φl, Bφl〉+ 〈φm, Bφm〉 6= 0.
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Remark 1. If a bounded operator B satisfies Assumption (I) then B ∈
L(H2

(0),H
2
(0)). Indeed B is closed in H , then for every {un}n∈N ⊂ H

such that un
H−→ u and Bun

H−→ v we have that Bu = v. Now for every

{un}n∈N ⊂ H2
(0) such that un

H2
(0)−→ u and Bun

H2
(0)−→ v, the convergences with

respect to the H -norm are implied and then Bu = v. Hence the operator
B is closed in H2

(0) and B ∈ L(H2
(0),H

2
(0)). Thanks to the same argument it

is true that B ∈ L(H3
(0),H

3 ∩H1
0 ).

Let us introduce the quantity

b := |||B ||| 6(2) |||B ||| |||B ||| 163 max
{
|||B ||| , |||B ||| 3

}

depending only on the operator B and for every k, j ∈ N, n ∈ N

E(j, k) := |k2 − j2|5C−16
k k24|Bj,k|−7 max{j, k}24,

un(t) :=
cos
(
(k2 − j2)π2t

)

n
, C ′ := sup

(v,w)∈Λ′

{∣∣∣∣sin
(
π
|v2 − w2|
|k2 − j2|

)∣∣∣∣
−1
}
,

where

Λ′ :=
{
(v,w) ∈ {1, ..., N}2 : {v,w} ∩ {j, k} 6= ∅, |v2 − w2| ≤ 3

2
|k2 − j2|,

|v2 − w2| 6= |k2 − j2|, 〈φn, Bφm〉 6= 0
}
.

Let N ∈ N and Bl,m := 〈φl, Bφm〉, we define the N × N matrix MN
j,k with

elements




(
MN
j,k

)
l,m

=
Bl,m(ik−2ik+e4ik(sin(4)+ik cos(4)))

4(k2−1) , |l2−m2|
|k2−j2| = k ∈ N \ { 1},

(
MN
j,k

)
l,m

=
Bl,m((−8+3i)+ie8i+2π)

16 , |l2−m2|
|k2−j2| = 1,

(
MN
j,k

)
l,m

= 0, |l2−m2|
|k2−j2| /∈ N,

and

Tn :=
nπ

|Bj,k|
+

2

π|k2 − j2| , T̃Nn = −(jπ)−2
〈
φk, e

−2MN
j,k

|Bj,k|−1

φj

〉
.

Theorem 1. Let k, j ∈ N and B satisfy Assumptions (I).

1) Let n be an integer such that

n ≥ 634π12b (1 + C ′)E(j, k),

then there exists θ ∈ R such that

∥∥ΓunTnφj − eiθφk
∥∥
H3

(0)
≤ C2

k(6k
3 |||B ||| 23)−1.
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Moreover there exists u ∈ L2((0, 4
3π ),R) such that ‖ulcl‖ ≤ 2Ck(7 |||B ||| 23k3)−1

and
Γu4

3π
ΓunTnφj = eiθφk.

2) Let n be an integer such that

n ≥ 63410 π12b (1 + C ′) |||B |||E(j, k)|Bj,k |−1.

Let N ≥ max{j, k} such that

2

|Bj,k|
(( ∞∑

l=N+1

|Bl,k|2
) 1

2
+
( ∞∑

l=N+1

|Bl,j|2
) 1

2
)
<

4 |||B |||
nπ2|k2 − j2|(3)

then for v′n(t) := un(t)χ[T̃Nn ,T̃Nn +Tn]
(t) there holds

∥∥Γv
′
n

T̃Nn +Tn
φj − φk

∥∥
H3

(0)
≤ C2

k(6k
3 |||B ||| 23)−1.

Morever there exists u ∈ L2((0, 4
3π ),R) such that

Γu4
3π

ΓunTnΓ
0
T̃Nn
φj = φk.

Remark 2. The results of Theorem 1 are far from being optimal. Indeed the
aim of the work is to show how to proceed in this kind of problems and we
present an approach that one can use in order to build a control function
for the global exact controllability in H3

(0).
Moreover the purpose of Theorem 1 is to exhibit readable results, even if its
proof shows slightly stronger relations and one can surelly improve them by
following the approaches introduced in Section 5. We leave the optimization
work to who might be interested and we briefly treat the example of B :
ψ → x2ψ, k = 1 and j = 2 in Section 5.1.

Remark 3. In the proof of Theorem 1 the choice of the control function
u comes from the techniques developed in [9]. We point out that one can
ensure similar results for other 2π

|λk−λj |−periodic controls by using the theory

exposed in [9].

2.1 Well-posedness of the Cauchy problem

We mention now the crucial result of well-posedness for the Cauchy problem

{
i∂tψ(t, x) = −∆ψ(t, x) + u(t)µ(x)ψ(t, x) + f(t, x),

ψ(0, x) = ψ0(x), x ∈ (0, 1), t ∈ (0, T ).
(4)
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Proposition 2 (Beauchard, Laurent; [3]; Lemma 1 & Proposition 2).

1) Let T > 0 and f̃ ∈ L2((0, T ),H1
0∩H3). The function G : t 7→

∫ t
0 e

iAsf̃(s)ds
belongs to C0([0, T ],H3

(0)). Moreover

‖G‖L∞((0,T ),H3
(0)

) ≤ c1(T )‖f̃‖L2((0,T ),H3∩H1
(0)

),

where the constant c1(T ) is uniformly bounded with T lying in bounded in-
tervals.

2) Let µ ∈ H3((0, 1),R), T > 0, ψ0 ∈ H3
(0)(0, 1), f ∈ L2((0, T ),H1

0 ∩ H3)

and u ∈ L2((0, T ),R). Then there exists a unique mild solution of (4) in
H3

(0)(0, 1), i.e. a function ψ ∈ C0([0, T ],H
3
(0)) such that for every t ∈ [0, T ]

(5) ψ(t, x) = ei∆tψ0(x)− i

∫ t

0
ei∆(t−s)(u(s)µ(x)ψ(s, x) + f(s, x))ds.

Moreover, for every R > 0, there exists C = C(T, µ,R) > 0 such that, if
‖u‖L2((0,T ),R) < R then the solution satisfies

(6) ‖ψ‖C0([0,T ],H3
(0)

) ≤ C(‖ψ0‖H3
(0)

+ ‖f‖L2((0,T ),H1
0∩H3)), ∀ψ0 ∈ H3

(0).

If f ≡ 0 then
‖ψ‖ = ‖ψ0‖ ∀t ∈ [0, T ].

If B satisfies Assumptions (I), then Proposition 2 implies well-posedness
of (1) in H3

(0).

2.2 Time reversibility

Let us now present another feature of the bilinear Schrödinger equation, the
time reversibility. First we notice that

{
i∂tΓ

u
T−tψ

0(x) = −AΓuT−tψ0(x)− u(T − t)BΓuT−tψ
0(x),

ΓuT−0ψ
0(x) = ΓuTψ

0(x) = ψ1(x).

Let us define ũ(t) := u(T − t), Γ̃ũt := ΓuT−t. It follows
{
i∂tΓ̃

ũ
t ψ

1(x) = (−A− ũ(t)B)Γ̃ũt ψ
1(x), x ∈ (0, 1), t ∈ (0, T ),

Γ̃ũ0ψ
0(x) = ψ1(x)

and Γ̃ũt Γ
u
T = ΓuT−t. Then Γ̃ũTΓ

u
T = Id and

(7) Γ̃ũT = (ΓuT )
−1 = (ΓuT )

∗.

In conclusion for t > 0 and ũ(·) = u(t− ·) the operator Γ̃ũt is the propagator
related to (−A− ũ(t)B) and describes the reversed dynamics of Γut .

The importance of the time reversibility resides in the fact that all the
controllability results that we are going to prove are still verified for the
reversed problem. We will use this feature in many steps of the next proofs.

7



3 Global exact controllability in H
3
(0)

In this section we ensure the global exact controllability in H3
(0) and we start

by proving the approximate controllability of Problem (1).

Definition 1. The problem
(
A,B,U, {φj}j∈N

)
is globally approximately

controllable in Hs
(0) if for every ψ ∈ Hs

(0), Γ̂ ∈ U(H ) so that Γ̂ψ ∈ Hs
(0) and

ǫ > 0 there exist T > 0 and u ∈ L2((0, T ),R) such that

‖Γ̂ψ − ΓuTψ‖Hs
(0)
< ǫ.

Proposition 3. Let Problem (1) and B satisfy Assumptions (I). Then
(A,B,U, {φj}j∈N) is globally approximately controllable in H3

(0).

Proof. The result is due to [11, Theorem 6].

We provide a brief proof of the local exact controllability in H3
(0) by

rephrasing the existing local controllability results as [3], [4], [11], [15], [16]
and [17]. Our purpose is to introduce the tools that we use in the proof of
Theorem 1. Let

Ol(ǫ) =
{
ψ ∈ H3

(0)

∣∣ ∃Γ̂ ∈ U(H ) : ψ = Γ̂φl, ‖ψ − φl(T )‖H3
(0)
< ǫ
}
.

Proposition 4. Let B satisfy (I) and l ∈ N. Then there exist T > 0,
ǫ > 0 such that for every ψ ∈ Ol(ǫ), there exists a control function u ∈
L2((0, T ),R) so that ψ = ΓuTφl.

Proof. Let us consider without loss of generality l = 1, the decomposition

Γut φ1 =

∞∑

k=1

φk(t)〈φk(t),Γut φ1〉

and the map α1(u), the sequence with elements

αk,1(u) = 〈φk(T ),ΓuTφ1〉, k ∈ N.

The local existence of the control function is equivalent to prove the lo-
cal right invertibility of the map α1 for a T > 0 (in other words the local
surjectivity). To this end, we want to use the Generalized Inverse Func-
tion Theorem ([14], p. 240) and we study the surjectivity of the Fr̈ı¿½chet
derivative of α1, γ1(v) := (duα1(0)) · v, the sequence with elements

γk,1(v) : =

〈
φk(T ),−i

∫ T

0
e−iA(T−s)v(s)Be−iAsφ1ds

〉

= −i
∫ T

0
v(s)ei(λk−λ1)sdsBk,1, k ≤ N, j ∈ N,
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for Bk,j = 〈φk, Bφj〉 = 〈Bφk, φj〉 = Bj,k. The right invertibility of the map
γ1 consists in proving the solvability of the moment problem

xk
Bk,1

= −i
∫ T

0
u(s)ei(λk−λ1)sds.

for each x ∈ ℓ2(C) such that {xkB−1
k,1}k,j∈N

k≤N

∈ ℓ2. Indeed {xk}k∈N ∈ h3 and

thanks to Assumptions (I) the claim follows.
Now the solvability of the moment problem (3) is ensured by using Ingham
Theorem ([13, Theorem 4.3]) for T > 2π

G
and

G := inf
k,j∈N
k 6=j

|λk − λj| = 3π2 > 0.

Then γ1 is surjective and the proof is achieved thanks to the Generalized
Inverse Function Theorem ([14], p. 240), which ensures that the map α1 is
locally surjective.

Remark. We point out that one can achieve the result of Theorem 4 for
any positive time T > 0 by using Haraux Theorem ([13, Theorem 4.5]),
instead of Ingham Theorem ([13, Theorem 4.3]) as it is done in the proof
of [11, Theorem 8].

Now we provide the global exact controllability in H3
(0) by using Propo-

sition 3 and Proposition 4.

Theorem 5. Let B satisfy (I). Then for any ψ1, ψ2 ∈ H3
(0) unitarily equiv-

alent there exist T > 0 and a control function u ∈ L2((0, T ),R) such that

ψ2 = ΓuTψ
1.

Proof. First, for any ǫ > 0, Proposition 3 holds true if one substitutes A
with −A, B with −B and there exists T̃ > 0 and a control function u1 ∈
L2((0, T̃ ),R) so that

∥∥∥φ1(T )− Γ̃u1
T̃

(
‖ψ1‖−1ψ1

)∥∥∥
H3

(0)

< ǫ.

Now Γ̃u1
T̃

(
‖ψ1‖−1ψ1

)
∈ O1(ǫ) and thanks to Proposition 4 there exists a

control function u2 ∈ L2((0, T ),R) such that

Γ̃u1
T̃

(
‖ψ1‖−1ψ1

)
= Γu2T φ1.

By reversing the dynamics (see Section 2.2), for u(t) = u2(t)χ[0,T )(t)+u1(T+

T̃ − t)χ
[T,T+T̃ ]

(t)

‖ψ1‖−1ψ1 = Γu
T+T̃

φ1.

In conclusion by using again the time reversibility and the fact that ‖ψ1‖ =
‖ψ2‖ there exist T̂ > 0 and a control û ∈ L2((0, T̂ ),R) such that

ψ2 = Γû
T̂
ψ1.
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4 Proof of Theorem 1

4.1 Neighborhood estimate

Let us define the following terminology

||| · ||| L(L2((0,T ),R),H3
(0)

) = ||| · ||| (L2
t ,H

3
x)
, ||| · ||| L(H3

(0)
,L2((0,T ),R)) = ||| · ||| (H3

x,L
2
t )
,

‖ · ‖L∞((0,T ),H3
(0)

) = ‖ · ‖L∞
t H

3
x
, ‖ · ‖L2((0,T ),R) = ‖ · ‖2,

‖ · ‖L1((0,T ),R) = ‖ · ‖1, ‖ · ‖BV ((0,T ),R) = ‖ · ‖BV (T ),

for
‖f‖BV ((0,T ),R) = sup

{tj}0≤j≤n
|f(tj)− f(tj−1)|

and t0 = 0 < t1 < ... < tn = T any partition of the interval (0, T ).

Let T > 0 and the space X̃ := span{eiλkt, k ∈ N}L
2

⊂ L2((0, T ),R) with
the L2−norm. The local exact controllability is equivalent to the local sur-
jectivity of the map

Al(·) := Γ
(·)
T φl : X̃ → H3

(0)

defined as

Al(u) = e−iλlTφl − i

∫ T

0
e−iA(T−s)u(s)BΓusφlds.

In the proof of Theorem 4 we have used the Generalized Inverse Function
Theorem and we have proved the surjectivity of the map

Fl(u) :=
(
(dvAl(v = 0)) · u

)
∈ H3

(0).

We want to estimate the radius of a neighborhood in H3
(0) of φl(T ) in which

the map Al is surjective. For this reason, we use [10, Lemma 2.3; p. 42] by

considering the quotient space X := X̃
Ker(Fl)

with the L2−norm.

1) The map Fl : X → H3
(0) is bijective and we estimate a constant M > 0

such that

‖Fl(v)− Fl(w)‖(3) ≥M‖v − w‖L2 , ∀v,w ∈ X.

Let us suppose |||B ||| 3 = 1, we consider the map γl : u ∈ X 7→ γl(u) ∈ h3,
equivalently defined for l = 1 in the proof of Proposition 4. We know that
the surjectivity of Fl in H3

(0) corresponds to the surjectivity of the map

γl in h3. For every ψ ∈ H3
(0), there exist T > 0 and u ∈ X such that

〈φj(T ), ψ〉 = γj,l(u) and such that F−1
l (ψ) = u.

10



For Cl defined in Assumptions (I), thanks to [3, P roposition 19; (ii)] and
to Ingham Theorem ([13, Theorem 4.3]), there exists C̃(T ) > 0 such that

‖F−1
l (ψ)‖22 = ‖u‖22 ≤ C̃(T )2

∞∑

j=1

∣∣∣
γj,l(u)

Bj,l

∣∣∣
2
≤ C̃(T )2

C2
l

∞∑

j=1

|j3γj,l(u)|2

≤ C̃(T )2

C2
l

‖ψ‖2(3).

Now for every v,w ∈ X there exist ψ, ϕ ∈ H3
(0) such that ψ = Fl(v),

ϕ = Fl(w) and

‖v − w‖2 ≤ ‖F−1
l (ψ − ϕ)‖2 ≤ |||F−1

l ||| (H3
x ,L

2
t )
‖ψ − ϕ‖(3),

which implies that one can impose M = |||F−1
l ||| −1

(H3
x,L

2
t )

= Cl
C̃(T )

.

2) Let u ∈ X, thanks to the Duhamel’s formula

ΓuTφl = e−iλlTφl − i

∫ T

0
e−iA(T−s)u(s)BΓusφlds

= e−iλlTφl − i

∫ T

0
e−iA(T−s)u(s)Be−iλlsφlds

−
∫ T

0
e−iA(T−s)u(s)B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

= e−iλlTφl + Fl(u) +Hl(u)

for

Hl(u) := −
∫ T

0
e−iA(T−s)u(s)B

(∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds.

We want to estimate a ball U ⊂ X with center u = 0 where the map
u 7→ ΓuTφl is surjective by using [10, Lemma 2.3]. However e−iλlTφl is
constant and it is sufficient to define U ⊂ X such that there exists a constant
0 < M1 < M so that for every v,w ∈ U

‖Hl(v)−Hl(w)‖(3) ≤M1‖v − w‖L2 .

First, we notice that

Hl(u)−Hl(v) = −
∫ T

0
e−iA(T−s)u(s)B

( ∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

+

∫ T

0
e−iA(T−s)v(s)B

( ∫ s

0
e−iA(s−τ)v(τ)BΓvτφldτ

)
ds

11



= −
∫ T

0
e−iA(T−s)(u(s)− v(s))B

( ∫ s

0
e−iA(s−τ)u(τ)BΓuτφldτ

)
ds

−
∫ T

0
e−iA(T−s)v(s)B

( ∫ s

0
e−iA(s−τ)(u(τ) − v(τ))BΓuτφldτ

)
ds

−
∫ T

0
e−iA(T−s)v(s)B

( ∫ s

0
e−iA(s−τ)v(τ)B(Γuτφl − Γvτφl)dτ

)
ds.

Thanks to Proposition 2, there exists a constant C(T ) > 0 such that for
every ψ ∈ H3 ∩H1

0 , u ∈ L2((0, T ),R) it holds

∥∥∥∥
∫ T

0
e−iA(T−s)u(s)Bψds

∥∥∥∥
(3)

≤ C(T )‖u‖2 |||B ||| 3‖‖ψ‖L∞
t H

3
x

and then

‖Hl(u)−Hl(v)‖(3) ≤ C(T )2‖v − u‖2 |||B ||| 23(‖u‖2 + ‖v‖2)‖Γut φl‖L∞
t H

3
x

+ C(T )2‖v‖22 |||B ||| 23‖Γvtφl − Γut φl‖L∞
t H

3
x

≤ C(T )2‖v − u‖2(‖u‖2 + ‖v‖2)‖Γut φl‖L∞
t H

3
x

+ C(T )2‖v‖22‖Γvtφl − Γut φl‖L∞
t H

3
x
.

(8)

One can show by using the same technique adopted in (8) that

‖Γvt φl − Γut φl‖L∞
t H

3
x
≤
∥∥∥
∫ t

0
e−iA(t−s)B(vΓvtφl − uΓut φl)

∥∥∥
L∞
t H

3
x

≤ C(T ) |||B ||| 3‖vΓvt φl − uΓut φl‖L∞
t H

3
x
≤ C(T )‖v − u‖2‖Γut φl‖L∞

t H
3
x

+C(T )‖v‖2‖Γvt − Γut ‖L∞
t H

3
x
≤ C(T )‖v − u‖2‖Γut φl‖L∞

t H
3
x

+C(T )2‖v‖2‖v − u‖2‖Γut φl‖L∞
t H

3
x
+ C(T )2‖v‖22‖Γvtφl − Γut φl‖L∞

t H
3
x
≤

‖v − u‖2‖Γut φl‖L∞
t H

3
x

N∑

n=0

C(T )n+1‖v‖n2 + C(T )N‖v‖N2 ‖Γvtφl − Γut φl‖L∞
t H

3
x
.

Thanks to Remark 1, [5, P roposition 6] implies that the couple (A,B) is
(2)-weakly coupled, then [6, P roposition 30; (ii) ] it is satisfied and

(9) ‖Γvtφl − Γut φl‖L∞
t H

3
x
<∞.

Now if U ⊆ {u ∈ X : ‖u‖2 ≤ (µC(T ))−1} for µ > 1, it holds that for
u, v ∈ U

lim
N→∞

C(T )N‖v‖N2 ‖Γvtφl − Γut φl‖L∞
t H

3
x
= 0,

lim
N→∞

N∑

n=0

C(T )n(T )‖v‖n2 ≤ µ

µ− 1
.

12



Thus

‖Γvtφl − Γut φl‖L∞
t H

3
x
≤ µC(T )

µ− 1
‖v − u‖2‖Γut φl‖L∞

t H
3
x

and the relation (8) becomes

‖Hl(u)−Hl(v)‖(3) ≤ C(T )2‖v − u‖2(‖u‖2 + ‖v‖2)‖Γut φl‖L∞
t H

3
x

+
µ

µ− 1
C3(T )‖v‖22‖v − u‖2‖Γut φl‖L∞

t H
3
x
≤ 2

µ
C(T )‖v − u‖2‖Γut φl‖L∞

t H
3
x

+
1

(µ− 1)µ
C(T )‖v − u‖2‖Γut φl‖L∞

t H
3
x
≤ (2µ − 1)

(µ − 1)µ
C(T )‖v − u‖2‖Γut φl‖L∞

t H
3
x
.

Thanks to Proposition 2 and to the Duhamel’s formula

‖ΓuTφl‖L∞
t H

3
x
≤ ‖φl‖(3)

1− C(T )‖u‖2 |||B ||| 3
≤ µl3

µ− 1

and then

‖Hl(u)−Hl(v)‖(3) ≤
2µ − 1

(µ− 1)2
l3C(T )‖v − u‖2.(10)

Let M1 =
2µ−1
(µ−1)2

l3C(T ), we want to estimate µ such that 1
2M > M1 and

1

2

Cl

C̃(T )
>

2µ − 1

(µ− 1)2
l3C(T ).

Thus a(2µ − 1)(µ− 1)−2 < 1 for a = 2C(T )C̃(T )l3

Cl
and the inequality is satis-

fied for µ > a+
√
a(a+ 1) + 1.

Let us establish an upper bound for C(T )C̃(T ). One can consider the proofs
of [3, P roposition 19; (ii)] and of Ingham Theorem [13, Theorem 4.3], we
know that

G := inf
k 6=j

(λk − λj) = 3π2.

Let T = 4
3π , I

′ be such that |I ′| := G

π
T = 4 and

β =
π2

4
, G(0) =

π

2
, I0 = [−1,+1], m =

(
|I ′||I0|−1

)
= 2,

α = 4R2, Ĝ(0) =
(R2 − 1)π

2
, R =

|I ′|
2

= 2.

Thanks to the proof of Ingham Theorem [13, Theorem 4.3] there holds

C̃(T ) =
2mπG(0)π

βG
=

8

3π
, Ĉ(T ) =

αG

2πĜ(0)π
=

16

π
.
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and the proof of the first point of Proposition 2 (see [3]) implies

C(T ) = 3π−3 max
{√

2Ĉ(T ),
√
T
}
= 3π−3

√
2Ĉ(T ) =

48
√
2

π4
.

Now C(T )C̃(T ) ≤ 2
3 and a ≤ 4

3 ãl for ãl :=
l3

Cl
. Afterwards Cl ≤ 〈φ1, Bφl〉 ≤

|||B ||| which implies that ãl > 1 and

C(T )
(4
3
ãl +

√
4

3
ãl

(4
3
ãl + 1

)
+ 1
)
≤ C(T )

(4
3
ãl +

(4
3
ãl + 1

)
+ 1
)
≤ 7

2
ãl.

Let a Hilbert space Y , y ∈ Y and r > 0, we define

BY (y, r) := {ỹ ∈ Y
∣∣ ‖ỹ − y‖Y ≤ r}.

One can consider U = BX(0, 2(7ãl)
−1), we know thatM−M1 ≥ (2C̃(T ))−1Cl

and thanks to the proof of [10, Lemma 2.3]

Al(BX(0, 2(7ãl)
−1)) ⊃ BH3

(0)
(Fl(0), (M −M1)2(7ãl)

−1) ⊃

BH3
(0)
(φl(T ), Cl(6ãl)

−1) ⊃ BH3
(0)

(
φl(T ),

C2
l

6l3

)
.

We have supposed |||B ||| 3 = 1 but we can generalize for |||B ||| 3 6= 1 by
considering that

A+ uB = A+ u |||B ||| 3
B

|||B ||| 3
.

One can consider the operator B
|||B ||| 3

and the control u |||B ||| 3. Hence we

substitute Cl with Cl |||B |||−1
3 and

∀ψ ∈ BH3
(0)

(
φl(T ),

C2
l

6l3 |||B ||| 23

)
, ∃ u ∈ BX

(
0,

2Cl

7l3 |||B ||| 23

) ∣∣∣ Al(u) = ψ.

4.2 Control function for the global approximate controllabil-

ity with respect to the H −norm

Let φj , φk for j ≤ k, we exhibit a control function driving the dynamics of (1)
from φj to BH3

(0)
(φk(T ), C

2
l (6l

3 |||B ||| 23)−1). For this purpose one can start by

generalizing [9, P roposition 6]. Let T = 2π
|λk−λj | and u(t) = cos((λk −λj)t).

For any n ∈ N there exists Tn ∈ (nT ∗ − T, nT ∗ + T ) such that

1− |〈φk,Γ
u
n

Tn
φj〉|

1 + 2K |||B ||| ≤ (1 + C ′) ||| (φj〈φj , ·〉 + φk〈φk, ·〉)B ||| I
n

,

with T ∗ = π
|Bj,k| , I = 4

|λk−λj | , K = 2
|Bj,k| and

C ′ = sup
(v,w)∈Λ′

{∣∣∣ sin
(
π
|λv − λw|
|λk − λj |

)∣∣∣
−1}

,
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where

Λ′ =
{
(v,w) ∈ {1, ..., N}2 : {v,w} ∩ {j, k} 6= ∅, |λv − λw| ≤

3

2
|λk − λj|,

|λv − λw| 6= |λk − λj |, Bn,m 6= 0
}
.

Remark. As already mentioned in Remark 3 one can state similar results for
other control functions 2π

|λk−λj |−periodics by adopting the theory from [9].

For un := u
n
and Rn := (1 + 2K |||B ||| )(1 + C ′) |||B ||| In−1 there holds

∑

l 6=k
|〈φl,ΓunTnφj〉|

2 = 1− |〈φk,ΓunTnφj〉|
2

≤
(
1− |〈φk,ΓunTnφj〉|

)(
1 + |〈φk,ΓunTnφj〉|

)
≤ 2Rn.

(11)

Afterwards, there exists θn ∈ C such that

(12) |〈φk, φk〉 − 〈φk,ΓunTne
iθnφj〉|2 ≤ R2

n.

From (11), (12) it follows

(13) R′
n := ‖φk − ΓunTne

iθnφj‖2 ≤ 2Rn +R2
n,

hence |Bj,k|−1 |||B ||| ≥ 1 implies

Rn ≤ (1 + C ′)(|Bj,k|−1 + 4|Bj,k|−1) |||B ||| 2I
nCk

≤ 5(1 + C ′)|Bj,k|−1 |||B ||| 2I
n

≤ 3(1 + C ′)|Bj,k|−1 |||B ||| 2
n|k2 − j2| .

and

(14) Rn ≤ 3(1 + C ′)|Bj,k|−1 |||B ||| 2
n|k2 − j2| .

4.3 Global approximate controllability with respect to the

H
3−norm

Let us consider the relation (14). If

(15) n ≥ 3(1 + C ′)|Bj,k|−1 |||B ||| 2
|k2 − j2| ,

then Rn ≤ 1, R2
n ≤ Rn and

R′
n ≤ 2Rn +R2

n ≤ 3Rn ≤ 32|Bj,k|−1(1 + C ′) |||B ||| 2
n|k2 − j2| .(16)
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For fn := φk − ΓunTne
iθnφj there holds ‖fn‖2(s) ≤ (ks + ‖ΓunTneiθnφj‖(s))2 and

by considering [5, relation (9)] it follows

‖fn‖4(3) = ‖fn‖4( 12
4

) ≤ ‖fn‖2( 4
2

)‖fn‖2( 8
2

) ≤ ‖fn‖‖fn‖3(4).(17)

Let Ĥ4
(0) := D(A(λǫ −A)) and such as [6, P roposition 30] follows from the

Kato-Rellich type arguments of [12, Section 3.10], one can ensure that for
every λǫ ≥ 1:

M := sup
t∈[0,Tn]

||| (λǫ −A− un(t)B)−1 |||
L(H2

(0)
,Ĥ4

(0)
),

N := ||| λǫ −A− un(t)B |||
BV
(
[0,Tn],L(Ĥ4

(0)
,H2

(0)
)
),

there holds:

‖(A+un(Tn)B−λǫ)ΓunTne
iθnφj‖(2) ≤MeMN‖(A−λǫ)θnφj‖(2) ≤MeMN (1+λǫ)j

4.

Now N ≤ ‖un(t)‖BV (Tn) |||B |||
L(Ĥ4

(0)
,H2

(0)
))
and for every ψ ∈ Ĥ4

(0), ǫ > 0

‖Bψ‖2(2) ≤
(
ǫ‖Aψ‖(2) + |||B ||| (2)‖ψ‖(2)

)2

≤ 2ǫ2(‖Aψ‖2(2) + ǫ−2 |||B ||| 2(2)‖ψ‖2(2)).

If we set λǫ = |||B ||| (2)ǫ−1

‖Bψ‖2(2) ≤ 2ǫ2(‖Aψ‖2(2) + λ2ǫ‖ψ‖2(2)) ≤ 2ǫ2(‖(A− λǫ)ψ‖2(2))

which leads toN ≤ ǫ
√
2‖un(t)‖BV (Tn). By following the proof of [6, P roposition 30]

we can prove that

M ≤ 2 + ǫ sup
t∈[0,Tn]

(
|un(t)|‖(λǫ −A)(λǫ −A− un(t)B)−1‖(2)

)
.

If ǫ ≤ 2−1 then M ≤ 3 and if

(18) n ≥
2 |||B ||| (2)

π2
=⇒ |||A(A+ un(Tn)B − λǫ)

−1 ||| (2) ≤ 2.

Thus

‖ΓunTne
iθnφj‖(4) = ‖AΓunTne

iθnφj‖(2) ≤ 2‖(A + u(Tn)B − λǫ)Γ
un
Tn
eiθnφj‖(2)

≤ 6e3
√
2ǫ‖un‖BV (Tn)(1 + λǫ)j

4 ≤ 6e3
√
2ǫ‖un‖BV (Tn)(1 + |||B ||| (2)ǫ−1)j4.

and for a suitable value of ǫ

‖ΓunTne
iθnφj‖(4) ≤ 6e

(
1 + 3

√
2‖un‖BV (Tn) |||B ||| (2)

)
j4.(19)
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In the interval [0, nT ∗+T ] are not contained more than d half-period of the
function u for d := 2π2n|k2 − j2||Bj,k|−1 + 4 and if

(20) n ≥ |||B ||| (5π−2|j2 − k2|−1)

there follows

(21) ‖un‖BV (Tn) ≤ ‖un‖BV (nT ∗+T ) ≤ (d+ 1) ≤ 3π2|k2 − j2||Bj,k|−1.

The relation (19) becomes:

‖ΓunTne
iθnφj‖(4) ≤ 6e(1 + 32

√
2π2 |||B ||| (2)|k2 − j2||Bj,k|−1)j4

≤ 2234π2 |||B ||| (2)|k2 − j2||Bj,k|−1j4

and (17)

‖fn‖8(3) ≤ R′
n(2

334π2 |||B ||| (2)|k2 − j2||Bj,k|−1max{j, k}4)6

≤
(
218326π12 |||B ||| 6(2)|k2 − j2|6|Bj,k|−6 max{j, k}24

)(1 + C ′)|Bj,k|−1 |||B ||| 2
n|k2 − j2|

≤
(
218326π12(1 + C ′) |||B ||| 6(2) |||B ||| 2|k2 − j2|5|Bj,k|−7 max{j, k}24

)
n−1.

Now we want to estimate ‖ΓunnT ∗+Tφj−φk‖(3) so that one can consider nT ∗+
T as final time.

Remark. We point out that one could use Tn, defined in [9], but its formu-
lation is not always of easy computation. Moreover the next argument can
be used for proving that the result still holds for every time in [Tn, nT

∗+T ].

Let us consider the argument impling the relation (19) and the fact that
C(·) introduced in Proposition 2 is increasing (see the proof of Appendix
B.3, Corollary 4, [3]). It follows that C(nT ∗ + T − Tn) ≤ C(2T ) ≤ C( 4

3π ) =

48
√
2π−4. Thus one can notice that

‖ΓunnT ∗+Tφj − ΓunTnφj‖(3) ≤ C(nT ∗ + T − Tn) |||B ||| 3
∫ nT ∗+T

Tn

|un(s)|ds‖ΓunTnφj‖(3)

≤ C(nT ∗ + T − Tn) |||B ||| 3
∫ nT ∗+T

Tn

|un(s)|ds‖ΓunTnφj‖(4)

≤ C(nT ∗ + T − Tn) |||B ||| 3
∫ nT ∗+T

Tn

|un(s)|ds 2234π2 |||B ||| (2)|k2 − j2||Bj,k|−1j4

≤ C
( 4

3π

)
|||B ||| 3

2T

n
2234π2 |||B ||| (2)|k2 − j2||Bj,k|−1j4

≤ |||B ||| 3
n

63π2 |||B ||| (2)|Bj,k|−1j4.

By keeping in mind that |Bj,k| is smaller than |||B ||| , |||B ||| (2) and |||B ||| 3,
if n is large enough so that

(22)
|||B ||| 3π2

n
63 |||B ||| (2)|Bj,k|−1j4 ≤ 1,
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there holds

R′′
n := ‖ΓunnT ∗+Tφj − φk‖8(3) ≤ 27

(
‖ΓunnT ∗+Tφj − ΓunTnφj‖

8
(3) + ‖fn‖8(3)

)

≤ 27
((

|||B ||| 3 63π2 |||B ||| (2)|Bj,k|−1n−1j4
)8

+ ‖fn‖8(3)
)

≤ 27
(
|||B ||| 3 63π2 |||B ||| (2)|Bj,k|−1n−1j4 + ‖fn‖8(3)

)
≤ 27

π2 |||B ||| 363 |||B ||| (2)j4
n|Bj,k|

+
225326π12(1 + C ′) |||B ||| 6(2) |||B ||| 2|k2 − j2|5 max{j, k}24

|Bj,k|7n

≤
626π12(1 + C ′) |||B ||| 6(2) |||B ||| max{ |||B ||| , |||B ||| 3}|k2 − j2|5max{j, k}24

|Bj,k|7n
.

Now limn→∞R′′
n = 0, hence there exists n∗ such that

Γ
un∗
n∗T ∗+Tφj ∈ BH3

(0)

(
φk(T ), C

2
k(6k

3 |||B ||| 23)−1
)

⇒ R′′
n∗ ≤ C16

k

68k24 |||B ||| 163
.

Thanks to the fact that for 0 ≤ s < 3 and j, k ∈ N

|||B ||| (s) ≥ Ck, |||B ||| (s) ≥ |Bj,k|

and defined b := |||B ||| 6(2) |||B ||| |||B ||| 163 max
{
|||B ||| , |||B ||| 3

}
one can as-

sume that n∗ is larger than

634π12b(1 + C ′)|k2 − j2|5k24 max{j, k}24
C16
k |Bj,k|7

.

In conclusion the conditions (15), (18), (20) and (22) are satisfied. Thus for

un∗(t) =
cos
(
(k2 − j2)π2t

)

n∗
, T ∗

n∗ = n∗
π

2
+

2

|k2 − j2|π ,

there holds that Γun∗T ∗
n∗
eiθn∗φj ∈ Õk.

4.4 Eliminating the phase ambiguity

In order to act a phase-shift we slightly retrace the steps of previous subsec-
tion and we adopt the theory from [9] that explains how to define precisely
this phase ambiguity.
First, we refer to [9, Section 3.1] and we want to estimate N ≥ max{j, k}
such that for C ∈ (0, 1)

K‖(1− πN )B(φj〈φj , ·〉 + φk〈φk, ·〉)‖ ≤ CRn,(23)
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for πN (·) :=
∑N

k=1 φk〈φk, ·〉. We have that

K‖(1− πN )B(φj〈φj , ·〉+ φk〈φk, ·〉)‖
≤ K‖(1− πN )B(φj〈φj , ·〉)‖ +K‖(1− πN )B(φk〈φk, ·〉)‖

≤ 2

|Bj,k|
(( ∞∑

l=N+1

|Bl,k|2
) 1

2
+
( ∞∑

l=N+1

|Bl,j|2
) 1

2
)
≤ CRn

and if Rn ≥ 4C |||B ||| (nπ2|k2 − j2|)−1, the relation (3) implies (23) by
considering C small enough.
Let us take in account [9, relation (13)], [9, relation (18)] and [9, relation (19)].
Similarly to [9, relation (20)], one can consider n large enough such that

1− |〈φk,Γ
u
n

Tn
φj〉| ≤ K‖(1− πN )B(φj〈φj , ·〉 + φk〈φk, ·〉)‖

+ 4KRn‖(1 − πN )BπN‖+Rn ≤ CRn + 8|Bj,k|−1 |||B |||Rn +Rn

≤ CRn + 9|Bj,k|−1 |||B |||Rn ≤ 10|Bj,k|−1 |||B |||Rn =: R̃n.

(24)

Thus one can substitute Rn with R̃n in the relation (16) and by repeating
the argument of the previous section one can use ñ equal to

63410π12b(1 + C ′) |||B ||| |k2 − j2|5k24 max{j, k}24
C16
k |Bj,k|8

.

By referring to the proofs of [9, P roposition 2] and [9, Corollary 3], we
introduce the N×N matrixM such that for l,m ∈ N if |λl−λm||λk−λj|−1 ∈
N

Ml,m = 〈φl,Mφm〉 =
Bl,m
I

∫ I

0
ei(λl−λm)s|u(s)|ds,

otherwise Ml,m = 0. Now for every l,m such that |λl − λm||λk − λj |−1 =
µ ∈ N \ {1} it follows

Ml,m =
Bl,m
4

∫ 4

0
eiµx| cos(x)|dx =

Bl,m(iµ− 2iµ + e4iµ(sin(4) + iµ cos(4)))

4(µ2 − 1)
,

while if |λl − λm| = |λk − λj | there holds that

Ml,m =
Bl,m
4

∫ 4

0
eix| cos(x)|dx =

Bl,m((−8 + 3i) + ie8i + 2π)

16
.

Thank to [9], one can ensure that eiθn∗ = 〈φk, e−KMφj〉. In conclusion for

T̃n∗ = −λ−1
j θn∗ , w̃(t) := un∗χ[T̃n∗ ,T̃n∗+T

∗
n∗

],

there holds that Γ
w̃n∗

T̃n∗
φj ∈ Õk and the proof it is achieved thanks to the

local exact controllability.
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5 Optimization methods, example and other ap-

proaches

As mentioned in Remark 2 the results provided in Theorem 1 are far from
being optimal. We are sure of the existence of many techniques that one
can use in order to improve the estimates and here we present few of them.

1. One can retrace the proof of Theorem 1 fixing B and j, k ∈ N in order
to use sharper estimates. We briefly show an example in the next
subsection.

2. By using the techniques adopted in Section 4.1, one can look for a
larger neighborhood of validity of the local exact controllability. In-
deed the larger it is, the smaller n has to be. We suggest to change the
time from the one chosen of 4

3π and study the variation of the radius
as function of the time. Moreover, one can use the Haraux Theorem
([13, Theorem 4.5]), instead of Ingham Theorem ([13, Theorem 4.3])
in order to prove the local exact controllability. By retracing the steps
of Section 4.1, one can establish the new constants and study how the
neighborhood changes as a function of the time.

3. Another try is to look for more precise upper bounds of the kind

‖Γut f‖k ≤ C1‖f‖k, f ∈ Hk
(0), 3 ≤ k < 5, C1 > 0,

‖f‖3 ≤ C2‖f‖, f ∈ H3
(0), C2 > 0,

than the ones used in Section 4.3 (with our approach C2 was function
of ‖f‖(4)).

4. In conclusion one can obtain the same result of Theorem 1 with Tn as
final time instead of using nT + T ∗ as stated in Remark 4.3, Section
4.2.

5.1 Example: dipolar moment

Let B : ψ 7→ x2ψ, we want to define a control function and a time so that
the dynamics of (1) drives the second eigenstate φ2 into the first φ1.
First, Assumptions (I) are satisfied because

|〈φj , x2φk〉| =
∣∣∣ (−1)j−k

(j − k)2π2
− (−1)j+k

(j + k)2π2

∣∣∣ = 4jk

(j2 − k2)2π2
, j 6= k,

|〈φk, x2φk〉| =
∣∣∣1
3
− 1

2k2π2

∣∣∣, k ∈ N

which imply the validity of the conditions 1) and 2). The condition 3) is
verified as

j2 − k2 − l2 +m2 = 0 =⇒ j−2 − k−2 − l−2 +m−2 6= 0.
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Now there holds

‖∂x(x2ψ)‖ ≤ ‖2xψ‖ + ‖x2∂xψ‖,
‖∂2x(x2ψ)‖ ≤ ‖2ψ‖ + ‖4x∂xψ‖+ ‖x2∂2xψ‖,
‖∂3x(x2ψ)‖ ≤ ‖6∂xψ‖+ ‖6x∂2xψ‖+ ‖x2∂3xψ‖.

We knows that for every ψ ∈ H3
(0) it follows that ‖ψ‖ ≤ π−2‖Aψ‖ and the

Poincaré inequality implies that ‖ψ‖ ≤ π−1‖A 1
2ψ‖, ‖Aψ‖ ≤ π−1‖A 3

2ψ‖.
Thus

|||B ||| 3 = sup
ψ∈H3

(0)
‖ψ‖(3)≤1

‖x2ψ‖H3 ≤ sup
ψ∈H3

(0)
‖ψ‖(3)≤1

(
‖6∂xψ‖+ ‖6∂2xψ‖+ ‖∂3xψ‖

+ ‖2ψ‖ + ‖4∂xψ‖+ ‖∂2xψ‖ + ‖2ψ‖ + ‖∂xψ‖
)

≤ sup
ψ∈H3

(0)
‖ψ‖(3)≤1

(
1 + 7π−1 + π−2

(
11 + 5π−1

))
‖∂3xψ‖ ≤ 4, 6.

Thanks to density arguments and to the Poincaré inequality

sup
ψ∈H2

(0)
‖ψ‖(2)=1

‖∂xψ‖ = sup
ψ∈H2

0
‖ψ‖(2)=1

‖∂xψ‖ ≤ sup
ψ∈H2

0
‖ψ‖(2)=1

π−1‖∂2xψ‖ = π−1

and then |||B ||| (2) ≤ (2π−2 +4π−1 +1) ≤ 2, 5, |||B ||| = 1, C ′ = 0 and there
holds

|B1,1| = C1 =
2π − 3

6π2
, |B1,2| = C2 =

8

9π2
, I =

∫ 2
3π

0
|u(s)|ds = 4

3π2
,

Then we retrace the steps of the proof of the first point of Theorem 1 in
order to produce more polish estimates.

Let T = 2
3π , u(t) = cos(3π2t), T ∗ = 9π3

8 , K = 9π2

4 , for un := u
n
there exists

θn ∈ C such that

R′
n = ‖φ1 − ΓunTne

iθnφ2‖2 ≤
27π2

8n
.

Afterwards for n large enough thanks to (21)

‖un‖BV (0,nT ∗+T ) ≤ 342−3π4.

Thus

‖φ1 − ΓunnT ∗+T e
iθnφ2‖83 ≤ 27

(
27π2(8n)−1(6e(1 + 3

√
2342−3(2, 5)π4)24 + 1)6

+ (4, 6) 63239π2n−1
)
≤ 1, 77 1042n−1
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and we can ensure that in the neighborhoodBH3
(0)

(
φ1(T ), 1.5 10−3

)
the local

exact controllability is verified. Thus the first point of Theorem 1 is satisfied
for n = (1.3 1067) 8

9π2 and by referring to Remark 4.3 there exists θ ∈ R such
that for:

u(t) = (1.3 1067)−1 9π
2

8
cos(3π2t), T = 1.3 1068

it follows ∥∥ΓuTφ2 − eiθφ1
∥∥
H3

(0)
≤ 1.5 10−3.

Moreover there exists ulcl ∈ L2((0, 4
3π ),R) so that

ΓuTΓ
ulcl
4
3π

φ2 = eiθφ1.

We point out that by considering B̃ : ψ 7→ x2

E0
ψ instead of B : ψ 7→ x2ψ for

E0 > 0, one can obtain the same result for n ≥ (1.3 1067) 8
9π2E0

even if the
rescale does not affect the time controllability.

Regarding the application of the second point of Theorem 1 we refer the
reader to the next section.

5.2 Computing the phase ambiguity and other techniques

Establishing the matrix M and then acting a phase-shift are in general
difficult tasks. The more n grows, the more the size of the matrix M does,
making more difficult the computation of eKM .
First, we suggest to optimize of the results of Theorem 1 as explained in
the beginning of the section. If this approach would not be enough one can
adopt one of the following methods.

1) We can numerically construct a matrix Ẽ that approximates eKM up to
an error ǫ and such that |〈φk, Ẽφj〉| = 1. By using the theory from [9] as we
have done for in (24), we can modify the relation (24) as follows

|〈φk, Ẽφj〉 − 〈φk,Γ
u
n

Tn
φj〉| ≤ K‖(1− πN )B(φj〈φj , ·〉+ φk〈φk, ·〉)‖

+ 4K(Rn + ǫ)‖(1 − πN )BπN‖+Rn.

If ǫ is small enough and n large enough, then one can obtain the same result
of the second point of Theorem 1.

2) Another approach is to refer to the perturbation theory technique devel-
oped in [11]. By decomposing A + u(t)B = (A + u0B) + u1(t)B, we can
consider u0B as a perturbative term of the operator A so that the perturbed
eigenvalues {λu0j }j∈N of the operator A+ u0B fulfill

|λu0k − λu0j | 6= K|λu0n − λu0m |, ∀k, j, n,m ∈ N,K ∈ N.
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Hence if we consider the dynamics between perturbed eigenstates {φu0j }j∈N
of the operator A+u0B, one can choose a perturbation so that the matrixM
has just two non-diagonal elements different from 0, so thatM and eKM are
easier to compute. In this framework one can define only dynamics between
two generic perturbed eigenfunctions φu0j , φu0j . However for u0 small enough

φu0j ∈ BH3
(0)

(
φj ,

C2
j

6j3 |||B ||| 23

)
, φu0k ∈ BH3

(0)

(
φk,

C2
k

6k3 |||B ||| 23

)

and Proposition 4 implies that one can respectively move from φj to φu0j
and from φk to φu0k with two suitable control functions.

Acknowledgments. The author thanks Thomas Chambrion for suggesting
him the problem and for the explanation about the work [9]. He is also
grateful to the colleagues Nabile Boussaid, Lorenzo Tentarelli and Riccardo
Adami for the fruitful discussions.
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