
HAL Id: hal-01520124
https://hal.science/hal-01520124

Submitted on 12 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Metaheuristic for Routing in Road Networks
Omar Dib, Marie-Ange Manier, Alexandre Caminada

To cite this version:
Omar Dib, Marie-Ange Manier, Alexandre Caminada. A Hybrid Metaheuristic for Routing in Road
Networks. 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Sep 2015,
Las Palmas, Spain. pp.765 - 770, �10.1109/ITSC.2015.129�. �hal-01520124�

https://hal.science/hal-01520124
https://hal.archives-ouvertes.fr

A Hybrid Metaheuristic for Routing in Road

Networks
Omar DIB

Technical Research Institute

SystemX

92120 Palaiseau France

Omar.dib@irt-systemx.fr

Marie-Ange MANIER

OPERA–UTBM

90010 Belfort Cedex

Marie-ange.manier@utbm.fr

Alexandre CAMINADA

OPERA–UTBM

90010 Belfort France

alexandre.caminada@utbm.fr

Abstract— computing the optimal route to go from one place

to another is a highly important issue in road networks. The

problem consists of finding the path that minimizes a metric such

as distance, time, cost etc. to go from one node to another in a

directed or undirected graph. Although standard algorithms and

techniques such as Dijkstra and integer programming are

capable of computing shortest paths in polynomial times, they

become very slow when the network becomes very large.

Furthermore, traditional methods are incapable of meeting

additional constraints that may arise during routing in

transportation systems such as computing multi-objective routes,

routing in stochastic networks. Therefore, we have thought about

using meta-heuristics to solve the routing issue in road networks.

Meta-heuristics are capable of copying with additional

constraints and providing optimal or near optimal routes within

reasonable computational times in large-scale road networks.

The proposed approach is a combination between genetic

algorithm (GA) and variable neighborhood search (VNS). To

evaluate our method, we made experimentations using random

generated and real road network instances. We compare our

approximate method with two exact algorithms (Dijkstra and

integer programming). Results show that our approach is able to

give high quality solutions within milliseconds even in large-scale

networks. Moreover, the selected meta-heuristics show high

flexibility rate in terms of meeting other problem requirements.

Keywords—Routing; Shortest path; Road networks;

Metaheuristics; Dijkstra’s algorithm, Integer Programming

I. INTRODUCTION

Finding the best route to reach a destination in road
networks is not always straightforward. Travelers usually
encounter difficulties when planning their trips in elaborate
road schemes. Having several possibilities to go from one place
to another usually makes travelers incapable of figuring the
best route out. Consequently, to help travelers to find the best
routes through the complex networks, route planning has
gained significant importance in recent years. Several
commercial navigation products have been developed to
provide travelers with driving directions helping them to reach
their destinations such as .

Finding the optimal path between two places in road
networks refers to solving the one-to-one shortest path problem
(SPP) in a directed connected graph. Graph’s nodes represent
road junctions and edges connecting two nodes account for
road segments.

 The SPP is among the most studied network-flow
optimization problems. Several algorithms have been
developed to compute shortest paths since 1956. Dijkstra’s
algorithm is the standard solution to solve the one-to-one
shortest path problem. Bellman-Ford algorithmis a shortest
path algorithm used in graphs containing negative edges’
weights. Floyd-Warshall algorithm computes shortest paths
between all pairs of points in a weighted graph

The SPP was also formulated and solved using
optimization techniques, especially the integer programming
(IP). Although, IP can solve shortest paths and are flexible to
meet additional problem constraints, they usually require high
computational time.

Computing best routes in road networks can be done using
Dijkstra’s algorithm or even the IP techniques. However, this
would be far too slow for users seeking answers in
milliseconds, especially in large-scale networks. For instance,
Dijkstra would take up to 10 seconds to solve a shortest path
query in a continental road network. Therefore, extensive
research have been done in order to accelerate traditional
algorithms.

For example, the running time of Dijkstra can be enhanced
using bidirectional search. Other techniques have been
developed to accelerate routing in road such as A* search, Arc
Flags and ALT (A*, landmarks, and triangle inequality).

Although, those techniques are efficient and fast enough to
provide driving directions even in large-scale road networks,
they become less performant or even inapplicable when
additional constraints are added to the SPP such as dynamic
arcs weights, multimodal shortest paths and multi-criteria paths
optimization.

To overcome such shortcomings, we believe that meta-
heuristics such as genetic algorithms, local search procedures
are efficient candidates to find optimal or near optimal
solutions within an acceptable computation time.

Meta-heuristics such as such as Genetic Algorithms (GAs),
Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO) have been applied for solving routing issues in various
fields of applications. For instance, reference [1] proposed a
genetic algorithm to find the shortest path in computer
networks. Moreover, reference [2] used a genetic algorithm to
solve the routing issue in road networks. Reference [3] also
worked with genetic algorithm to find the shortest path in data

networks. Reference [4] combined PSO with local search and
velocity re-initialization for computing shortest paths in
computer networks.

 Although the aforementioned works are very interesting,
we have remarked that experimental results have been only
done over small network instances (ex: 100 nodes). Therefore,
we have no guarantee that such approaches are also efficient on
large-scale networks. Furthermore, none of the
abovementioned methods has been applied to solve other
complex variants of SPP such as computing multi-objective
shortest paths in stochastic netowrks.

 In this paper, we propose a new approach for solving the
routing issue in road networks. We introduce a new
combination process in which we couple variable
neighborhood search with genetic algorithm.

The remainder of this paper is organized as follows. In next
section, we describe more formally the SPP. we present our
novel approach in section 3. Section 4 is devoted to present
experimental results. Finally, section 5 concludes this paper as
well as proposes some future works.

II. PROBLEM DEFINITION

The one-to-one SPP, whether it is addressed in
transportation, computer networks or other fields, is defined as
that of finding the path with the minimum cost (time,
distance...) path between a given source and destination. More
formally, let G(V,E) be a directed graph with a node set V of
size n and an edge set E of size m. Let us also assume that W is
a weight function that assigns each edge e (uv) with a non-
negative weight wij . The problem is then to find a path p (e1,
e2… ek) between a given source node ‘s’ and a destination ‘t’
in such a way the sum of the edges’ weights in p is minimized.

III. PROPOSED APPROACH

As aforementioned, the main contribution of this paper is to
adapt and apply an approximate method based on a
collaboration between two meta-heuristics (GA and VNS), for
solving routing issue in road networks.

The proposed approach proceeds with a population of
solutions as GAs works. Initial generated solutions are
performed using a double search algorithm. The details of this
algorithm is described later in this article.

After generating initial solutions, a VNS is applied over
each individual in the first population in order to enhance their
quality. Having good initial solutions usually enhances the
chance of the algorithm in achieving better results. Adapting
VNS to the problem is discussed later.

 After improving solutions, individuals are passed through
an evaluation process. The fitness function is the sum of the
weights of each edge including in a path.

After the evaluation phase, genetic operations are
repeatedly performed in order to improve current solutions.
The algorithm starts with a crossover operator that forms two
new solutions from two initial parents. A single-point
crossover technique is applied with a probability of 0.9.

In contrast to traditional mutation techniques, a special
mutation operation is performed in the proposed approach.
That is, the VNS method is applied with a probability of 0.1
over each individual (path) in the population. Thanks to this
novel technique, the algorithm will have more chances to
exploit and explore new regions of the solution search space.

The whole process is repeated until the algorithm reach our
stopping criteria. The following scheme represents the
algorithms’ steps that we will discuss in more details in next
paragraphs.

Figure 1: Steps of our algorithm

A. Encoding

Encoding of chromosomes is one of the issues that may
arise when implementing a GA. Encoding is very dependent on
the problem and it may increase the performance of the
algorithm. The permutation encoding technique has been used
to represent a chromosome in our approach. Each individual is
encoded as a string of numbers, which represents the identifiers
of edges in a path. For example, in Figure2, the path to get
from A to G is encoded as a vector P = (AB, BD, DE, EG);
Each element in P represents the identifier of the correspondent
edge.

Figure 2: Encoding solutions

D A B E G

NO

New

Generation

YES Have

Stopping

Criteria met?

Improve Solutions using VNS

Parents Selections
(Roulette Wheel)

Crossover
(Single Point)

Evaluate Solutions

Start Algorithm

Generate Initial Solutions
(Double Search Algorithm)

END

Mutation (VNS)

B. Generating initial solution

One of the challenges addressed in meta-heuristics is the
generation of initial solution (s). Usually, good initial solutions
might rapidly guide the search process towards important
regions in the search space.

Initial solutions in the proposed algorithm are a set of paths
generated using a double search algorithm. The basic idea
behind is to simultaneously run a forward search from the
origin point (s) and a backward search from the destination
point (t). A new path is then found between the origin and the
destination when the two searches intersect.

Example: Here is an example to illustrate more the
algorithm. Some simplifications have been made to reach
better understanding.

Figure 3: Getting initial feasible paths between S and T

After applying the double search algorithm to get a set of
initial feasible paths between the node S and T in G (6, 10)
(Figure 3), we will end up with the following paths:

Path1: SA AB BT

Path2 SA AD DT

Path3 SA AC CB BT

Path4 SC CD DT

C. Enhancing Initial Solutions Using VNS

One of the major challenges addressed in VNS is the
construction of the neighborhood structures. To deal with that
issue, a preprocessing operation is accomplished during the
generation phase of the network. The result is a VNS with two-
neighborhood structures.

More specifically, each edge in the graph is examined to
check if its starting and ending nodes have a common node in
between. Two nodes S and T have a common node if and only
if the end point of one adjacent edge of S is the same as the
starting point of an incoming edge of T.

Example: By taking the edge (AC) in Fig.4, it can be
noticed that the node B is shared between the adjacent edge
(AB) of A and the incoming edge (BC) of the node C.
Therefore, there is an alternative path to reach the node C from
A, which is in this case the path (AB, BC).

Figure 4. Constructing neighboring structures

Once such common nodes are detected, the process of

constructing the two neighboring structures begins.

 If the length of the edge (AC) is greater than the length of

the path (AB, BC), the edge (AC) can be replaced by the path

(AB, BC) during the search process. That case makes our first

neighboring structure. That is, the first neighboring structure is

a list containing replacement paths formed by two edges for

each edge.

 A second scenario may arise if the length of the path (AB,

BC) is greater than the length of (AC), thus, we can replace

the path (AB, BC) by the simple edge (AC) in any path. the

second neighboring structure can then be seen as a list

containing an edge that will replace a path formed by two

edges.

Example: Fig.5 shows a graph with 13 edges and 8 nodes.
An example of the replacements included in the first
neighboring structure is to substitute the edge (SC) with the 2-
edges path (SA, AC). Replacing the 2-edges path (BD, DT) by
the edge (B, T) is an example of an instance existing in the
second replacement structure.

Figure 5. Performing VNS over an individual

After performing the preprocessing operation over Fig.3, the

algorithm will end up with two replacement lists that represent

the neighboring structures of the VNS.

TABLE 1. Items in the first replacement list

Edge Replacements

(SC) (SA, AC)

(AB) (AC, CB)

(CD) (CB, BD)

(ET) (EF, FT)

 TABLE 2. Items from the second replacement list

Path Replacements

(BD, DT) (BT)

(DE, ET) (DT)

After defining neighboring structures, it is worth explaining
now how the algorithm uses such information in order to
improve the quality of an individual. To do so, let us assume
that the path P= (SC, CB, BD, DT) (Fig.5) is an individual
representing a solution to go from S to T. The length of P is 15.
The algorithm applies the VNS over P as follows:

 Initially, the algorithm uses the first neighboring

structure to perform local refinements over P. It goes through

C

S

A B

D

T

4

1

2

3
5

7

8

9

1
0

6

2

4
5

1
1

5

2

9

1

1

8

2
7

A

B

C

S

A

C

B

D

T

E F

each edge in P and tries to detect if there is a replacement for

that edge. In our example, the individual P can be improved

by substituting the edge (SC) by the path (SA, AC). The new

path generated is then (SA, AC, CB, BD, DT) and its length is

14. As can be noticed, the new path does not contain edges

included in the first replacement structure so the algorithm

switches to the second neighborhood structure.

 The algorithm examines then each two successive

edges and searches for a replacement. In this example, it can

be remarked that the path (BD, DT) including in P is in the

second replacement structure. Hence, the algorithm replaces it

by the edge (BT). The new path generated is (SA, AC, CB,

BT) and its length is improved to 13.

The VNS method is based on two-neighboring structures.
Each time the algorithm gets trapped in a local minimum, the
structure of the neighborhood changes. By following this
technique, the algorithm will exploit and explore wide regions
of the search space.

Adding more than two structures will possibly enhance the
chance of the algorithm to find the best path. However, that
might increase the time to accomplish the preprocessing
operation.

D. Evaluating an individual

The fitness function is accomplished by taking a path in the
population and adding the weights between each node pairs.
The result is a non-negative number representing the path
length.

E. Crossover

To perform the crossover, two individuals are selected from
the population using the roulette wheel selection technique.
Fittest individuals usually have more chances to pass their
genes to the next generation. After selection, the algorithm
tries to find a single common point to be a crossover point.
Once this latter is detected, parts from each initial parent are
taken to form new individuals (offsprings) to the next
generation. By doing this, the algorithm will have the chance to
visit new regions in the search space.

Example: Let us assume that G (Figure 6) is a directed
graph with 8 edges and 7 nodes. Let us also assume that from
an initial generated population, two paths are found between A
and T.

The first path is the sequence of the following edges (AB,
BD, DE, ET); its length is 13. The second path is (AC, CD,
DF, FT) with length 17. As can be noticed from those
sequences, they have in common the node D. Over that point,
we will perform the crossover. That is, we construct two new
paths (offsprings) from two initial individuals.

P2:F=17
P1:F=13

AC CD DF FT
AB BD DE ET

C2:F=22
C1:F=8

AC CD DE ET
AB BD DF FT

P: Parent C: Child F: Fitness

Figure 6. Single point crossover

One point worth mentioning is that after accomplishing the
crossover operator, we do not care about the feasibility of the
new path generated. The algorithm will always end up with a
feasible path from the source to the destination. Therefore, the
algorithm does not lose time to test the validity of an offspring
nor to perform some additional operations to repair the
unfeasible paths.

Considering more than one crossover point may enhance
the quality of final solutions. However, that might cost the
algorithm additional computational efforts when performing
the crossover. Therefore, we decide against using such
advanced crossover techniques.

F. Mutation (VNS)

Crossover operation may produce degenerate population.
The algorithm may therefore get stuck in local minima. To
overcome this issue, the mutation operation is performed.

The VNS is chosen as a special mutation operator. That is,
the VNS is applied with low probability over the population’s
individuals. By doing so, the algorithm is guided towards new
regions within the solution space. Therefore, the algorithm’s
chance to find better solutions increases.

Other mutation techniques have been applied such as order
changing. However, we have realized that the mutation in this
case may provide invalid paths. Additional processes should
therefore be applied to reform infeasible paths. As a result, the
mutation computational time will increase. It has been thereby
decided against using such traditional mutation techniques.

G. Terminating condition

Approximate methods do not guarantee obtaining optimal
solutions. Therefore, additional terminating conditions should
be introduced in order to allow the convergence of the
algorithm.

Maximum number of generations, fixed execution time,
and no modifications in population elements can be considered

D

C

A

B E

F

T

1

5

2

7 2

4 6

3

as algorithm stopping criteria. We have used in our
research two stopping criteria:

The algorithm first stops when no change in the fitness of
each individual in the population has been detected. We have
used 100 generations as a number to ensure a fixed state in the
population. Another stopping criterion is attended when the
algorithm reaches the maximum number (say 500) of
generations. We have noticed after some experimentations that
our algorithm visits wide range of the search space rapidly.

Thus, there is a big chance that the algorithm converges
rapidly. That explains the small number of generations defined
for the stopping criterion.

IV. EXPERIMENTAL RESULTS

We have done experimentations over 50 different networks
instances (from small to large size). Some of them are
generated randomly thanks to a generator that we developed
using Java. Other benchmarks are taken from the DIMACS
website that offers graphs for real world road networks in
USA.

We run algorithms and solvers on an Intel core I5 machine
of 8 GB RAM. Besides, we made extensive use of generic
programming techniques in order to avoid runtime overheads.

We put also particular efforts into carefully implementing
efficient data structures.

For simplicity, we present in table3 results obtained from
applying the proposed algorithms over six network instances.
For each instance, we choose five-times two random points to
construct the origin-destination queries .We compared our
approach with two other exact algorithms (Dijkstra and IP). We
implemented Dijkstra using a priority queue and we solved the
IP generated using two solvers: Cplex 12.6 and gurobi 6.0.

 The results showed that the running time of Dijkstra is
highly better than IP weather it is solved by Cplex or by gurobi.
However, our method outperforms Dijkstra and IP with 5%
average gap to the optimality. The average speed of our
method is 20-times faster than Dijkstra and more than 1000-
times compared with IP.

Moreover, we can notice from the results that the time
spent to solve the IP by the CPLEX solver is not the same as in
GUROBI solver. It changes at each request. Although this
research does not focus on accelerating the IP’s solving time,
we believe that the techniques used in both solvers can be
enhanced. That point may be considered as a future work since
it can tell us when and how we should change the parameters
of our solvers depending on the problem instance.

 Figure 6. A real road network from DIMACS Challenge with 2,758,119 nodes and 6,885,658 edges

Table 3. Experimental results

GRAPH RUNNING TIME (MSEC) AVERAGE

TYPE JUNCTIONS SEGMENTS DIJKSTRA
IP OUR

ALGORITHM
GAP (%) SPEED

CPLEX GUROBI

RANDOM

1000 100000

194,29 7773,63 5767,28 2,37 0 81

249,24 7229,51 5149,81 0,95 6 262

54,13 7315,10 6081,39 1,23 4 44

53,05 7551,22 5491,86 1,00 1 53

53,81 7820,56 5907,35 1,10 0 48

RANDOM

25000 500000

797,66 153502,72 29839,36 3,13 0 254

814,44 96358,00 18549,06 2,40 0 339

578,03 83066,09 17961,71 1,87 0 309

492,50 84785,43 18112,86 1,50 4 328

538,94 87916,22 19438,90 2,53 0 213

COMPLETE 150 22350

15,96 440,10 153,98 0,53 0 30

18,94 386,89 169,83 0,40 0 47

5,19 418,59 216,41 0,50 0 10

2,84 401,78 195,37 0,39 0 7

2,26 404,61 143,91 0,37 0 6

COMPLETE 500

249500

12,53 2485,40 2451,00 0,27 2 45

12,87 5972,23 1514,43 0,29 1 44

28,78 2689,79 2686,63 1,03 0 28

25,05 2481,10 1189,08 0,90 0 28

23,84 2447,22 2225,44 1,27 0 19

DIMACS 1207946 2840210

2486,35 716962,02 169921,86 83,23 5 30

1961,94 728352,15 2922319,64 126,26 2 16

2150,12 772732,06 8993880,24 102,96 3 21

1040,67 621584,55 9336397,105 40,96 4 25

1330,92 586573,61 75536,39705 29,49 6 45

DIMACS 1890816

4657744

4650,82 - - 129,40 4 36

5615,06 - - 134,30 2 42

5088,58 - - 114,94 0 44

5984,08 - - 123,27 2 49

6214,16 - - 115,12 1 54

V. CONCLUSION

The challenge of computing the one to one shortest path
in road networks has been addressed in this paper. A new
hybrid metaheuristic has been proposed and a compared with
other exact algorithms has been done.

Results has proven that the combination made between
GA and VNS is a powerful tool for efficiently solving
routing issue in road networks.

Although the proposed approach succeeds in finding high
quality solutions within milliseconds, it may not outperform
some advanced speed up techniques, which are only
dedicated for routing in road networks. However, the
originality of the proposed approach stems from the
flexibility/capacity of the selected meta-heuristics in
handling additional problem requirements such as routing in
a multimodal transportation network or optimizing more than
one criterion at the same time.

Currently, we are applying this method for solving
multimodal routing issue in a dynamic/stochastic
transportation system. We are mainly considering walking,
road and railway networks. The results we have obtained so

far are promising and further papers will be published in the
near future.

ACKNOWLEDGMENT

This research work has been carried out in the framework
of the Technological Research Institute SystemX, and
therefore granted with public funds within the scope of the
French Program “Investissements d’Avenir”.

REFERENCES

[1] Gonen, Bilal. "Genetic Algorithm finding the shortest path in
Networks." Reno: University of Nevada (2006).

[2] Behzadi, Saeed, and ALIA ALESHEIKH. "Developing a Genetic
Algorithm for Solving Shortest Path Problem." NEW ASPECTS OF
URBAN PLANNING AND TRANSPORTATION (2008).

[3] Kumar, Dr Rakesh, and Mahesh Kumar. "Exploring Genetic
algorithm for shortest path optimization in data networks." Global
Journal of Computer Science and Technology 10.11 (2010).

[4] Mohemmed, Ammar W., Nirod Chandra Sahoo, and Tan Kim Geok.
"A new particle swarm optimization based algorithm for solving
shortest-paths tree problem." Evolutionary Computation, 2007. CEC
2007. IEEE Congress on. IEEE, 2007

