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Abstract— computing the optimal route to go from one place 

to another is a highly important issue in road networks.  The 

problem consists of finding the path that minimizes a metric such 

as distance, time, cost etc. to go from one node to another in a 

directed or undirected graph. Although standard algorithms and 

techniques such as Dijkstra and integer programming are 

capable of computing shortest paths in polynomial times, they 

become very slow when the network becomes very large. 

Furthermore, traditional methods are incapable of meeting 

additional constraints that may arise during routing in 

transportation systems such as computing multi-objective routes, 

routing in stochastic networks. Therefore, we have thought about 

using meta-heuristics to solve the routing issue in road networks. 

Meta-heuristics are capable of copying with additional 

constraints and providing optimal or near optimal routes within 

reasonable computational times in large-scale road networks. 

The proposed approach is a combination between genetic 

algorithm (GA) and variable neighborhood search (VNS). To 

evaluate our method, we made experimentations using random 

generated and real road network instances. We compare our 

approximate method with two exact algorithms (Dijkstra and 

integer programming). Results show that our approach is able to 

give high quality solutions within milliseconds even in large-scale 

networks. Moreover, the selected meta-heuristics show high 

flexibility rate in terms of meeting other problem requirements. 

Keywords—Routing; Shortest path; Road networks; 

Metaheuristics; Dijkstra’s algorithm, Integer Programming 

I.  INTRODUCTION  

Finding the best route to reach a destination in road 
networks is not always straightforward. Travelers usually 
encounter difficulties when planning their trips in elaborate 
road schemes. Having several possibilities to go from one place 
to another usually makes travelers incapable of figuring the 
best route out. Consequently, to help travelers to find the best 
routes through the complex networks, route planning has 
gained significant importance in recent years. Several 
commercial navigation products have been developed to 
provide travelers with driving directions helping them to reach 
their destinations such as . 

Finding the optimal path between two places in road 
networks refers to solving the one-to-one shortest path problem 
(SPP) in a directed connected graph. Graph’s nodes represent 
road junctions and edges connecting two nodes account for 
road segments.  

 The SPP is among the most studied network-flow 
optimization problems. Several algorithms have been 
developed to compute shortest paths since 1956. Dijkstra’s 
algorithm is the standard solution to solve the one-to-one 
shortest path problem. Bellman-Ford algorithmis a shortest 
path algorithm used in graphs containing negative edges’ 
weights. Floyd-Warshall algorithm computes shortest paths 
between all pairs of points in a weighted graph  

The SPP was also formulated and solved using 
optimization techniques, especially the integer programming 
(IP). Although, IP can solve shortest paths and are flexible to 
meet additional problem constraints, they usually require high 
computational time.  

Computing best routes in road networks can be done using 
Dijkstra’s algorithm or even the IP techniques. However, this 
would be far too slow for users seeking answers in 
milliseconds, especially in large-scale networks. For instance, 
Dijkstra would take up to 10 seconds to solve a shortest path 
query in a continental road network.  Therefore, extensive 
research have been done in order to accelerate traditional 
algorithms.  

For example, the running time of Dijkstra can be enhanced 
using bidirectional search. Other techniques have been 
developed to accelerate routing in road such as A* search, Arc 
Flags and ALT (A*, landmarks, and triangle inequality).  

Although, those techniques are efficient and fast enough to 
provide driving directions even in large-scale road networks, 
they become less performant or even inapplicable when 
additional constraints are added to the SPP such as dynamic 
arcs weights, multimodal shortest paths and multi-criteria paths 
optimization.  

To overcome such shortcomings, we believe that meta-
heuristics such as genetic algorithms, local search procedures 
are efficient candidates to find optimal or near optimal 
solutions within an acceptable computation time. 

Meta-heuristics such as such as Genetic Algorithms (GAs), 
Particle Swarm Optimization (PSO), Ant Colony Optimization 
(ACO) have been applied for solving routing issues in various 
fields of applications. For instance, reference [1] proposed a 
genetic algorithm to find the shortest path in computer 
networks. Moreover, reference [2] used a genetic algorithm to 
solve the routing issue in road networks. Reference [3] also 
worked with genetic algorithm to find the shortest path in data 



networks. Reference [4] combined PSO with local search and 
velocity re-initialization for computing shortest paths in 
computer networks. 

 Although the aforementioned works are very interesting, 
we have remarked that experimental results have been only 
done over small network instances (ex: 100 nodes). Therefore, 
we have no guarantee that such approaches are also efficient on 
large-scale networks. Furthermore, none of the 
abovementioned methods has been applied to solve other 
complex variants of SPP such as computing multi-objective 
shortest paths in stochastic netowrks.  

 In this paper, we propose a new approach for solving the 
routing issue in road networks. We introduce a new 
combination process in which we couple variable 
neighborhood search with genetic algorithm.  

The remainder of this paper is organized as follows. In next 
section, we describe more formally the SPP. we present our 
novel approach in section 3. Section 4 is devoted to present 
experimental results.  Finally, section 5 concludes this paper as 
well as proposes some future works. 

II. PROBLEM DEFINITION 

The one-to-one SPP, whether it is addressed in 
transportation, computer networks or other fields, is defined as 
that of finding the path with the minimum cost (time, 
distance...) path between a given source and destination. More 
formally, let G(V,E) be a directed graph with a node set V of 
size n and an edge set E of size m. Let us also assume that W is 
a weight function that assigns each edge e (uv) with a non-
negative weight wij . The problem is then to find a path p (e1, 
e2… ek) between a given source node ‘s’ and a destination ‘t’ 
in such a way the sum of the edges’ weights in p is minimized.  

III. PROPOSED APPROACH 

As aforementioned, the main contribution of this paper is to 
adapt and apply an approximate method based on a 
collaboration between two meta-heuristics (GA and VNS), for 
solving routing issue in road networks.  

The proposed approach proceeds with a population of 
solutions as GAs works. Initial generated solutions are 
performed using a double search algorithm. The details of this 
algorithm is described later in this article. 

After generating initial solutions, a VNS is applied over 
each individual in the first population in order to enhance their 
quality. Having good initial solutions usually enhances the 
chance of the algorithm in achieving better results. Adapting 
VNS to the problem is discussed later.    

 After improving solutions, individuals are passed through 
an evaluation process. The fitness function is the sum of the 
weights of each edge including in a path.  

After the evaluation phase, genetic operations are 
repeatedly performed in order to improve current solutions. 
The algorithm starts with a crossover operator that forms two 
new solutions from two initial parents. A single-point 
crossover technique is applied with a probability of 0.9.  

In contrast to traditional mutation techniques, a special 
mutation operation is performed in the proposed approach. 
That is, the VNS method is applied with a probability of 0.1 
over each individual (path) in the population. Thanks to this 
novel technique, the algorithm will have more chances to 
exploit and explore new regions of the solution search space. 

The whole process is repeated until the algorithm reach our 
stopping criteria. The following scheme represents the 
algorithms’ steps that we will discuss in more details in next 
paragraphs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Steps of our algorithm 

A. Encoding  

Encoding of chromosomes is one of the issues that may 
arise when implementing a GA. Encoding is very dependent on 
the problem and it may increase the performance of the 
algorithm. The permutation encoding technique has been used 
to represent a chromosome in our approach. Each individual is 
encoded as a string of numbers, which represents the identifiers 
of edges in a path. For example, in Figure2, the path to get 
from A to G is encoded as a vector P = (AB, BD, DE, EG); 
Each element in P represents the identifier of the correspondent 
edge.  

 

Figure 2: Encoding solutions 
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B. Generating initial solution 

One of the challenges addressed in meta-heuristics is the 
generation of initial solution (s). Usually, good initial solutions 
might rapidly guide the search process towards important 
regions in the search space.  

Initial solutions in the proposed algorithm are a set of paths 
generated using a double search algorithm. The basic idea 
behind is to simultaneously run a forward search from the 
origin point (s) and a backward search from the destination 
point (t). A new path is then found between the origin and the 
destination when the two searches intersect.  

Example: Here is an example to illustrate more the 
algorithm. Some simplifications have been made to reach 
better understanding.  

 

Figure 3: Getting initial feasible paths between S and T 

After applying the double search algorithm to get a set of 
initial feasible paths between the node S and T in G (6, 10) 
(Figure 3), we will end up with the following paths: 

Path1: SA AB BT  

Path2 SA AD DT  

Path3 SA AC CB BT 

Path4 SC CD DT  

C. Enhancing Initial Solutions Using VNS 

One of the major challenges addressed in VNS is the 
construction of the neighborhood structures. To deal with that 
issue, a preprocessing operation is accomplished during the 
generation phase of the network. The result is a VNS with two-
neighborhood structures.  

More specifically, each edge in the graph is examined to 
check if its starting and ending nodes have a common node in 
between. Two nodes S and T have a common node if and only 
if the end point of one adjacent edge of S is the same as the 
starting point of an incoming edge of T. 

Example:  By taking the edge (AC) in Fig.4, it can be 
noticed that the node B is shared between the adjacent edge 
(AB) of A and the incoming edge (BC) of the node C. 
Therefore, there is an alternative path to reach the node C from 
A, which is in this case the path (AB, BC). 

 

 

 

Figure 4.   Constructing neighboring structures 

Once such common nodes are detected, the process of 

constructing the two neighboring structures begins.  

 

 If the length of the edge (AC) is greater than the length of 

the path (AB, BC), the edge (AC) can be replaced by the path 

(AB, BC) during the search process. That case makes our first 

neighboring structure. That is, the first neighboring structure is 

a list containing replacement paths formed by two edges for 

each edge. 

 A second scenario may arise if the length of the path (AB, 

BC) is greater than the length of (AC), thus, we can replace 

the path (AB, BC) by the simple edge (AC) in any path. the 

second neighboring structure can then be seen as a list 

containing an edge that will replace a path formed by two 

edges.  

Example: Fig.5 shows a graph with 13 edges and 8 nodes. 
An example of the replacements included in the first 
neighboring structure is to substitute the edge (SC) with the 2-
edges path (SA, AC). Replacing the 2-edges path (BD, DT) by 
the edge (B, T) is an example of an instance existing in the 
second replacement structure.  

 

 

 

 

 

Figure 5. Performing VNS over an individual 

After performing the preprocessing operation over Fig.3, the 

algorithm will end up with two replacement lists that represent 

the neighboring structures of the VNS. 

TABLE 1. Items in the first replacement list 

Edge Replacements 

(SC) (SA, AC) 

(AB) (AC, CB) 

(CD) (CB, BD) 

(ET) (EF, FT) 

 TABLE 2. Items from the second replacement list 

Path Replacements 

(BD, DT) (BT) 

(DE, ET) (DT) 

 

After defining neighboring structures, it is worth explaining 
now how the algorithm uses such information in order to 
improve the quality of an individual. To do so, let us assume 
that the path P= (SC, CB, BD, DT) (Fig.5) is an individual 
representing a solution to go from S to T. The length of P is 15. 
The algorithm applies the VNS over P as follows:   

 Initially, the algorithm uses the first neighboring 

structure to perform local refinements over P. It goes through 

C 

S 

A B 

D 

T 

4 

1 

2 

3 
5 

7 

8 

9 

1
0 

6 

2 

4 
5 

1 
1 

5 

2 

9 

1 

1 

8 

2 
7 

A 

B 

C 

S 

A 

C 

B 

D 

T 

E F 



each edge in P and tries to detect if there is a replacement for 

that edge. In our example, the individual P can be improved 

by substituting the edge (SC) by the path (SA, AC). The new 

path generated is then (SA, AC, CB, BD, DT) and its length is 

14. As can be noticed, the new path does not contain edges 

included in the first replacement structure so the algorithm 

switches to the second neighborhood structure. 

 The algorithm examines then each two successive 

edges and searches for a replacement. In this example, it can 

be remarked that the path (BD, DT) including in P is in the 

second replacement structure. Hence, the algorithm replaces it 

by the edge (BT). The new path generated is (SA, AC, CB, 

BT) and its length is improved to 13.  

The VNS method is based on two-neighboring structures. 
Each time the algorithm gets trapped in a local minimum, the 
structure of the neighborhood changes. By following this 
technique, the algorithm will exploit and explore wide regions 
of the search space. 

Adding more than two structures will possibly enhance the 
chance of the algorithm to find the best path. However, that 
might increase the time to accomplish the preprocessing 
operation.  

D. Evaluating an individual 

The fitness function is accomplished by taking a path in the 
population and adding the weights between each node pairs. 
The result is a non-negative number representing the path 
length.  

E. Crossover 

To perform the crossover, two individuals are selected from 
the population using the roulette wheel selection technique. 
Fittest individuals usually have more chances to pass their 
genes to the next generation.  After selection, the algorithm 
tries to find a single common point to be a crossover point.  
Once this latter is detected, parts from each initial parent are 
taken to form new individuals (offsprings) to the next 
generation. By doing this, the algorithm will have the chance to 
visit new regions in the search space. 

Example: Let us assume that G (Figure 6) is a directed 
graph with 8 edges and 7 nodes. Let us also assume that from 
an initial generated population, two paths are found between A 
and T.  

The first path is the sequence of the following edges (AB, 
BD, DE, ET); its length is 13. The second path is (AC, CD, 
DF, FT) with length 17. As can be noticed from those 
sequences, they have in common the node D. Over that point, 
we will perform the crossover. That is, we construct two new 
paths (offsprings) from two initial individuals.  

 

 

P2:F=17 
P1:F=13 

AC CD DF FT 
AB BD DE ET 

 

C2:F=22 
C1:F=8 

AC CD DE ET 
AB BD DF FT 

P: Parent C: Child F: Fitness 
 

Figure 6.   Single point crossover 

One point worth mentioning is that after accomplishing the 
crossover operator, we do not care about the feasibility of the 
new path generated. The algorithm will always end up with a 
feasible path from the source to the destination. Therefore,   the 
algorithm does not lose time to test the validity of an offspring 
nor to perform some additional operations to repair the 
unfeasible paths.  

Considering more than one crossover point may enhance 
the quality of final solutions. However, that might cost the 
algorithm additional computational efforts when performing 
the crossover. Therefore, we decide against using such 
advanced crossover techniques. 

F.  Mutation (VNS) 

Crossover operation may produce degenerate population. 
The algorithm may therefore get stuck in local minima. To 
overcome this issue, the mutation operation is performed.  

The VNS is chosen as a special mutation operator. That is, 
the VNS is applied with low probability over the population’s 
individuals. By doing so, the algorithm is guided towards new 
regions within the solution space. Therefore, the algorithm’s 
chance to find better solutions increases.  

Other mutation techniques have been applied such as order 
changing. However, we have realized that the mutation in this 
case may provide invalid paths. Additional processes should 
therefore be applied to reform infeasible paths. As a result, the 
mutation computational time will increase. It has been thereby 
decided against using such traditional mutation techniques.             

G. Terminating condition 

Approximate methods do not guarantee obtaining optimal 
solutions. Therefore, additional terminating conditions should 
be introduced in order to allow the convergence of the 
algorithm. 

Maximum number of generations, fixed execution time, 
and no modifications in population elements can be considered 
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as algorithm stopping criteria.  We have used in our 
research two stopping criteria: 

The algorithm first stops when no change in the fitness of 
each individual in the population has been detected. We have 
used 100 generations as a number to ensure a fixed state in the 
population. Another stopping criterion is attended when the 
algorithm reaches the maximum number (say 500) of 
generations. We have noticed after some experimentations that 
our algorithm visits wide range of the search space rapidly. 

Thus, there is a big chance that the algorithm converges 
rapidly. That explains the small number of generations defined 
for the stopping criterion. 

IV. EXPERIMENTAL RESULTS 

We have done experimentations over 50 different networks 
instances (from small to large size). Some of them are 
generated randomly thanks to a generator that we developed 
using Java. Other benchmarks are taken from the DIMACS 
website that offers graphs for real world road networks in 
USA.    

We run algorithms and solvers on an Intel core I5 machine 
of 8 GB RAM. Besides, we made extensive use of generic 
programming techniques in order to avoid runtime overheads.  

We put also particular efforts into carefully implementing 
efficient data structures.  

For simplicity, we present in table3 results obtained from 
applying the proposed algorithms over six network instances. 
For each instance, we choose five-times two random points to 
construct the origin-destination queries .We compared our 
approach with two other exact algorithms (Dijkstra and IP). We 
implemented Dijkstra using a priority queue and we solved the 
IP generated using two solvers: Cplex 12.6 and gurobi 6.0. 

 The results showed that the running time of Dijkstra is 
highly better than IP weather it is solved by Cplex or by gurobi. 
However, our method outperforms Dijkstra and IP with 5% 
average gap to the optimality. The average speed of our 
method is 20-times faster than Dijkstra and more than 1000-
times compared with  IP.  

Moreover, we can notice from the results that the time 
spent to solve the IP by the CPLEX solver is not the same as in 
GUROBI solver. It changes at each request. Although this 
research does not focus on accelerating the IP’s solving time, 
we believe that the techniques used in both solvers can be 
enhanced. That point may be considered as a future work since 
it can tell us when and how we should change the parameters 
of our solvers depending on the problem instance. 

 

                                                        Figure 6.   A real road network from DIMACS Challenge with 2,758,119 nodes and 6,885,658 edges 

Table 3. Experimental results 

GRAPH RUNNING TIME (MSEC) AVERAGE 

TYPE JUNCTIONS SEGMENTS DIJKSTRA 
IP OUR 

ALGORITHM 
GAP (%) SPEED 

CPLEX GUROBI 

 

RANDOM 

 

1000 100000 

194,29 7773,63 5767,28 2,37 0 81 

249,24 7229,51 5149,81 0,95 6 262 

54,13 7315,10 6081,39 1,23 4 44 

53,05 7551,22 5491,86 1,00 1 53 



53,81 7820,56 5907,35 1,10 0 48 

 

RANDOM 

 

25000 500000 

797,66 153502,72 29839,36 3,13 0 254 

814,44 96358,00 18549,06 2,40 0 339 

578,03 83066,09 17961,71 1,87 0 309 

492,50 84785,43 18112,86 1,50 4 328 

538,94 87916,22 19438,90 2,53 0 213 

COMPLETE 150 22350 

15,96 440,10 153,98 0,53 0 30 

18,94 386,89 169,83 0,40 0 47 

5,19 418,59 216,41 0,50 0 10 

2,84 401,78 195,37 0,39 0 7 

2,26 404,61 143,91 0,37 0 6 

COMPLETE 500 
 

249500 

12,53 2485,40 2451,00 0,27 2 45 

12,87 5972,23 1514,43 0,29 1 44 

28,78 2689,79 2686,63 1,03 0 28 

25,05 2481,10 1189,08 0,90 0 28 

23,84 2447,22 2225,44 1,27 0 19 

DIMACS 1207946 2840210 

2486,35 716962,02 169921,86 83,23 5 30 

1961,94 728352,15 2922319,64 126,26 2 16 

2150,12 772732,06 8993880,24 102,96 3 21 

1040,67 621584,55 9336397,105 40,96 4 25 

1330,92 586573,61 75536,39705 29,49 6 45 

DIMACS 1890816 

 

4657744 
 

4650,82 - - 129,40 4 36 

5615,06 - - 134,30 2 42 

5088,58 - - 114,94 0 44 

5984,08 - - 123,27 2 49 

6214,16 - - 115,12 1 54 

 

V. CONCLUSION 

The challenge of computing the one to one shortest path 
in road networks has been addressed in this paper. A new 
hybrid metaheuristic has been proposed and a compared with 
other exact algorithms has been done.  

Results has proven that the combination made between 
GA and VNS is a powerful tool for efficiently solving 
routing issue in road networks.  

Although the proposed approach succeeds in finding high 
quality solutions within milliseconds, it may not outperform 
some advanced speed up techniques, which are only 
dedicated for routing in road networks. However, the 
originality of the proposed approach stems from the 
flexibility/capacity of the selected meta-heuristics in 
handling additional problem requirements such as routing in 
a multimodal transportation network or optimizing more than 
one criterion at the same time.   

Currently, we are applying this method for solving 
multimodal routing issue in a dynamic/stochastic 
transportation system. We are mainly considering walking, 
road and railway networks. The results we have obtained so 

far are promising and further papers will be published in the 
near future.  
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