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Abstract 

Route planning in multimodal transportation networks is gaining more and more importance. Travelers ask for efficient 

routing methods allowing them to reach their destinations through the intricate multimodal transportation scheme. In this paper, 

we propose a new approach for computing multi-modal shortest paths. We only consider railway, bus and pedestrian networks. 

The travel time is the only metric in our cost function. Our proposed approach is a combination of two meta-heuristics: Genetic 

Algorithm (GA) and Variable Neighborhood Search (VNS). We compare our approach with the exact shortest path algorithm 

Dijikstra that has been modified to work in a multimodal environment, as well as, with a pure GA. Results have shown that the 

success rate of our approach in terms of converging to optimum/near optimum solutions is highly better than a pure GA. 

Moreover, in contrast to traditional algorithms like Dijkstra, our approach is fast enough for practical routing applications. 
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1. Introduction 

A Multimodal Transportation System (MTS) is the combination of all traveler modes and kinds of transportation 

systems operated through various systems (Bielli et al., 2006). That is, a set of choices of modes of transport that 

travelers can use simultaneously in order to reach their destinations. Nowadays, the human mobility within urban 

areas usually happens in a multimodal context (Liu, 2011). People are more prone to use more than one mode of 

transport during their travels. However, the transport system has become more and more complex. Users usually 

find themselves more confused with having several possibilities to go from one place to another. Consequently, for 

the sake of helping people efficiently to find optimal or near optimal routes through the complex transportation 

scheme, route planning in MTS has gained significant importance. 
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Generally, we can distinguish between private and public route planners. The formers usually consider private 

transport modes, which are qualified as continuous modes such as cars, bicycle and walking. On the other hand, 

public route planners are only dedicated to public transportation modes such as bus, subway, tram which work 

according to predefined timetables.  

Nowadays, there exist several solutions to solve the conventional route planning in transportation systems. These 

solutions come in the form of free or paid software and applications such as Google and Bing Maps. Most of such 

routing tools support more than one transportation mode. However, few could provide a free combination of travel 

modes. In practice, travelers usually ask for an integrated solution that compute optimal or near optimal routes with 

combining all available transportation modes whether they are private or public.     

In this paper, we introduce a new multi-modal routing approach.  We focus our research on two public modes 

(Bus and railway) and one private mode (walking) that people can use to access transportation means, as well as, to 

make transfer between modes.  

The remainder of this paper is organized as follows. We introduce some related works in Section 2. Section 3 

describes the multi-modal Shortest Path Problem (SPP). We present in section 4 our modeling approach. Section 5 is 

devoted to present our novel approach. Experimental results and some discussions are shown in Section 6 and 7.  

Finally, we conclude this paper in section 8, as well as, we propose some future works. 

2. Related work 

Several approaches have been developed in order to represent the intricate multimodal transportation network. 

Some models are based on the hypergraph theory such as in (Nguyen et Pallottino, 1988), (Febbraro et Sacone, 

1995), (Lozano et Storchi, 2002). Other models are based on the space-time-network (Pallottino et al., 1998) or on 

the multi-label networks (Ziliaskopoulos et Wardell, 2000). Using hyper-graph networks eliminates usually some 

arcs used for changing between transportation modes. As a result, the search space for the routing algorithms is 

usually less in comparison with other modeling approaches.  However, the other models are more efficient when it 

comes to handle additional problem constraints.  

Several algorithms have been proposed since 1956 for routing in static networks, such as (Dijkstra, 1959) 

Although such algorithms compute shortest paths in polynomial times, they become too slow to process real world 

data sets like continental networks, even on today’s computers.  

Researches have therefore focused on accelerating traditional algorithms using speed up techniques (Schultes, 

2008). For more details about speed up techniques in static networks refer to (Delling, 2009 and Bast et al., 2014). 

While routing in static networks has become quite easy, routing in dynamic networks turns out to be more 

difficult. Public transit networks such as bus and railway are inherently time-dependent. The travel time from one 

station to another is not static; it depends on the arrival time of the user at the departure station. Cooke and Halsey 

(1966) showed that standard algorithms like Dijkstra could be augmented to cope with the time dependency aspect 

of public transportation modes. However, that would be at the expense of additional computational efforts, 

especially when the size of the network becomes very important (Delling, 2009). Extensive works have therefore 

been investigated to augment speed up techniques used in static networks to accommodate for the new variant of 

SPP raised when dealing with time-dependent networks. For more details about accelerating techniques in dynamic 

networks, the reader can refer to (Bauer et al., 2011).  

Although, speed up techniques are efficient and fast enough to compute shortest paths, they become less 

performant or even inapplicable when additional constraints are added to the SPP such as stochasticity and multi-

criteria paths optimization. Therefore, there has been an application need to develop new routing approaches that 

provide optimal or near optimal routes in reasonable computational time in large-scale multimodal networks, as well 

as, that cope with additional problem constraints such as stochastic arcs’ weights, multi-criteria optimization etc.   

We believe that meta-heuristics such as Genetic Algorithms, Local Search Procedures are efficient candidates to 

handle such requirements.  

Metaheuristics have been used to solve several routing issues. For instance, Abeysundara et al. (2005) used a 

Genetic Algorithm to solve the routing issue in road networks. Yu et al. (2012) proposed an improved Genetic 

Algorithm to solve the route-planning problem in a multimodal transportation network. Davies et al. (2003) 

introduced a new genetic approach for rerouting in dynamic and stochastic networks. Other metaheuristics have 

been used to solve routing issue such as in (Mohemmed et al., 2007). Although such approaches are very interesting, 

they have not been tested over large-scale real world multimodal networks. Therefore, there is no guarantee that 

such approaches still provide high performances in large-scale networks 
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In this paper, we propose a new approach for solving the routing issue in a multimodal transportation network. 

We introduce a new highly scalable hybrid GA-VNS algorithm (Genetic Algorithm with Variable Neighborhood 

Search) to compute multimodal shortest paths. 

3. Problem description 

The conventional routing issue addressed in this study is defined as follows :Given a directed graph G = (V, E) 

with node set V of cardinality n, edge set E of cardinality m, costs c(e) ∈ R for all edges e ∈ E, a source node u ∈ V, 

a target node v ∈ V and a departure time t0. We ask then for finding a path p (e1, e2… ek) in the network with the 

following properties: 1) p must start at u; 2) the departure time at s must be t0; 3) p must end at v; 4) the length of p 

is preferred to be the minimum among all the other routes that respect the properties 1-3.    

4. Networks modeling 

In this section, we present the approaches adopted to model our three networks. Each network is modeled as a 

separate graph. An additional work is then done to integrate all models into one larger model that is capable of 

adequately representing the networks infrastructures, as well as, yielding correct results when applying shortest path 

routing algorithms. Besides, since there are strong similarities between rail and bus timetables, we have decided to 

use the same approach to model both modes.  

4.1. Private mode : pedestrian network 

Modeling the pedestrian network is quite canonical. Junctions are represented by nodes in a directed graph G. An 

edge e (u, v) is inserted between u and v if u is linked with v by a footpath. The weight w(e) of an edge represents 

the average travel time along that edge. w(e) is computed by dividing the average walking speed s of a pedestrian 

into the geographical length of that segment. 

4.2. Public modes 

There are several approaches to model public transportation networks. The time-independent condensed model 

(Schulz et al., 2002) is the most basic approach. However, it is not used in our study since it represents the network 

structure without considering the scheduling. Therefore, it will yield incorrect results when computing shortest 

paths. To overcome such shortcomings, the time-expanded (Schulz et al., 2000) and time-dependent (Brodal et al., 

2004) models have been developed. While the former allows more flexibility in considering additional constraints 

such as computing multi-objective shortest paths, the latter yields smaller inputs (Pyrga et al., 2007). Historically, 

there have been two versions of each model: A simple version and a realistic version. Unlike the former, the latter 

incorporates realistic transfer between vehicles at stations. The modeling approach used in this paper is based on the 

simple version of the time-expanded model. Typically, there exist two types of nodes to account for the timetable 

information (Delling et al., 2009). Physical nodes that represent stations and event nodes that account for departure 

and arrival events (Fig. 1.). Each event node has a link to its corresponding physical node. The event type decides 

the direction of the link. In case of arrival events, the direction is from the event node to the station node and the link 

weight represents in this case the alighting time. However, the direction is reversed in case of departure events and 

the link weight refers to the waiting and boarding time. Moreover, event nodes related to the same station are sorted 

in ascending order with respect to their timestamp and a link between two subsequent nodes is inserted to account 

for transferring or waiting. Finally, a link is inserted between two events belonging to different physical stations in 

order to represent the movement of a vehicle from one stop to another.   

 

 

 

 

 

 

 

 
Fig. 1. Representation of public modes 
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4.3. Combining networks 

To compute multi-modal paths, the query algorithm has to use multiple networks simultaneously. For that reason, 

after modeling each network as a separate graph, we have to combine the different networks in order to form one 

larger multimodal graph. To do so, we use transfer links to connect each physical node in the public networks with 

the nearest node in the pedestrian network. That is, we use the pedestrian network to transfer from one mode to 

another. In the figure below, we represent a multimodal transportation network where the pedestrian network is the 

only middleware between the bus and railway network. Note that, the weight of a transfer link is the time required to 

going from a station node to the nearest node in the pedestrian network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Representation of a multimodal transportation network 

After combining the multiple networks into one single connected graph, we present in the next section our novel 

approach to computing optimal or near optimal routes to go from a physical node (station or pedestrian node) at the 

user’s departure time t0 to another physical node.  

5. Proposed Approach 

The main contribution of this paper is to apply an approximate method based on a collaboration between two 

meta-heuristics to compute multimodal shortest paths. That is, we apply a Memetic Algorithm in which we use VNS 

inside a GA to solve the Earliest Arrival Problem (EAP) in a multimodal environment. We suppose in this paper that 

the reader is familiar with GAs, VNS and Memetic Algorithms (MAs). For more details about the metaheuristics 

used in this work, the reader can refer to (Talbi, 2002 and Hansen et al., 2005 and Moscato et al., 2004 ) 

 As traditional Genetic Algorithms work, our approach maintain a population of solutions at each iteration. Initial 

solutions are generated using a double search algorithm that is able to provide feasible paths between any two nodes. 

The details of this algorithm is described later in this article.  

Once a population of solutions is successfully generated, we do an enhancement operation over each individual in 

the first population. That is, we apply a VNS over the first population. We decided with improving initial solutions 

since their quality would possibly help the algorithm find better or even optimal solutions. More details about VNS 

adaptation to the problem will be discussed later.  

Once we accomplish the VNS, we send individuals to an evaluation process. Our fitness function is the sum of 

the weights of each edge included in a path. After the improving phase, we repeatedly perform genetic operations in 

the goal of increasing the algorithm’s chance to find the optimal or high-quality routes.  

We begin with the crossover operation that is responsible for forming two new paths (offspring) from two initial 

solutions. Crossovers are usually used to exploit regions within the search space.  We have used single-point as a 

crossover technique. We will discuss later and in more details the crossover operation.  
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After crossover operation, we perform a special mutation operation based on VNS. That is, we apply VNS over 

each individual (path) in a population. Thanks to this technique, our algorithm will have more chances to exploit and 

explore new and distant regions within the search space. 

The whole process is repeated until the algorithm reaches our stopping criteria. The following scheme represents 

the algorithms’ steps that we will discuss in more details in next paragraphs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Flowchart of the proposed GA-VNS algorithm 

5.1. Encoding scheme 

Encoding is the process of representing an individual. It is a crucial step in GA and it is often closely dependent 

on the problem characteristics. Encoding affects the work of genetic operators as well as the whole performance of 

the algorithm.  Several techniques have been proposed for encoding solutions such as binary, octal and hexadecimal 

encodings. The efficiency of those latters is highly related to the problem itself. A solution (individual) in our work 

is any route that allows going from the starting node at the user’s departure time to the destination node. To 

represent such solutions, we have used the permutation encoding. Typically, each chromosome consists of a string 

of positive integers that represent the IDs of edges included in the route. The size of chromosomes is not fixed since 

several paths with different nodes and edges may exist to go from an origin point to a destination one.  

5.2. Generating initial solutions 

Generating initial solutions for meta-heuristics is not always straightforward. The composition of the initial 

population in our approach is remarkably different compared to traditional GAs.  Our initial solutions are a set of 

feasible paths generated using a construction heuristic based on a double search algorithm. In fact, we 

simultaneously run a forward search from the starting node with respecting the departure time t0 and a backward 

search from the destination node. A feasible path is then found when the two searches intersect. As a result of this 

operation, we can get feasible routes having different lengths to go from one node to another. Note that other 

techniques can  be used for getting initial solutions such as in (Davies et al,2003 and  Yu et al.,2012), however, they 

are not used in this work since they require significant computational effort. 
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5.3. Enhancing initial solutions using VNS 

Enhancing initial solution(s) in the context of combinatorial optimization problems may rapidly guide the search 

process towards important regions in the solution space. Moreover, having a good repartition of initial solutions 

within the search space may increase the algorithm’s chance in finding the optimal or near optimal solutions. For 

these reasons, we have enhanced initial solutions by applying the metaheuristic VNS over each individual in the first 

population. Unlike traditional local search approaches such as tabu search (Glover et al., 2013), VNS does not 

follow a trajectory. It explores rather increasingly distant neighborhoods of the current incumbent solution, and 

escapes from this solution to another if and only if an improvement has been made. Therefore, VNS is more likely to 

prevent the optimization process from rapidly falling into local optima. Although, VNS is irrelevant to the problem 

and is suitable for all kinds of optimization problems, however, its implementation is not always straightforward. 

One of the vital requirements for the VNS is the definition of neighborhood structures. To deal with that issue, 

our algorithm performs a preprocessing operation during the generation phase of networks in order to compute 

additional data required for constructing the neighborhood structures. As a result, we obtain a VNS method having 

two neighboring structures.  The first neighboring structure consists of replacing two successive nodes in the current 

solution by a suboptimal path computed and stored during the generation phase of networks. The second 

neighboring structure is to replace three nodes in the incumbent solution by a suboptimal path calculated in the 

preprocessing step. It is worth mentioning that using more than two neighboring structures might enhance the 

performance of the VNS in terms of the quality of final solution, however, that would be at the expense of additional 

running time. We therefore limit our method to only two neighboring structures.  

We present in Fig.4 the general steps of our VNS approach. Indeed, our VNS takes as input two neighboring 

structures and a single initial solution and it performs then local refinments in order to enhance its initial solution. 

More precisely, our VNS proceeds with the first neighboring structure. It examines then all the neighbors’ solutions 

belonging to the current solution. VNS then selects the best neighbor among all neighbors according to the fitness. 

VNS then compares the best-selected neighbor with the current solution; it moves to the best neighbor if its fitness is 

better than the current solution. If not, VNS changes the neighboring structure. The process is repeated while the 

current solution can be enhanced by using any of the neighboring structures. 

Input: 

 Neighboring structures NK, (K=1,2); 

 An individual (solution) x; 

Iteration 

1. While stopping rule is not satisfied do 

2.            k=1; 

3.            While k<2 do 

4.                  Exploration of neighborhood: find the best neighbor x’ of x (x’€ Nk (x)) 

5.                  Move or Not: 

6.                       If f(x’) < f(x) then 

7.                            x ← x’, k ← 1; 

8.                       else 

9.                            k ← k+1; 

10.                       end if 

11.             end while 

12. end while 

13. return the best solution 

Fig.4. Steps of VNS 

5.4. Evaluation function 

Evaluating individuals is of great importance for Genetic Algorithms. A fitness function is usually defined to 

evaluate how good a potential solution is relative to other potential solutions. Since we optimize in our work one 

single criterion, our fitness is a scalar value that represents the length of the current individual.  The result is 

therefore a non-negative number representing a path length. More the fitness decreases, more the chance for an 

individual to pass its genes to the next generation increases.  
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5.5. Crossover 

To accomplish the crossover process, a single tournament selection mechanism is employed. After ordering the 

individuals in the population, each chromosome in the odd position is mated with the next chromosome in order to 

produce new individuals (offsprings). By doing so, we produce a new population having twice the size of the current 

population. The best half individuals are then selected for the next generation and the rest are ignored.   However, 

there is a big chance that the same individual is duplicated in the population as the generations go on. We therefore, 

replace the duplicated individuals with newly generated chromosomes. This process will undoubtedly increase the 

diversity within the population.  Single point crossover technique has been used in our approach in order to produce 

offspring. An intersection node between two individuals is selected to be the crossover point. Current individuals 

exchange then part of genes with each other before or after the crossover point to generate offsprings (Fig.5). 
 

        

 

        

 Parents  

 
 

        

                                                                        Offsprings 

 

Fig.5. Single point crossover 

One point worth mentioning is that after applying our crossover, we do not care about the feasibility of offsprings. 

We will always end up with feasible paths from the source to the destination. Therefore, the algorithm does not lose 

time to check the validity of offsprings nor to perform additional operations to repair wrong individuals. Finally, 

experimental results show that using more than one crossover point might increase the diversity of our approach. 

Therefore, the algorithm’s chance to find better solutions will also increase. However, that may be at the expense of 

additional computational efforts. We consequently decided with only applying the simple crossover technique.  

5.6. Mutation (VNS) 

Mutation is an important part of the genetic search since it helps to prevent the population from premature 

convergence. Mutation usually consists of altering one or more gene values in a chromosome in the hope of guiding 

the search process towards new regions within the solution space.  Unlike most GAs that use conventional mutation 

techniques such as boundary, non-uniform and uniform, we have used the advanced local search procedure VNS to 

perform the mutation operation. That is, we apply VNS over each individual in the population resulting from the 

crossover operation.  By doing so, we ensure that the genetic algorithm will maintain a sufficient diversity level that 

prevents premature convergence. We therefore increase the algorithm’s chance to find better solutions.  

Unlike traditional GAs, the mutation operation in our approach is applied with the same probability as the 

crossover. The purpose of doing that is to allow the algorithm to avoid local minima by preventing the population of 

chromosomes from becoming too similar to each other, thus slowing or even stopping evolution. 

We did apply other mutation techniques such as order changing, but we have realized that the mutation becomes 

less performant and it may provide infeasible solutions (invalid paths). An additional process should therefore be 

introduced to reform infeasible paths. As a result, the mutation computational time will increase. We decided 

thereby against using such traditional techniques.          

5.7. Stopping conditions 

In contrast to conventional exact algorithms, meta-heuristics do not guarantee finding optimal solutions. 

Additional terminating conditions should therefore be introduced in order to allow the convergence of the method. 

Our proposed approach terminates in two cases: i) when the maximum number of evolutions is reached (Generation 

Number) ii) when no better solutions are found during several evolutions (Fitness Convergence).  
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6. Test and illustration 

To evaluate our approach, we have produced a multimodal graph based on the data of the French region Ile-de-

France that includes the city of Paris and its suburbs. The data comprise geographical information, as well as, 

timetable information for railway and bus modes. The pedestrian network includes 275 606 nodes and 751 144 

edges. The bus network consists of 72 511 bus stations and 5 078 443 arrival/departure events. The railway network 

encompasses 1 746 railway stations and 122 284 arrival/departure events for one day.  

We assumed in this work that the walking speed is 5 km/h. Additionally, our algorithm has the following 

parameters i) the initial population size is 5 ii) the probability of crossover and mutation is 0.5 iii) the maximum 

number of generation is 500 iiii) The number of generations used to ensure a fixed state in the population is 100.  

The performance of our approach has been evaluated in comparison with two other approaches: One exact 

approach (Dijkstra) that has been implemented using a priority queue and one approximate approach (a pure GA). 

The only differences between our hybrid GA-VNS approach and the pure GA is that in the latter we do not enhance 

initial solutions. Moreover, the mutation operation is performed traditionally i.e., without using VNS. In addition, 

the probability of crossover is very high (0.9) compared to the probability of mutation (0.1). 

The comparison between the different approaches is done regarding two axes i) the CPU computational time 

(time performance) ii) the solutions quality. We run algorithms on an Intel core I5 machine of 8 GB RAM and we 

used java as a programming language. Besides, we made extensive use of generic programming techniques in order 

to avoid runtime overheads. We also put particular efforts into carefully implementing efficient data structures when 

storing and manipulating the graphs’ components.  

We present in Table 1 results obtained from applying the various algorithms in different scenarios. We consider in 

each scenario one or a combination of several transportation modes. We run in each case algorithms over 1000 

random generated origin/destination queries.  

Table 1. Experimental Results. 

Scenario 
Average Running Time (s) Average Speed  Average GAP (%) 

Dijkstra Pure GA GA-VNS Pure GA GA-VNS Pure GA GA-VNS 

Pedestrian 0.17 0.002 0.005 57 34 6.6 1.2 

Bus 3.234 0.006 0.007 485 462 12.1 1.8 

Railway 0.078 0.0007 0.001 110 78 5.12 1.1 

Pedestrian + Bus 3.315 0.0067 0.008 490 414 12.10 2.65 

Pedestrian + Railway 0.281 0.003 0.006 80 46 9.12 1.9 

Railway + Bus 3.221 0.005 0.007 550 460 10.16 2.5 

Pedestrian + Bus + Railway 4.125 0.0058 0.008 700 515 15.56 2.99 

Results showed that the running time of Dijkstra increases gradually with the size of network. This can be 

explained by that fact that the time complexity of Dijkstra is totally linked to the number of nodes and edges in the 

graph. More the graph components’ increases more the search space of Dijkstra increases. Results also showed that 

in the last scenario where we consider all networks, the average time required by Dijkstra to answer travelers’ 

queries increases to 4,125 seconds, which is too slow to be employed in real world routing applications.  

On the other hand, the running time of approximate approaches is highly better than Dijkstra. It does not exceed 

the threshold of 8 msec which is an acceptable time for travelers seeking real time answers. While the average speed 

of our hybrid GA-VNS algorithm, with respect to the basic algorithm of Dijkstra, reaches a factor of 515, the pure 

GA outperforms both Dijkstra and our hybrid GA-VNS in terms of speed ( with a factor of 700 compared to 

Dijkstra). This can be explained by the fact that the pure GA converges rapidly to suboptimal solutions since the 

mutation operation responsible for avoiding premature convergence is not very efficient and is applied with low 

probability. However, our approach spends more time to intelligently visit distant regions within the solution space 

thanks to the VNS approach used in the mutation operation.  

Although approximate approaches outperform Dijsktra in terms of speed, however, they do not always provide 

optimal routes. While the average GAP to the optimality of the pure GA may increase to 15 %, our hybrid GA-VNS 

always results in solutions that are very close to the optimal solution. The average gap to the optimality of our 
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approach may reach a maximum of 3 % in the worst case, i.e., when all networks are considered (scenario 7). We 

can easily notice that the quality of solutions in our approach is better than in a pure GA. This can be explained by 

the fact that the special mutation operation as well as enhancing initial solutions have played an important role in 

helping the algorithm find better solutions.  

7. Discussions 

Results presented in the previous section has proven the efficiency of our approach in terms of time performance 

and solutions quality. We discuss in this section some other strengths of our approach as well as some situations 

where applying the proposed hybrid GA-VNS method may also result in significant performance.  

First, unlike classical shortest path algorithms like Dijkstra, our algorithm results in a set of feasible and high 

quality solutions to reach a destination.  Consequently, users will have access to several routes to reach their targets.  

Such multiplicity of solutions is very beneficial in some real-life applications such as routing in data networks. For 

instance, having several ways to route data packets along computer networks may help network administrators or 

even routing protocols in alleviating congestions and conflicts. 

Second, the travel-time is the only metric used in our work. However, travelers do not only seek short-time 

journeys, but they also endeavor to optimize other criteria such as cost, effort (walking distance, number of transfer, 

waiting time…), safety etc. As a result, an efficient routing algorithm should also handle multi-objective scenarios. 

Delling (2009) showed that traditional exact shortest path algorithms like Dijsktra can be augmented to cope with 

multi-criteria issue. However, that would be at the expense of unacceptable computational effort. To overcome such 

problem, approximate methods have to be used to identify highly attractive connections in reasonable time. 

Although we haven’t tested our approach in a multi-criteria environment yet, we believe, however, that combining 

GA and VNS will provide a high performance tool for computing multi-criteria paths.  From one side, we benefit 

from the power of GA in exploiting a large solution space, and from the other side, we capitalize on the capacity of 

VNS in escaping from local optima and visiting distant solution regions. 

Finally, although the proposed approach is efficient and more flexible than conventional methods, it has some 

drawbacks. Generally, approximate methods and especially meta-heuristics suffer from parameterization problems. 

There are no standard parameters for meta-heuristics to achieve the best performance. For instance, in the proposed 

algorithm, parameters like the number of generations, probability of genetic operators, number of neighborhood 

structures, etc. have been chosen because they provided high performance over some optimization problems. 

However, there is no guarantee that such parameters are the best for our problem. Future work will be undoubtedly 

done to deal with the parameterization issue of our approach. 

8. Conclusion 

Solving the multimodal route planning is a highly important issue to develop seamless advanced traveler 

information systems. This paper proposed a hybrid GA-VNS approach for route planning in multimodal 

environment.  We focused our study on three modes bus, railway and the pedestrian network. Networks have been 

modeled separately and an additional work has been done to connect networks via transfer links.  

Experimental results showed that traditional shortest path algorithms such as Dijkstra could optimally compute 

multimodal routes. However, the computational effort will increase rapidly with the size of the network. Therefore, 

using such algorithms to support travelers’ query may not be convenient for users seeking real-time answers.  

On the other hand, the proposed approach succeeded in finding optimal or near optimal multimodal routes in a 

reasonable computational effort even when the network’s size increases. Therefore, our approximate approach has 

resulted in a good tradeoff between the solution quality and the average speed .We have also proven in this paper 

that combining metaheuristic such as GA and VNS did increase the quality of final solutions in comparison with 

applying pure metaheuristic such as GA. Finally, several works have been planned to be accomplished in the near 

future. We will first perform a sensitivity analysis to study the impact of parameters over the performance of our 

approach. We will then use our novel approach to compute multi-objective shortest paths. Finally, we will compare 

our approach with other metaheuristics and approaches such as tabu search and hyperpath theory. 
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