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Abstract—We propose a new algorithm for multiplying dense
polynomials with integer coefficients in a parallel fashion, tar-
geting multi-core processor architectures. Complexity estimates
and experimental comparisons demonstrate the advantage of
this new approach.
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I. INTRODUCTION

Polynomial multiplication and matrix multiplication are
at the core of many algorithms in symbolic computation.
Expressing, in terms of multiplication time, the algebraic
complexity of an operation, like univariate polynomial divi-
sion, or the computation of a characteristic polynomial is a
standard practice, see for instance the landmark book [1].
At the software level, the motto “reducing everything to
multiplication” is also common, see for instance the com-
puter algebra systems AXIOM [2] Magma [3], NTL [4] and
FLINT [5].

With the advent of hardware accelerator technologies,
such as multicore processors and Graphics Processing Units
(GPUs), this reduction to multiplication is of course still
desirable, but becomes more complex, since both algebraic
complexity and parallelism need to be considered when
selecting and implementing a multiplication algorithm. In
fact, other performance factors, such as cache usage or
CPU pipeline optimization, should be taken into account on
modern computers, even on single-core processors. These
observations guide the developers of projects like SPI-
RAL [6] or FFTW [7].

This paper is dedicated to the multiplication of dense
univariate polynomials with integer coefficients targeting
multicore processors. We note that the parallelization of
sparse (both univariate and multivariate) polynomial mul-
tiplication on those architectures has already been studied
by Gastineau & Laskar in [8], and by Monagan & Pearce
in [9]. From now on, and throughout this paper, we focus
on dense polynomials. The case of modular coefficients
was handled in [10], [11] by techniques based on multi-
dimensional FFTs. Considering now integer coefficients, one
can reduce to the univariate situation through Kronecker’s

substitution, see the implementation techniques proposed by
Harvey in [12].

A first natural parallel solution for multiplying univari-
ate integer polynomials is to consider divide-and-conquer
algorithms where arithmetic counts are saved thanks to
distributivity of multiplication over addition. Well-known
instances of this solution are the multiplication algorithms
of Toom & Cook, among which Karatsuba’s method is
a special case. As we shall see with the experimental
results of Section IV, this is a practical solution. How-
ever, the parallelism is limited by the number of ways in
the recursion. Moreover, augmenting the number of ways
increases data conversion costs and makes implementation
quite complicated, see the work by Bodrato and Zanoni for
the case of integer multiplication [13]. As in their work,
our implementation includes the 4-way and 8-way cases.
In addition, the algebraic complexity of an N -way Toom-
Cook algorithm is not in the desirable complexity class of
algorithms based on FFT techniques.

Turning our attention to this latter class, we first consid-
ered combining Kronecker’s substitution (so as to reduce
multiplication in Z[x] to multiplication in Z) and the algo-
rithm of Schönhage & Strassen [14]. The GMP library [15]
provides indeed a highly optimized implementation of this
latter algorithm [16]. Despite of our efforts, we could not
obtain much parallelism from the Kronecker substitution part
of this approach. It became clear at this point that, in order
to go beyond the performance (in terms of arithmetic count
and parallelism) of our parallel 8-way Toom-Cook code, our
multiplication code had to rely on a parallel implementation
of FFTs.

Based on the work of our colleagues from the SPIRAL
and FFTW projects, and based on our experience on the
subject of FFTs [10], [11], [17], we know that an efficient
way to parallelize FFTs on multicore architectures is the so-
called row-column algorithms, see http://en.wikipedia.org/wiki/
Fast Fourier transform, which implies to view 1-D FFTs as
multi-dimensional FFTs and thus differs from the approach
of Schönhage & Strassen.

Reducing polynomial multiplication in Z[y] to multi-
dimensional FFTs over a finite field, say Z/pZ, im-
plies transforming integers to polynomials over Z/pZ.

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Fast_Fourier_transform


Chmielowiec in [18] experimented a similar method com-
bined with the Chinese Remaindering Algorithm (CRA). As
we shall see, using a big prime approach instead of a small
primes approach opens the door for using “faster FFTs” and
reducing algebraic complexity w.r.t to a CRA-based scheme.

As a result of all these considerations, we obtained the al-
gorithm that we propose in this paper. We stress the fact that
our purpose was not to design an algorithm asymptotically
optimal by some complexity measure. Our purpose is to
provide a parallel solution for dense integer polynomial mul-
tiplication on multicore architectures. In terms of algebraic
complexity, our algorithm is asymptotically faster than that
of Schönhage & Strassen [14] while being asymptotically
slower than that of Fürer [19]. Our code is part of the Basic
Polynomial Algebra Subprograms and is publicly available
at http://www.bpaslib.org/.

Let a(y), b(y) ∈ Z[y] and a positive integer d such
that d − 1 is the maximum degree of a and b, that is,
d = max(deg(a),deg(b)) + 1. We aim at computing the
product c(y) := a(y) b(y). We propose an algorithm whose
principle is sketched below. A precise statement of this
algorithm is given in Section II, while complexity results
and experimental results appear in Sections III and IV.

1) Convert a(y), b(y) to bivariate polynomials
A(x, y), B(x, y) over Z (by converting the integer
coefficients of a(y), b(y) to univariate polynomials
of Z[x], where x is a new variable) such that
a(y) = A(β, y) and b(y) = B(β, y) hold for
some β ∈ Z (and, of course, such that we have
deg(A, y) = deg(a) and deg(B, y) = deg(b)).

2) Let m > 4H be an integer, where H is the maximum
absolute value of the coefficients of the integer polyno-
mial C(x, y) := A(x, y)B(x, y). The positive integers
m, K and the polynomials A(x, y), B(x, y) are built
such that the polynomials C+(x, y) := A(x, y)B(x, y)
mod 〈xK + 1〉 and C−(x, y) := A(x, y)B(x, y)
mod 〈xK − 1〉 are computed over Z/mZ via FFT
techniques, while the following equation holds over Z:

C(x, y) =
C+(x, y)

2
(xK − 1) +

C−(x, y)

2
(xK + 1).

(1)
3) Finally, one recovers the product c(y) by evaluating the

above equation at x = β.
Of course, the polynomials A(x, y), B(x, y) are also con-
structed such that their total bit size is proportional to that
of a(y), b(y), respectively. In our software experimentation,
this proportionality factor ranges between 2 and 4. Moreover,
the number β is a power of 2 such that evaluating the
polynomials C+(x, y) and C−(x, y) (whose coefficients are
assumed to be in binary representation) at x = β amounts
only to addition and shift operations.

Further, for our software implementation on 64-bit com-
puter architectures, the number m can be chosen to be
either one machine word size prime p or a product p1p2

of two such primes, or a product p1p2p3 of three such
primes. Therefore, in practice, the main arithmetic cost of
the whole procedure is that of two, four or six convolutions,
those latter being required for computing C+(x, y) and
C−(x, y). All the other arithmetic operations (for construct-
ing A(x, y), B(x, y) or evaluating the polynomials C+(x, y)
and C−(x, y)) are performed in single or double fixed preci-
sion at a cost which is proportional to that of reading/writing
the byte vectors representing A(x, y), B(x, y), C+(x, y) and
C−(x, y).

Theorem 1 below gives estimates for the work, the span
and the cache complexity of the above algorithm. Recall that
our goal is not to obtain an algorithm which is asymptoti-
cally optimal for one of these complexity measures. Instead,
our algorithm is designed to be practically faster, on multi-
core architectures, than the other algorithms that are usually
implemented for the same purpose of multiplying dense
(univariate) polynomials with integer coefficients.

Theorem 1: Let N be a positive integer such that every
such coefficient of a or b can be written with at most
N bits. Let K,M be two positive integers greater than
1 and such that N = KM . Assume that K and M are
functions of d satisfying the following asymptotic rela-
tions K ∈ Θ(d) and M ∈ Θ(log d). Then, the above
algorithm for multiplying a(y) and b(y) has a work of
O(dKM log(dK) log log(log(d))) word operations, a span
of O(log2(d)KM) word operations and incurs O(1 +
(dMK/L)(1 + logZ(dMK))) cache misses.

A detailed proof of this result is elaborated in Section III.
The assumptions K ∈ Θ(d) and M ∈ Θ(log d) are not
strong. It is, indeed, possible to reduce to this situation
by means of the balancing techniques presented in [11].
Applying those techniques would only increase the work by
a constant multiplicative factor, typically between 2 and 4.

It follows from this result that our proposed algo-
rithm is asymptotically faster than combining Kronecker’s
substitution and Schönhage & Strassen. Indeed, with the
notations of Theorem 1, this latter approach runs in
O(dN log(dN) log log(dN)) machine word operations.

While it is possible to obtain a poly-log time for the span
this would correspond to an algorithm with high parallelism
overheads. Hence, we prefer to state a bound corresponding
to our implementation. By using multi-dimensional FFTs,
we obtain a parallel algorithm which is practically efficient,
as illustrated by the experimental results of Section IV. In
particular, the algorithm scales well. In contrast, parallelizing
a k-way Toom Cook algorithms (by executing concurrently
the point-wise multiplication, see [20] yields only a ratio
work to span in the order of k, that is, a very limited
scalability. Finally, our cache complexity estimate is sharp.
Indeed, we control finely all intermediate steps with this
respect, see Section III.

To illustrate the benefits of a parallelized dense univariate
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polynomial multiplication, we integrated our code into the
univariate real root isolation code presented in [21] together
with a parallel version of Algorithm (E) from [22] for Taylor
shifts. The results reported in [23] show that this integration
has substantially improved the performance of our real root
isolation code.

II. MULTIPLYING INTEGER POLYNOMIALS VIA TWO
CONVOLUTIONS

We write a(y) =
∑d−1

i=0 aiy
i, b(y) =

∑d−1
i=0 biy

i and
c(y) =

∑2d−2
i=0 ciy

i, where ai, bi, ci are integers and c(y) =
a(y)b(y). Let N be a non-negative integer such that each
coefficient α of a or b satisfies

− 2N−1 ≤ α ≤ 2N−1 − 1 (2)

Therefore, using two’s complement, every such coefficient
α can be encoded with N bits. In addition, the integer N is
chosen such that N writes

N = KM with K 6= N and M 6= N, (3)

for K,M ∈ N.
It is helpful to think of M as a small number in

comparison to K and d, say M is less than the bit-size,
called w, of a machine word. For the theoretical analysis
of our algorithm, we shall assume that K and M are
functions of d satisfying K ∈ Θ(d) and M ∈ Ω(log d). We
denote by DetermineBase(a, b, w) a function call returning
(N,K,M) satisfying the constraints of (3).

Let (N,K,M) := DetermineBase(a, b, w) and define
β = 2M . We write

ai =

K−1∑
j=0

ai,jβ
j , and bi =

K−1∑
j=0

bi,jβ
j , (4)

where each ai,j and bi,j are signed integers in the closed
range [−2M−1, 2M−1 − 1]. Then, we define

A(x, y) =

d−1∑
i=0

(

K−1∑
j=0

ai,jx
j)yi, B(x, y) =

d−1∑
i=0

(

K−1∑
j=0

bi,jx
j)yi,

(5)
and

C(x, y) = A(x, y)B(x, y) with

C(x, y) =
∑2d−2

i=0

(∑2K−2
j=0 ci,jx

j
)
yi,

(6)

where ci,j ∈ Z. By BivariateRepresentation(a,N,K,M),
we denote a function call returning A(x, y) as defined above.
Observe that the polynomial c(y) is clearly recoverable from
C(x, y) by evaluating this latter polynomial at x = β.

The following sequence of equalities will be useful:

C = AB

=
(∑d−1

i=0 (
∑K−1

j=0 ai,jx
j)yi

)(∑d−1
i=0 (

∑K−1
j=0 bi,jx

j)yi
)

=
∑2d−2

i=0

(∑
`+m=i

(∑K−1
k=0 a`,kx

k
)(∑K−1

h=0 bm,hx
h
))

yi

=
∑2d−2

i=0

(∑
`+m=i

(∑2K−2
j=0

(∑
k+h=j a`,kbm,h

)
xj
))

yi

=
∑2d−2

i=0

(∑2K−2
j=0 ci,jx

j
)
yi

=
∑2K−2

j=0

(∑2d−2
i=0 ci,jy

i
)
xj

=
∑K−1

j=0

(∑2d−2
i=0 ci,jy

i
)
xj

+ xK∑K−2
j=0

(∑2d−2
i=0 ci,j+K yi

)
xj ,

(7)
where we have

ci,j =
∑

`+m=i

∑
k+h=j

a`,kbm,h, 0 ≤ i ≤ 2d−2, 0 ≤ j ≤ 2K−2.

(8)
Since the modular products A(x, y)B(x, y) mod 〈xK + 1〉
and A(x, y)B(x, y) mod 〈xK−1〉 are of interest, we define
the bivariate polynomial over Z

C+(x, y) :=

2d−2∑
i=0

c+i (x) yi where c+i (x) :=

K−1∑
j=0

c+i,j x
j

(9)
with c+i,j := ci,j− ci,j+K , and the bivariate polynomial over
Z

C−(x, y) :=

2d−2∑
i=0

c−i (x) yi where c−i (x) :=

K−1∑
j=0

c−i,j x
j

(10)
with c−i,j := ci,j + ci,j+K . Thanks to Equation (7), we
observe that we have

C+(x, y) ≡ A(x, y)B(x, y) mod 〈xK + 1〉,
C−(x, y) ≡ A(x, y)B(x, y) mod 〈xK − 1〉. (11)

Since the polynomials xK + 1 and xK − 1 are coprime for
all integer K ≥ 1, we deduce Equation (1).

Since β is a power of 2, evaluating the polynomials
C+(x, y), C−(x, y) and thus C(x, y) (whose coefficients are
assumed to be in binary representation) at x = β amounts
only to addition and shift operations. A precise algorithm is
described in Section II-B. Before that, we turn our attention
to computing C+(x, y) and C−(x, y) via FFT techniques.

A. Computing C+(x, y) and C−(x, y) via FFT

From Equation (11), it is natural to consider using FFT
techniques for computing both C+(x, y) and C−(x, y).
Thus, in order to compute over a finite ring supporting FFT,
we estimate the size of the coefficients of C+(x, y) and
C−(x, y). Recall that for 0 ≤ i ≤ 2d− 2, we have

c+i,j = ci,j − ci,j+K

=
∑

`+m=i

∑
k+h=j a`,kbm,h

−
∑

`+m=i

∑
k+h=j+K a`,kbm,h.

(12)



Since each a`,k and each bm,h has bit-size at most M , the
absolute value of each coefficient c+i,j is bounded over by
2 dK 22M . The same holds for the coefficients c−i,j .

Since the coefficients c+i,j and c−i,j may be negative, we
consider a prime number p such that we have

p > 4 dK 22M . (13)

From now on, depending on the context, we freely view the
coefficients c+i,j and c−i,j either as elements of Z or as ele-
ments of Z/p. Indeed, the integer p is large enough for this
identification and we use the integer interval [−p−1

2 , p−12 ]
to represent the elements of Z/p.

The fact that we follow a big prime approach instead of an
approach using machine word size primes and the Chinese
Remaindering Algorithm will be justified in Section III.

A second requirement for the prime number p is that the
field Z/p should admit appropriate primitive roots of unity
for computing the polynomials C+(x, y) and C−(x, y) via
cyclic convolution and negacylic convolution as in Relation
(11), that is, both 2d−1 and K must divide p−1. In view of
utilizing 2-way FFTs, if p writes 2kq+ 1 for an odd integer
q, we must have:

(2d− 1) ≤ 2k and K ≤ 2k. (14)

It is well-known that there are approximately h
2k−1 log (h)

prime numbers p of the form 2kq + 1 for a positive integer
q and such that p < h holds, see [1]. Hence the number of
prime numbers of the form 2kq+ 1 less than 2` and greater
than or equal to 2`−1 is approximately 2`−1

2k−1 `
. For this latter

fraction to be at least one, we must have

2`−log2(`)+1 ≥ 2k.

With (14) this yields:

2`−log2(`)+1 ≥ (2d− 1) and 2`−log2(`)+1 ≥ K,

from where we derive the sufficient condition:

`− log2(`) ≥ max(log2(d), log2(K)). (15)

We denote by RecoveryPrime(d,K,M) a function call
returning a prime number p satisfying Relation (13) and
(15). We shall see in Section III that under two realistic
assumptions, namely M ∈ Ω(d) and K ∈ Θ(d), Relation
(13) implies Relation (15). Finally, we denote by e the
smallest number of w-bit words necessary to write p. Hence
we have

e ≥
⌈

2 + dlog2(dK)e+ 2M

w

⌉
. (16)

Let θ be a 2K-th primitive root of unity in Z/p. We
define ω = θ2, thus ω is a K-th primitive root in Z/p.
For univariate polynomials u(x), v(x) ∈ Z[x] of degree
at most K − 1, computing u(x) v(x) mod 〈xK − 1, p〉
via FFT is a well-known operation, see Algorithm 8.16

in [1]. Using the row-column algorithm for two-dimensional
FFT, one can compute C−(x, y) ≡ A(x, y)B(x, y)
mod 〈xK − 1, p〉, see [11], [10] for details. We denote by
CyclicConvolution(A,B,K, p) the result of this calculation.

We turn our attention to the negacylic convolution,
namely A(x, y)B(x, y) mod 〈xK + 1, p〉. We observe that
C+(x, y) ≡ A(x, y)B(x, y) mod 〈xK + 1, p〉 holds if
only if C+(θx, y) ≡ A(θx, y)B(θx, y) mod 〈xK − 1, p〉
does. Thus, defining C ′(x, y) := C+(θx, y), A′(x, y) :=
A(θx, y) and B′(x, y) := B(θx, y) we are led to compute
A′(x, y)B′(x, y) mod 〈xK − 1, p〉, which can be done
as CyclicConvolution(A′, B′,K, p). Then, the polynomial
C+(x, y) mod 〈xK − 1, p〉 is recovered from C ′(x, y)
mod 〈xK − 1, p〉 as

C+(x, y) ≡ C ′(θ−1x, y) mod 〈xK − 1, p〉, (17)

and we denote by NegacyclicConvolution(A,B,K, p) the
result of this process. We dedicate a section to the final step
of our algorithm, that is, the recovery of the product c(y)
from the polynomials C+(x, y) and C−(x, y).

B. Recovering c(y) from C+(x, y) and C−(x, y)

We naturally assume that all numerical coefficients are
stored in binary representation. Thus, recovering c(y) as
C(β, y) from Equation (1) involves only addition and shift
operations. Indeed, β is a power of 2. Hence, the algebraic
complexity of this recovery is essentially proportional to the
sum of the bit sizes of C+(x, y) and C−(x, y). Therefore,
the arithmetic count for computing these latter polynomials
(by means of cyclic and negacyclic convolutions) dominates
that of recovering c(y). Nevertheless, when implemented
on a modern computer hardware, this recovery step may
contribute in a significant way to the total running time.
The reasons are that: (1) both the convolution computations
and recovery steps incur similar amounts of cache misses,
and (2) the memory traffic implied by those cache misses
are a significant portion of the total running time.

We denote by RecoveringProduct(C+(x, y), C−(x, y), β)
a function call recovering c(y) from C+(x, y), C−(x, y) and
β = 2M . We start by stating below a simple procedure for
this operation:

1) u(y) := C+(β, y),
2) v(y) := C−(β, y),
3) c(y) := u(y)+v(y)

2 + −u(y)+v(y)
2 2N .

To further describe this operation and, later on, in order to
discuss its cache complexity and parallelization, we specify
the data layout. From Relation (16), we can assume that each
coefficient of the bivariate polynomials C+(x, y), C−(x, y)
can be encoded within e machine words. Thus, we assume
that C+(x, y) (resp. C−(x, y)) is represented by an array of
(2d− 1)K e machine words such that, for 0 ≤ i ≤ 2d− 2
and 0 ≤ j ≤ K−1, the coefficient c+i,j (resp. c−i,j) is written



between the positions (K i + j)e and (K i + j)e + e − 1,
inclusively. Thus, this array can be regarded as the encoding
of a 2-D matrix whose i-th row is c+i (x) (resp. c−i (x)). Now,
we write

u(y) :=

2d−2∑
i=0

uiy
i and v(y) :=

2d−2∑
i=0

viy
i; (18)

thus, from the definition of u(y), v(y), for 0 ≤ i ≤ 2d− 2,
we have

ui =

K−1∑
j=0

c+i,j 2M j and vi =

K−1∑
j=0

c−i,j 2M j . (19)

Denoting by H+, H− the largest absolute value of a
coefficient in C+(x, y), C−(x, y), we deduce

|ui| ≤ H+

((
2M
)K − 1

)
2M − 1

and |vi| ≤ H−

((
2M
)K − 1

)
2M − 1

.

(20)
From the discussion justifying Relation (13), we have

H+, H− ≤ 2 dK 22M , (21)

and with (20) we derive

|ui|, |vi| ≤ 2 dK 2M+N . (22)

Indeed, recall that N = KM holds. We return to the
question of data layout. Since each of c+i,j or c−i,j is a signed
integer fitting within e machine words, it follows from (20)
that each of the coefficients ui, vi can be encoded within

f := dN/we+ e (23)

machine words. Hence, we store each of the polynomials
u(y), v(y) in an array of (2d− 1)× f machine words such
that the coefficient in degree i is located between position
f i and position f (i + 1) − 1. Finally, we come to the
computation of c(y). We have

ci =
ui + vi

2
+ 2N

vi − ui
2

, (24)

which implies

|ci| ≤ 2 dK 2M+N (1 + 2N ). (25)

Relation (25) implies that the polynomial c(y) can be stored
within an array of (2d−1)×2f machine words. Of course, a
better bound than (25) can be derived by simply expanding
the product a(y) b(y), leading to

|ci| ≤ d 22N−2. (26)

The ratio between the two bounds given by (25) and (26)
tells us that the extra amount of space required by our
algorithm is O(log2(K) + M) bits per coefficient of c(y).
In practice, we aim at choosing K,M such that M ∈
Θ(log2(K)), and if possible M ≤ w. Hence, this extra space
amount can be regarded as small and thus satisfactory.

C. The algorithm in pseudo-code

With the procedures that were defined in this section,
we are ready to state our algorithm for integer polynomial
multiplication.

Input: a(y), b(y) ∈ Z[y].
Output: the product a(y) b(y)

1: (N,K,M) := DetermineBase(a(y), b(y), w)
2: A(x, y) := BivariateRepresentation(a(y), N,K,M)
3: B(x, y) := BivariateRepresentation(b(y), N,K,M)
4: p := RecoveryPrime(d,K,M)
5: C−(x, y) := CyclicConvolution(A,B,K, p)
6: C+(x, y) := NegacyclicConvolution(A,B,K, p)
7: c(y) := RecoveringProduct(C+(x, y), C−(x, y), 2M )
8: return c(y)

In order to analyze the complexity of our algorithm, it
remains to specify the data layout for a(y), b(y), A(x, y),
B(x, y). Note that this data layout question was handled for
C−(x, y), C+(x, y) and c(y) in Section II-B.

In the sequel, we view a(y), b(y) as dense in the sense that
each of their coefficients is assumed to be essentially of the
same size. Hence, from the definition of N , see Relation (2),
we assume that each of a(y), b(y) is stored within an array of
d×dN/we machine words such that the coefficient in degree
i is located between positions dN/wei and dN/we(i+1)−1.

Finally, we assume that each of the bivariate integer
polynomials A(x, y), B(x, y) is represented by an array of
d ×K machine words whose (K × i + j)-th coefficient is
ai,j , bi,j respectively, for 0 ≤ i ≤ d−1 and 0 ≤ j ≤ K−1.

D. Parallelization

One of the initial motivations of our algorithm design
is to take advantage of the parallel FFT-based routines for
multiplying dense multivariate polynomials over finite fields
that have been proposed in [10], [11]. To be precise, these
routines provide us with a parallel implementation of the
procedure CyclicConvolution, from which we easily derive
a parallel implementation of NegacyclicConvolution.

Lines 1 and 4 can be ignored in the analysis of the algo-
rithm. Indeed, one can simply implement DetermineBase
and RecoveryPrimes by look-up in precomputed tables.

For parallelizing Lines 2 and 3, it is sufficient in practice
to convert concurrently all the coefficients of a(y) and b(y)
to univariate polynomials of Z[y]. Similarly, for parallelizing
Line 7 it is sufficient again to compute concurrently the
coefficients of u(y), v(y) and then those of c(y).

III. COMPLEXITY ANALYSIS

In this section, we analyze the algorithm stated in Sec-
tion II-C. We estimate its work and span as defined in the
fork-join concurrency model [24]. The reader unfamiliar
with this model can regard the work as the time complexity
on a multitape Turing machine [25] and the span as the
minimum parallel running time of a “fork-join program”.



Such programs use only two primitive language constructs,
namely fork and join, in order to express concurrency.
Since the fork-join model has no primitive constructs for
defining parallel for-loops, each of those loops is simulated
by a divide-and-conquer procedure for which non-terminal
recursive calls are forked, see [26] for details. Hence, in
the fork-join model, the bit-wise comparison of two vectors
of size n has a span of O(log(n)) bit operations. This is
actually the same time estimate as in the Exclusive-Read-
Exclusive-Write PRAM [27], [28] model, but for a different
reason.

We shall also estimate the cache complexity [29] of the
serial counterpart of our algorithm for an ideal cache of Z
words and with L words per cache line.

The reader unfamiliar with this notion may understand
it as a measure of memory traffic or, equivalently on
multicore processors, as a measure of data communication.
Moreover, the reader should note that the ratio work to cache
complexity indicates how an algorithm is capable of re-using
cached data. Hence, the larger is the ratio, the better.

We denote by Wi, Si, Qi the work, span and cache
complexity of Line i in the algorithm stated in Section II-C.
As mentioned before, we can ignore the costs of Lines 1 and
4. Moreover, we can use W2, S2, Q2 as estimates for W3,
S3, Q3, respectively. Similarly, we can use the estimates of
Line 5 for the costs of Line 6. Thus, we only analyze the
costs of Lines 2, 5 and 7.

A. Choosing K, M and p

In order to analyze the costs associated with the cyclic
and negcyclic convolutions, we shall specify how K, M , p
are chosen. We shall assume thereafter that K and M are
functions of d satisfying the following asymptotic relations:

K ∈ Θ(d) and M ∈ Θ(log d). (27)

It is a routine exercise to check that these assumptions
together with Relation (13) imply Relation (15).

Relations (27) and (16) imply that we can choose p and
thus e such that we have

e ∈ Θ(log d). (28)

Here comes our most important assumption: one can
choose p and thus e such that computing an FFT of a vector
of size s over Z/p[x], amounts to

Farith(e, s) ∈ O

(
s

log(s)

log(e)

)
(29)

arithmetic operations in Z/p, whenever e ∈ Θ(log s) holds.
Since each arithmetic operation in Z/p can be done within
O(e log(e) log log(e)) machine-word operations (using the
multiplication algorithm of Schönhage and Strassen). Hence:

Fword(e, s) ∈ O(s e log(s) log log(e)) (30)

machine-word operations, whenever e ∈ Θ(log s) holds.
Using the fork-join model, the corresponding span is
O(log2(s) log2(e) log log(e)) machine-word operations.

Relation (29) can be derived with other technical assump-
tions about Z/p from the use of the algorithm proposed
in [30]. The analysis proposed in Section 2.6 of [31]
proposes an analysis specific to this case. Later, Relation
(29) was derived in [32] assuming that p is a generalized
Fermat prime. Table I lists generalized Fermat primes of
practical interest. See [31] for more details.

p max{2k s.t. 2k | p− 1}
(263 + 253)2 + 1 2106

(264 − 250)4 + 1 2200

(263 + 234)8 + 1 2272

(262 + 236)16 + 1 2576

(262 + 256)32 + 1 21792

(263 − 240)64 + 1 22500

(264 − 228)128 + 1 23584

Table I
GENERALIZED FERMAT PRIMES OF PRACTICAL INTEREST.

B. Analysis of BivariateRepresentation(a(y), N,K,M)

Converting each coefficient of a(y) to a univariate poly-
nomial of Z[x] requires O(N) bit operations; thus,

W2 ∈ O(dN) and S2 ∈ O(log(d)N). (31)

The latter log(d) factor comes from the fact that the
parallel for-loop corresponding to “for each coefficient of
a(y)” is executed as a recursive function with O(log(d))
nested recursive calls. Considering the cache complexity,
and taking into account the data layout specified in Sec-
tion II-C, one can observe that converting a(y) to A(x, y)
leads to O(d dNwLe + 1) cache misses for reading a(y) and
O(ddKe

L e+ 1) cache misses for writing A(x, y). Therefore,
we have:

Q2 ∈ O
(⌈

dN

wL

⌉
+

⌈
dK log2(dK)

wL

⌉
+ 1

)
. (32)

C. Analysis of CyclicConvolution(A,B,K, p)

Following the techniques developed in [10], [11], we com-
pute A(x, y)B(x, y) mod 〈xK−1, p〉 by 2-D FFT of format
K×(2d−1). In the direction of y, we need to do K FFTs of
size 2d−1 leading to O(K Fword(e, 2d−1)) machine word
operations. In the direction of x, we need to compute 2d−1
convolutions (i.e. products in Z[x]/〈xK − 1, p〉) leading to
O((2d − 1)Fword(e,K)) machine word operations. Using
Relations (27), (28) and (30), the work of one 2-D FFT of
format K × (2d− 1) amounts to:

O(KFword(e, 2d− 1)) +O((2d− 1)Fword(e,K)) =
O(Ke(2d− 1)(log(2d− 1) + log(K)) log log(e)) =

O(Ke(2d− 1) log((2d− 1)K) log log(e)) =
O(KM(2d− 1) log((2d− 1)K) log log(log(d)))

(33)



machine word operations, while the span amounts to:

O((log(K) log2(d) + log(d) log2(K)) log2(e) log log(e))

= O(log(K) log(d) log(dK) log2(log(d)) log log(log(d))).
(34)

Hence:

W5 ∈ O(dKM log(dK) log log(log(d))) and (35)

S5 ∈ O(log(K) log(d) log(dK) log2(log(d)) log log(log(d)))
machine word operations. Finally, from the results of [29],
and assuming that Z is large enough to accommodate a
few elements of Z/p, we have

Q6 ∈ O(1 + (deK/L)(1 + logZ(deK))). (36)

D. Analysis of RecoveringProduct(C+(x, y), C−(x, y), 2M )

Converting each coefficient of u(y) and v(y) from the
corresponding coefficients C+(x, y) and C−(x, y) requires
O(K e) bit operations. Then, computing each coefficient of
c(y) requires O(N + ew) bit operations. Thus we have

W7 ∈ O(d (K e+N+e)) and S7 ∈ O(log(d) (K e+N+e))
(37)

word operations. Converting C+(x, y), C−(x, y) to u(y),
v(y) leads to O(ddK e/Le + 1) cache misses for reading
C+(x, y), C−(x, y) and O(dd(N/w + e)/Le + 1) cache
misses for writing u(y), v(y). This second estimate holds
also for the total number of cache misses for computing
c(y) from u(y), v(y). Thus, we have Q7 ∈ O(dd (K e +
N + e)/Le + 1). We note that the quantity K e + N + e
can be replaced in above asymptotic upper bounds by
K(log2(dK) + 3M).

E. Proof of Theorem 1

Recall that analyzing our algorithm reduces to analyzing
Lines 2, 5, 7. Based on the results obtained above for
W2, W5, W7, with Relations (31), (35), (37), respectively,
it follows that the estimate for the work of the whole
algorithm is given by W5, leading to the result in Theorem 1.
Meanwhile, the span of the whole algorithm is dominated
by S7 and one obtains the result in Theorem 1. Finally, the
cache complexity estimate in Theorem 1 comes from adding
up Q2, Q5, Q7 and simplifying.

IV. EXPERIMENTATION

We realized an implementation of a modified version
of the algorithm presented in Section II. The only mod-
ification is that we rely on prime numbers p that do
not satisfy Equation (30). In particular and unfortunately,
our implementation is not using yet generalized Fermat
primes. Overcoming this limitation is work in progress.
Currently, our prime numbers are of machine word size.
As a consequence, the work of the implemented algorithm
is O(dKM log(dK)(log(dK) + 2M)), which is asymp-
totically larger than the work of the approach combining
Kronecker’s substitution and Schönhage & Strassen. This

helps understanding why the speedup factor of our parallel
implementation over the integer polynomial multiplication
code of FLINT (which is a serial implementation of the
algorithm of Schönhage & Strassen) is less than the number
of cores that we use.

However, this latter complexity estimate yields a (mod-
est) optimization trick: since the asymptotic upper bound
O(dKM log(dK)(log(dK) + 2M)) increases slower with
M than with d or K, it is advantageous to make M
large. We do that by using two machine word primes (and
the Chinese Remaindering Algorithm) instead of a single
prime for computing two modular images of C+(x, y) and
C−(x, y) that we combine by the Chinese Remaindering
Algorithm.

Moreover, our parallel implementation outperforms the
integer polynomial multiplication code of MAPLE 2015,
which is also a parallel code.

Our code is written in the multi-threaded language
CilkPlus [26] and compiled with the CilkPlus branch
of GCC. Our experimental results were obtained on an 48-
core AMD Opteron 6168, running at 900MHz with 256 GB
of RAM and 512KB of L2 cache. Table II gives running
times for the five multiplication algorithms that we have
implemented:
• KSs stands for Kronecker’s substitution combined with

Schönhage & Strassen algorithm [14]; note this is a
serial implementation, running on 1 core.

• CVL2
p is the prototype implementation of the modified

version of the algorithm described in Section II, running
on 48 cores. In this implementation, two machine-word
size Fourier primes are used instead of a single big
prime for computing C+(x, y) and C−(x, y).

• DnCp is a straightforward 4-way divide-and-conquer
parallel implementation of plain multiplication, run on
48 cores, see Chapter 2 of [20].

• Toom4
p is a parallel implementation of 4-way Toom-

Cook, run on 48 cores, see Chapter 2 of [20].
• Toom8

p is a parallel implementation of 8-way Toom-
Cook, run on 48 cores, see Chapter 2 of [20].

In addition, Table II gives running times for integer poly-
nomial multiplication performed with FILNT 2.4.3 [5] and
Maple 2015. In Table II, for each example, the degree d of
the input polynomial is equal to the coefficient bit size N .
The input polynomials a(y), b(y) are random and dense.

Figure 1 shows the running time comparison among our
algorithm, FILNT 2.4.3 [5] and Maple 2015. The input of
each test case is a pair of polynomials of degree d where
each coefficient has bit size N . Timings (in sec.) appear
along the vertical axis. Two plots are provided: one for which
d = N holds and one for d is much smaller than N .

From Table II and Figure 1, we observe that our imple-
mentation CVL2

p performs better on sufficiently large input
data, compared to its counterparts.



d,N CVL2
p DnCp Toom4

p Toom8
p KSs FLINTs Maple18s

210 0.139 0.11 0.046 0.059 0.057 0.016 0.06
211 0.196 0.17 0.17 0.17 0.25 0.067 0.201
212 0.295 0.58 0.67 0.64 1.37 0.42 0.86
213 0.699 2.20 2.79 2.73 5.40 1.671 3.775
214 1.927 8.26 10.29 8.74 20.95 7.178 17.496
215 9.138 30.75 35.79 33.40 92.03 32.112 84.913
216 33.04 122.1 129.4 115.9 *Err. 154.69 445.67

Table II
TIMINGS OF POLYNOMIAL MULTIPLICATION WITH d = N .

Figure 1. Dense integer polynomial multiplication: CVL2
p (BPAS)

vs FLINT vs Maple 2015.

V. CONCLUDING REMARKS

We have presented a parallel FFT-based method for
multiplying dense univariate polynomials with integer co-
efficients. Our approach relies on two convolutions (cyclic
and negacyclic) of bivariate polynomials which allow us to
take advantage of the row-column algorithm for 2D FFTs.
The proposed algorithm is asymptotically faster than that of
Schönhage & Strassen.

In our implementation, the data conversions between
univariate polynomials over Z and bivariate polynomials
over Z/pZ are highly optimized by means of low-level
“bit hacks” thus avoiding software multiplication of large
integers. In fact, our code relies only and directly on machine
word operations (addition, shift and multiplication).

Our experimental results show this new algorithm has
a high parallelism and scale better than its competitor
algorithms.

Nevertheless, there is still room for improvement in the

implementation. Using a single big prime (instead of two
machine-word size primes and the Chinese Remaindering
Algorithm) and requiring that it is a generalized Fermat
prime would make the implemented algorithm follow strictly
the algorithm presented in Section II.

The source of the algorithms discussed in this chapter are
freely available at the web site of Basic Polynomial Algebra
Subprograms (BPAS-Library) 1.
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