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Summary. We are interested in a simple max-type recursive model
studied by Derrida and Retaux [11] in the context of a physics problem,
and find a wide range for the exponent in the free energy in the nearly
supercritical regime.
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1 Introduction

1.1 The Derrida–Retaux model

We are interested in a max-type recursive model investigated in 2014 by

Derrida and Retaux [11], as a toy version of the hierarchical pinning model;

see Section 1.3. The model can be defined, up to a simple change of variables,

as follows: for all n ≥ 1,

(1.1) Xn+1
law
= (Xn + X̃n − 1)+,
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where X̃n denotes an independent copy of Xn, and “
law
=” stands for identity

in distribution. We assume that X0 is a non-negative random variable.

Since (Xn + X̃n − 1)+ ≤ Xn + X̃n, we have E(Xn+1) ≤ 2E(Xn), which

implies the existence of the free energy

(1.2) F∞ := lim
n→∞

↓
E(Xn)

2n
.

An immediate question is how to separate the two regimes F∞ > 0 and

F∞ = 0.

Example 1.1. Assume P(X0 = 2) = p and P(X0 = 0) = 1 − p, where

p ∈ [0, 1] is a parameter. There exists pc ∈ (0, 1) such that F∞ > 0 if p > pc,

and that F∞ = 0 if p < pc.

The value of pc is known to be 1
5
(Collet et al. [8]).

More generally, we write PX for the law of an arbitrary random variable

X , and assume from now on

PX0 = (1− p) δ0 + p PY0,

where δ0 is the Dirac measure at the origin, Y0 is a random variable taking

values in (0, ∞), and p ∈ [0, 1] a parameter. In Example 1.1, we have Y0 = 2.

We often write F∞(p) instead of F∞ in order to make appear the depen-

dence of the free energy in terms of the parameter p. Clearly p 7→ F∞(p) is

non-decreasing. So there exists a critical parameter pc ∈ [0, 1] such that

F∞(p) > 0 if p > pc, F∞(p) = 0 if p < pc .

[The extreme cases: pc = 0 means F∞(p) > 0 for all p > 0, whereas pc = 1

means F∞(p) = 0 for all p < 1.]

We can draw the first n generations of the rooted binary tree leading

to the random variable Xn; in this sense, F∞(p) can be viewed as a kind

of percolation function on the binary tree: when F∞ > 0, we say there is

percolation, whereas if F∞ = 0, we say there is no percolation. From this

point of view, two questions are fundamental: (1) What is the critical value
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pc? (2) What is the behaviour of the free energy F∞(p) when p is in the

neighbourhood of pc?

Concerning the first question, the value of pc can be determined if the

random variable Y0 is integer-valued.

Theorem A (Collet et al. [8]). Assume Y0 takes values in {1, 2, . . .}.

Then

pc =
1

E[(Y0 − 1)2Y0] + 1
.

Theorem A is proved in [8] assuming E(Y0 2
Y0) < ∞. It is easily seen

that it still holds in the case E(Y0 2
Y0) = ∞: Indeed, for Z0 := min{Y0, k} in

the place of Y0, the corresponding critical value for p is 1
E[(Z0−1)2Z0 ]+1

, which

can be made as close to 0 as possible by choosing k sufficiently large (by the

monotone convergence theorem), so pc = 0.

When Y0 is not integer-valued, Theorem A is not valid any more. The

value of pc is unknown (see Section 6 for some open problems). However, it

is possible to characterise the positivity of pc.

Proposition 1.2. We have pc > 0 if and only if E(Y0 2
Y0) < ∞.

Proof. (1) We first assume that Y0 takes values in {0, 1, 2, . . .}.

By Theorem A,

pc =
1

(E[(Y0 − 1)2Y0])+ + 1
,

where (E[(Y0 − 1)2Y0 ])+ is the positive part of E[(Y0 − 1)2Y0]. This means

that if E(Y0 2
Y0) < ∞, then pc = 1

(E[(Y0−1)2Y0 ])++1
(which, in particular, is

positive), whereas if E(Y0 2
Y0) = ∞, then pc = 0.

(2) We now remove the assumption that Y0 is integer-valued. We write

⌊Y0⌋ ≤ Y0 ≤ ⌈Y0⌉ .

For both ⌊Y0⌋ and ⌈Y0⌉, we apply the positivity criterion proved in the first

step. Since the three conditions E(⌊Y0⌋ 2
⌊Y0⌋) < ∞, E(⌈Y0⌉ 2

⌈Y0⌉) < ∞ and

E(Y0 2
Y0) < ∞ are equivalent, the desired result follows.
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Proposition 1.2 tells us that the positivity of pc does not depend on the

exact distribution of Y0, but only on its tail behaviour.

We now turn our attention to the second question. For the standard

Bernoulli bond percolation problem, the percolation function (i.e., the prob-

ability that the origin belongs to the unique infinite cluster) is continuous,

but not differentiable, at p = pc. For our model, the situation is believed to

be very different; in fact, it is predicted ([11]) that the free energy is smooth

at p = pc and that all the derivatives at pc vanish:

Conjecture 1.3. (Derrida and Retaux [11]). Assume pc > 0. There

exists a constant K ∈ (0, ∞) such that

F∞(p) = exp
(
−

K + o(1)

(p− pc)1/2

)
, p ↓ pc .

By Proposition 1.2, the assumption pc > 0 in Conjecture 1.3 means

E(Y0 2
Y0) < ∞.

We have not been able to prove the conjecture. Our aim is to study the

influence, on the behaviour of F∞ near pc, produced by the tail behaviour of

Y0. It turns out that our main result can be applied to a more general family

of recursive models, which we define in the following paragraph.

1.2 A generalised max-type recursive model

Let ν be a random variable taking values in {1, 2, . . .}, such thatm := E(ν) ∈

(1, ∞). [We use E to denote expectation with respect to the law of ν.] For

all n ≥ 1, let

(1.3) Xn+1
law
= (Xn,1 + · · ·+Xn,ν − 1)+,

where Xn,1, Xn,2, . . . are independent copies of Xn, and are independent of

ν. From probabilistic point of view, this is a natural Galton–Watson-type

extension of the model in (1.1), which corresponds to the special case ν = 2

a.s. We do not know whether there would be a physical interpretation of the
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randomness of ν (including in the related models described in Section 1.3

below), as asked by an anonymous referee.

Let θ > 0. Let us consider the following situation: There exist constants

0 < c1 ≤ c2 < ∞ such that for all sufficiently large x,

(1.4) c1 e
−θx ≤ P(Y0 ≥ x) ≤ c2 e

−θx .

When θ > logm, we have pc > 0 (see Remark 3.1; this is in agreement to

Proposition 1.2 if ν is deterministic); the behaviour of the system in this case

is predicted by Conjecture 1.3. We are interested in the case θ ∈ (0, logm].

Theorem 1.4. Assume E(tν) < ∞ for some t > 1, and m := E(ν) > 1. Let

θ ∈ (0, logm). Under the assumption (1.4), we have

F∞(p) = pβ+o(1) , p ↓ 0 ,

where β = β(θ) := logm
(logm)−θ

.

Theorem 1.4, which is not deep, is included in the paper for the sake

of completeness. Its analogue in the non-hierarchical pinning setting was

known; see [24].

The study of the case θ = logm is the main concern of the paper. It

turns out that we are able to say more. Fix α ∈ R. We assume the existence

of constants 0 < c3 ≤ c4 < ∞ such that for all sufficiently large x,

(1.5) c3 x
αm−x ≤ P(Y0 ≥ x) ≤ c4 x

α m−x .

The main result of the paper is as follows.

Theorem 1.5. Let α > −2. Assume E(tν) < ∞ for some t > 1, and

m := E(ν) > 1. Under the assumption (1.5), we have

F∞(p) = exp
(
−

1

pχ+o(1)

)
, p ↓ pc = 0 ,

where χ = χ(α) := 1
α+2

.
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Compared to the original Derrida–Retaux model, additional technical

difficulties may appear when ν is random. For example, the analogue of the

fundamental Theorem A is not known (see Problem 6.3).

The proof of the theorem gives slightly more precision: There exists a

constant c5 > 0 such that for all sufficiently small p > 0,

F∞(p) ≤ exp
(
−

c5
pχ

)
.

We will regularly use the following elementary inequalities:

(1.6)
E(Xn)−

1
m−1

mn
≤ F∞ ≤

E(Xn)

mn
, n ≥ 1 .

The second inequality follows from (1.2). For the first inequality, it suffices

to note that by definition, E(Xn+1) ≥ mE(Xn) − 1, so n 7→
E(Xn)−

1
m−1

mn is

non-decreasing, and F∞ = limn→∞ ↑
E(Xn)−

1
m−1

mn .

An immediate consequence of (1.6) is the following dichotomy:

• either E(Xn) >
1

m−1
for some n ≥ 1, in which case F∞ > 0;

• or E(Xn) ≤
1

m−1
for all n ≥ 1, in which case F∞ = 0.

1.3 About the Derrida–Retaux model

The Derrida–Retaux model studied in our paper has appeared in several

places in both mathematics and physics literatures.

(a) The recursion in (1.1) belongs to a family of max-type recursive mod-

els analysed in the survey paper of Aldous and Bandyopadhyay [1].

(b) The model in (1.1) was investigated by Derrida and Retaux [11] to

understand the nature of the pinning/depinning transition on a defect line

in presence of strong disorder. The problem of the depinning transition has

attracted much attention among mathematicians [2, 3, 5, 9, 20, 13, 14, 15,

16, 17, 18, 24, 31, 32] and physicists [10, 12, 13, 22, 27, 28, 30] over the last

thirty years. Much progress has been made in understanding the question of

the relevance of a weak disorder [14, 20, 17], i.e., whether a weak disorder is

susceptible of modifying the nature of this depinning transition. For strong
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disorder or even, for a weak disorder when disorder is relevant, it is known

that the transition should always be smooth [18], but the precise nature of

the transition is still controversial [30, 11, 27].

It is expected that a similar phase transition should occur in a simplified

version of the problem, when the line is constrained to a hierarchical geometry

[6, 10, 16, 23]. Even in this hierarchical version, the nature of the transition

is poorly understood. This is why Derrida and Retaux [11] came up with a

toy model which, they argue, should behave like the hierarchical model. This

toy model turns out to be sufficiently complicated that many fundamental

questions remain open (we include a final section discussing some of these

open problems in Section 6).

(c) The model in (1.1) has also appeared in Collet et al. [8] in their study

of spin glass model.

(d) The recursion in (1.1) has led to the so-called parking schema; see

Goldschmidt and Przykucki [19].

The rest of the paper and the proofs of the theorems are as follows. In

Section 2, we present a (heuristic) outline the proof of Theorem 1.5. Section

3 is devoted to the upper bounds in Theorems 1.4 and 1.5. In Section 4,

which is the heart of the paper, we prove the lower bound in Theorem 1.5.

The lower bound in Theorem 1.4 is proved in Section 5. Finally, we make

some additional discussions and present several open problems in Section 6.

2 Proof of Theorem 1.5: an outline

The upper bound in Theorem 1.5, proved in details in Section 3, relies on

a simple analysis of the moment generating function. The idea of using the

moment generating function goes back to Collet et al. [8] and Derrida and

Retaux [11].

The proof of the lower bound in Theorem 1.5, quite involving and based on

a multi-scale type of argument, is done in two steps. The first step consists

of the following estimate: if the initial distribution X0 satisfies, for t ≥ 1
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(say),

P(X0 ≥ t) “≥” p tαm−t,

then

(2.1) P(Xn ≥ t) “≥” p̃ tαm−t,

for n ≥ 1 and t ≥ 1, where

p̃ := p2 n2+α .

[See Lemma 4.1 for a rigorous statement; for a heuristic explanation of (2.1),

see below.] This allows us to use inductively the estimate, to arrive at:

P(Xj ≥ t) “≥” pajb tα m−t,

for all j satisfying pajb ≤ 1, with a > 0 and b > 0 such that b ≈ (2 + α)a.

By E(Xj) =
∫∞

0
P(Xj ≥ t) dt, we get

E(Xj) “≥” κ pajb ,

where κ > 0 is a (small) constant. [This is Lemma 4.2.] As such, E(Xj) ≥ κ,

if j = p−a/b. We are almost home. The rest of the argument consists in

replacing κ by a constant greater than 1
m−1

. This is done in the second step.

Let n ≥ 1. To see why (2.1) is true, we use a hierarchical representation

of the system (Xi, 0 ≤ i ≤ n), due to Collet et al. [7] and Derrida and Re-

taux [11]. We define a family of random variables (X(u), u ∈ T
(n)), indexed

by a reversed Galton–Watson tree T
(n). Let T0 = T

(n)
0 denote the initial

generation of T(n). We assume that X(u), for u ∈ T0, are i.i.d. having the

distribution of X0. For any vertex u ∈ T
(n)\T0, we set

X(u) := (X(u(1)) + · · ·+X(u(νu))− 1)+ ,

where u(1), . . ., u(νu) are the parents of u. Consider (see (4.6); λ1 being an

unimportant constant, and can be taken as 1
3
)

Z = Zn ≈ #{u ∈ T0 : X(u) ≥ λ1n, D(u)},
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where D(u) := {∃v ∈ T0\{u} , |u ∧ v| < λ1n, X(v) ≥ t + n − X(u)}, and

the symbol “#” denotes cardinality. Here, by |u ∧ v| < λ1n, we mean u

and v have a common descendant before generation λ1n. We observe that

P(Xn ≥ t) ≥ P(Z ≥ 1). So by the Cauchy–Schwarz inequality,

P(Xn ≥ t) ≥
[E(Z)]2

E(Z2)
.

The proof of (2.1) is done by proving that E(Z) ≈ p2n2+αtαm−t (see (4.13))

and that E(Z2) “≤” E(Z).

In the second step, we take n ≈ (1
p
)1/(2+α), defined rigorously in (4.24).

We use once again the hierarchical representation. Let u ∈ T0 be such that

X(u) = maxv∈T0 X(v). Since the values of X in the initial generation are

i.i.d. of the law of X0, it is elementary that X(u) ≥ ℓ “ :=” n − logn (see

(4.23) for the exact value of ℓ). Let k := ℓ
4
. The fact k < ℓ allows us to use

the following inequality:

Xn ≥ X(u)− n+
k−1∑

j=0

X
(n)
j ≥ ℓ− n+

k−1∑

j=0

X
(n)
j ,

where, for each j, X
(n)
j has “approximately” the same law as Xj. [For a

rigorous formulation, see (4.20).] Taking expectation on both sides, and using

the fact, proved in the first step, that E(X
(n)
j ) is greater than a constant (say

κ1) if j ≥
k
2
(say), we arrive at:

E(Xn) ≥ ℓ− n +
k

2
κ1 ,

which is greater than a constant multiple of n. By the first inequality in

(1.6), F∞ ≥
E(Xn)−

1
m−1

mn , which implies the desired lower bound in Theorem

1.5.

3 Upper bounds

Without loss of generality, we assume X0 is integer valued (otherwise, we

consider ⌈X0⌉). Consider the generating functions

Gn(s) := E(sXn), h(s) := E(sν),
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where ν is the number of independent copies in the convolution relation (1.3):

Xn+1
law
= (Xn,1 + · · ·+Xn,ν − 1)+.

The latter can be written as

Gn+1(s) =
h(Gn(s))

s
+

s− 1

s
h(Gn(0)) .

Hence

G′
n+1(s) =

h′(Gn(s))

s
G′

n(s)−
h(Gn(s))− h(Gn(0))

s2
.

We fix an s ∈ (1, m) whose value will be determined later. Write

an = an(s) := Gn(s)− 1 .

Since h(Gn(0)) ≤ h(1) = 1, we have h(Gn(s))−h(Gn(0)) ≥ h(Gn(s))−h(1) =

h(1 + an)− h(1) ≥ h′(1)an = man ≥ s an. Hence

G′
n+1(s) ≤

h′(Gn(s))

s
G′

n(s)−
an
s

=
h′(1 + an)

s
G′

n(s)−
an
s
.

By the assumption of existence of t > 1 satisfying E(tν) < ∞, there exist

δ0 > 0 and c0 > 0 such that h′(1+a) ≤ h′(1)+ c0 a = m+ c0 a for a ∈ (0, δ0).

Hence, if an < δ0, then

G′
n+1(s) ≤

m+ c0 an
s

G′
n(s)−

an
s
.

Let N1 := inf{n ≥ 0 : an ≥ δ0 or G′
n(s) ≥ 1

c0
} (with inf∅ := ∞). As

long as a0 < δ0 and G′
0(s) <

1
c0

(which we take for granted from now on), we

have

G′
n+1(s) ≤

m+ c0an
s

G′
n(s)−

an
s

≤
m

s
G′

n(s), 0 ≤ n < N1.

Iterating the inequality, we get that

(3.1) G′
n(s) ≤ (

m

s
)nG′

0(s), 1 ≤ n ≤ N1.

We now proceed to the proof of the upper bound in Theorem 1.5. By

assumption (1.5), P(Y0 ≥ x) ≤ c4 x
α m−x for all sufficiently large x. This
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implies, by integration by parts, the existence of a constant c6 > 0 such that

for all s ∈ (1, m),

E(Y0s
Y0−1) ≤

c6
(logm− log s)α+2

.

By definition of G0, this yields

(3.2) G′
0(s) = E(X0s

X0−1) = pE(Y0s
Y0−1) ≤

c6 p

(logm− log s)α+2
,

and for n ≥ 0,

an := Gn(s)− 1 ≤ E(sXn 1{Xn≥1}) ≤ sG′
n(s) ≤ mG′

n(s) .

We choose s := me−1/N , where N := (c7 p)
−1/(2+α), with c7 denoting a large

constant such that e c6
c7

< 1
c0

and that em c6
c7

< δ0. Then (3.2) ensures that

G′
0(s) ≤

c6
c7

< 1
c0
, and a0 ≤ mG′

0(s) < δ0. [In fact, a0 is much smaller than

mG′
0(s).]

By (3.1), for 1 ≤ n ≤ N1 (recalling that G′
0(s) ≤

c6
c7
)

G′
n(s) ≤ en/N G′

0(s) ≤ en/N
c6
c7

,

and

an ≤ mG′
n(s) ≤ en/N

mc6
c7

.

Since e c6
c7

< 1
c0

and em c6
c7

< δ0 by the choice of c7, this yields G
′
n(s) <

1
c0

and

an < δ0 for 1 ≤ n ≤ min{N1, N}. By definition of N1, this implies N1 ≥ N ;

hence min{N1, N} = N , which implies aN < δ0.

By Jensen’s inequality, E(Xn) ≤
log(1+an)

log s
. So E(XN) ≤

log(1+δ0)
log s

. In view

of the second inequality in (1.6), we get, for all sufficiently small p,

F∞(p) ≤
E(XN )

mN
≤

log(1 + δ0)

mN log s
,

proving the upper bound in Theorem 1.5.

The upper bound in Theorem 1.4 is obtained similarly. We choose s :=

eθ−ε with ε := (log 1
p
)−1. Then

G′
0(s) = pE(Y0s

Y0−1) ≤ c8
p

ε2
,
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for some constant c8 > 0 and all sufficiently small p > 0, and a0 ≤ mG′
0(s).

In particular, G′
0(s) < 1

c0
and a0 < δ0 for all sufficiently small p > 0. By

(3.1), for 1 ≤ n ≤ N1,

G′
n(s) ≤ G′

0(s)
( m

eθ−ε

)n
≤ c8

p

ε2

( m

eθ−ε

)n
,

and

an ≤ mG′
n(s) ≤ mc8

p

ε2

( m

eθ−ε

)n
.

LetN ′ := log(c9 ε2/p)
log( m

eθ−ε
)
, where c9 > 0 is a small constant such that c8

p
ε2
( m
eθ−ε )

N ′

<

1
c0

and that mc8
p
ε2
( m
eθ−ε )

N ′

< δ0. Then G′
n(s) <

1
c0

and an < δ0 for 1 ≤ n ≤

min{N1, N
′}. This implies aN ′ < δ0. Since N ′ = (1 + o(1)) log(1/p)

(logm)−θ
(for

p → 0), we get that F∞(p) ≤
E(XN′ )

mN′ ≤
log(1+aN′ )

mN′ log s
≤ p

logm

(logm)−θ
+o(1), p → 0,

proving the upper bound in Theorem 1.4.

Remark 3.1. Let an = an(s) := Gn(s)−1 as in the proof. Since h(Gn(0)) ≤

h(1) = 1, we have

an+1 = Gn+1(s)− 1 ≤
h(1 + an)− 1

s
.

By assumption on ν, there exist δ′0 > 0 and c′0 > 0 such that h(1 + a)− 1 ≤

ma(1+c′0a) for a ∈ (0, δ′0). Consequently, if 0 < a0 < δ′0 and m(1+c′0a0) < s,

then inductively for all n ≥ 0,

an+1 ≤
man(1 + c′0an)

s
< an .

In other words, the sequence an, n ≥ 1, is decreasing.

Assume P(Y0 > x) ≤ c2 e
−θx for some θ > logm and all sufficiently

large x. Fix s ∈ (m, eθ). We have E(sY0) < ∞. So for sufficiently small

p > 0, we have 0 < a0 < δ′0 and m(1 + c′0a0) ≤ s. By the discussions

in the last paragraph, the sequence an, n ≥ 1, is decreasing. This yields

supn≥0E(Xn) < ∞; hence F∞(p) = 0. Consequently, pc > 0 in this case.

[The discussion here gives a sufficient condition for the positivity of pc,

not a characterisation.]
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4 Proof of Theorem 1.5: lower bound

Throughout the section, we assume E(ν3) < ∞ and m := E(ν) > 1, which

is weaker than the assumption in Theorem 1.5.

We start with a simple hierarchical representation of the system; the idea

of this representation already appeared in Collet et al. [7] and in Derrida and

Retaux [11].

We define a family of random variables (X(u), u ∈ T), indexed by an

infinite tree T, in the following way. For any vertex u in the genealogical tree

T, we use |u| to denote the generation of u; so |u| = 0 if u is in the initial

generation. We assume that X(u), for u ∈ T with |u| = 0 (i.e., in the initial

generation of the system), are i.i.d. having the distribution of X0. For any

vertex u ∈ T with |u| ≥ 1, let u(1), . . ., u(νu) denote the νu parents of u in

generation |u| − 1, and set

X(u) := (X(u(1)) + · · ·+X(u(νu))− 1)+ .

We assume that for any i ≥ 0, (νu, |u| = i) are i.i.d. having the distribution

of ν, and are independent of everything else up to generation i.

Fix an arbitrary vertex en in the n-th generation. The set of all ver-

tices, including en itself, in the first n generations of T having en as their

(unique) descendant at generation n, is denoted by T
(n). Clearly, T(n) is (the

reverse of the first n generations of) a Galton–Watson tree, rooted at en, with

reproduction distribution ν. Note that X(en) has the distribution of Xn.

More generally, for v ∈ T
(n) with |v| = j ≤ n, let T(v) denote the set of

all vertices, including v itself, in the first j generations of T having v as their

(unique) descendant at generation j. [So T
(n) = T(en).] Let T0(v) := {x ∈

T(v) : |x| = 0}. By an abuse of notation, we write T0 := T0(en).

Let v ∈ T
(n). Let v|v| = v, and for |v| < i ≤ n, let vi be the (unique) child

of vi−1; in particular, |vi| = i (for |v| ≤ i ≤ n), and vn = en. See Figure 1.

For v ∈ T
(n)\{en}, let bro(v) denote the set of the brothers of v, i.e., the

set of vertices, different from v, that are in generation |v| and having the

same child as v. Note that bro(v) can be possibly empty.3

3The term “brothers” is with respect to T
(n), which is reversed Galton–Watson.
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en

v4

e5

e6

en−1

T
(n)

e4

e3

e2

w

T0(w)

v

v3

e0

e1

u

u1

u2
bro(v)

Figure 1: Spine (ei)0≤i≤n; in the above picture, v2 := v and vi = ei for all 5 ≤ i ≤ n.

In the rest of the paper, we use Pω the conditional probability given T,

and its corresponding expectation Eω. The law of T is denoted by P, the cor-

responding expectation E. We write P( · ) := E[Pω( · )], with corresponding

expectation E.

We now describe the law of the size-biased Galton–Watson tree. Let Q

be the probability measure defined on σ(T(n)), the sigma-field generated by

T
(n), by Q := #T0

mn •P. Under Q, T(n) represents (the first n generations of) a

so-called size-biased Galton–Watson tree. There is a simple way to describe

the law of the size-biased Galton–Watson tree. Let e0 = e
(n)
0 be a random

variable taking values in T0 (which is not measurable with respect to σ(T0),

the sigma-field generated by T0) whose under Q, given σ(T0), is uniformly

distributed on T0: Q(e0 = u |T0) = 1
#T0

for any u ∈ T0. Let ei = e
(n)
i be

the unique descendant at generation i of e0, for all 0 ≤ i ≤ n. The collection

(ei, 0 ≤ i ≤ n) is referred to as the spine. The spinal decomposition theorem

says that under Q, bro(ei), for 0 ≤ i ≤ n− 1, are i.i.d., and conditionally on

Gn := σ(bro(ei), 0 ≤ i ≤ n−1), (T0(v), v ∈ bro(ei))0≤i≤n−1 are independent;

furthermore, for each 0 ≤ i ≤ n − 1, conditionally on Gn and under Q,

T0(v), for v ∈ bro(ei) are i.i.d. having the law of T0(ui) under P (for any

u ∈ T0 which is σ(T0)-measurable). For more details, see Lyons, Pemantle
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and Peres [25], or Lyons and Peres ([26], Chap. 12), Shi ([29], Chap. 2) for

formalism for tree-valued random variables.

A useful consequence of the spinal decomposition theorem is the many-

to-one formula: For any measurable function g,

(4.1) E
( ∑

u∈T0

g(T(u1), . . . ,T(un))
)
= mn EQ[g(T(e1), . . . ,T(en))],

where (ei, 0 ≤ i ≤ n) is the spine.

Here is another consequence of the spinal decomposition theorem. Let

1 ≤ i ≤ n. We have EQ[#T0(ei)] = EQ[#T0(ei−1)] + c10m
i−1, where c10 :=

EQ[#bro(ei−1)] = EQ[#bro(e0)] =
1
m

∑∞
k=1 k(k − 1)P(ν = k) < ∞. This

yields

(4.2) EQ[#T0(ei)] = c10

i−1∑

j=0

mj + 1 ≤ c11m
i ,

for some constant c11 > 0 and all 0 ≤ i ≤ n. Similarly, the assumption

E(ν3) < ∞ ensuring EQ[(#bro(e0))
2] = 1

m

∑∞
k=1 k(k − 1)2P(ν = k) < ∞,

we have

(4.3) EQ{[#T0(ei)]
2} ≤ c12m

2i ,

for some constant c12 > 0 and all 0 ≤ i ≤ n.

We now turn to the proof of the lower bound in Theorem 1.5, which

is done in two steps. The first step, summarised in Lemma 4.1 below, is

a probability estimate that allows for iteration. The second step says that

along the spine, Xn will reach sufficiently high expected values.

4.1 First step: Inductive probability estimate

The first step gives a useful inductive probability estimate. In order to make

the induction possible, we assume something more general than the assump-

tion (1.5) in Theorem 1.5.
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Lemma 4.1. Assume E(ν3) < ∞ and m := E(ν) > 1. Let α ∈ R. Let

c13 > 0, c14 > 0 and c15 > 0. There exists c > 0 such that for 0 < p < 1

with p n1+α ≤ c13, if the initial distribution of X0 is such that for some

1 ≤ γ ≤ c14 n,

(4.4) P(X0 ≥ t) ≥ c15 p (t+ γ)αm−t, ∀ t > 0,

then

P(Xn ≥ t) ≥ c p2 n2+α (t + n)αm−t, ∀ t > 0.

Proof. Without loss of generality, we assume X0 is integer valued such that

(4.5) P(X0 = t) = c15 p (t+ γ)αm−t, ∀ t = 1, 2, . . .

[In fact, the distribution in (4.5) is stochastically smaller than or equal to a

distribution satisfying (4.4), with a possibly different value of the constant

c15.]

For v ∈ T
(n) with |v| = j ≤ n, let

M(v) := max
r∈bro(v)

max
w∈T0(r)

(X(w)− j)+,

where r ∈ bro(v) means, as before, that r is a brother of v, and X(w) is the

random variable assigned to the vertex w on the initial generation. Let b > 0.

Let 0 < λ1 < λ2 < 1 be any fixed constants.4 We consider the integer-valued

random variable

(4.6) Z :=
∑

u∈T0

1Au
,

where, for any u ∈ T0,

Au :=
{
X(u) ∈ [λ1n, λ2n], max

1≤j≤λ1n
M(uj) ≥ b+ n−X(u)

}
.

Clearly,

(4.7) P(Z ≥ 1) ≤ P(Xn ≥ b).

4The values of λ1 and λ2 play no significant role in the proof; so we can take, for
example, λ1 = 1

3 and λ2 = 2
3 .
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Throughout the proof, we write x . y or y & x if x ≤ cy for some constant

c ∈ (0, ∞) that does not depend on (n, p, b), and x ≍ y if both relations

x . y and y . x hold.

For x ≥ (1− λ2)n and 1 ≤ j ≤ n, we have, by (4.5),

P(X0 ≥ x+ j) ≍ p(x+ j + γ)αm−x−j ≍ pxαm−x−j.

[So the parameter γ figuring in the condition (4.4) disappears because x+γ ≍

x if x ≥ (1− λ2)n.] Note that M(uj), for 1 ≤ j ≤ n, are independent under

Pω. We have, for u ∈ T0, x ≥ (1− λ2)n, and integers 1 ≤ n1 ≤ n2 ≤ n,

Pω

(
max

n1≤j≤n2

M(uj) ≥ x
)

= 1−

n2∏

j=n1

Pω(M(uj) < x)

= 1−

n2∏

j=n1

∏

r∈bro(uj)

∏

w∈T0(r)

[1− P(X0 ≥ x+ j)]

≍
[
pxα

n2∑

j=n1

m−x−jΛ(uj)
]
∧ 1,

uniformly in 1 ≤ n1 ≤ n2 ≤ n. Here, a ∧ b := min{a, b} for real numbers,

and for all v ∈ T
(n),

Λ(v) :=
∑

r∈bro(v)

#T0(r) ,

with #T0(r) denoting the cardinality of T0(r). For future use, we observe

that

(4.8) Pω

(
max

n1≤j≤n2

M(uj) ≥ x
)
. pxα

n2∑

j=n1

m−x−jΛ(uj),

uniformly in 1 ≤ n1 ≤ n2 ≤ n. Taking n1 := 1 and n2 := λ1n, and by

independence of X(u) and maxn1≤j≤n2 M(uj) under Pω, we arrive at:5

(4.9) Pω(Au) ≍

λ2n∑

ℓ=λ1n

pnαm−ℓ
{[

p(b+ n)α
λ1n∑

j=1

m−(b+n−ℓ)−jΛ(uj)
]
∧ 1

}
.

5For notational simplification, we treat λ1n and λ2n as if they were integers.
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[We have used ℓ+ γ ≍ n and b+ n− ℓ ≍ b+ n.] For future use, we see that

by removing “∧1” on the right-hand side,

(4.10) Pω(Au) . p2n1+α (b+ n)α
λ1n∑

j=1

m−(b+n)−jΛ(uj).

We now estimate E(Z) and E(Z2).

We first look at the expectation of Z under Pω: By (4.9),

Eω(Z) ≍
∑

u∈T0

λ2n∑

ℓ=λ1n

p nαm−ℓ
{[

p(b+ n)α
λ1n∑

j=1

m−b−n+ℓ−jΛ(uj)
]
∧ 1

}
.

We take expectation on both sides with respect to P, the law of T. By the

many-to-one formula (4.1),

(4.11) E(Z) ≍ mn
λ2n∑

ℓ=λ1n

p nαm−ℓEQ(η ∧ 1),

where

η = η(n, ℓ) := p(b+ n)α
λ1n∑

j=1

m−b−n+ℓ m−jΛ(ej) .

By the spinal decomposition theorem, under Q, m−jΛ(ej), 1 ≤ j ≤ n are in-

dependent, and for each j, #bro(ej) has the same law as #bro(e1), whereas

conditionally on #bro(ej), Λ(ej) is distributed as the sum of #bro(ej) in-

dependent copies of T0(uj) under P (for any u ∈ T0), the latter being the

number of individuals in the j-th generation of a Galton–Watson process

with reproduction law ν (starting with 1 individual). Accordingly,

EQ[m
−jΛ(ej) |#bro(ej)] = #bro(ej) ,

so that

EQ[m
−jΛ(ej)] = EQ[#bro(ej)] = EQ[#bro(e1)] < ∞ .

Hence

(4.12) EQ(η) ≍ p(b+ n)α
λ1n∑

j=1

m−b−n+ℓ ≍ p(b+ n)αnm−b−n+ℓ .
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We now estimate EQ(η ∧ 1). Consider a Galton–Watson process with

reproduction law ν (starting with 1 individual) under P. For each j ≥ 0, let

mjWj denote the number of individuals in the j-th generation. By Athreya

and Ney [4] (p. 9, Theorem 2), as long as ν has a finite second moment,

(Wj, j ≥ 0) is a martingale bounded in L2; in particular, Wj converges in

L2, when j → ∞, to a limit denoted by W . For any s > 0,

EQ(e
−sm−jΛ(ej) |#bro(ej)) = [E(e−sWj)]#bro(ej),

so that

EQ(e
−sm−jΛ(ej)) = EQ

{
[E(e−sWj)]#bro(ej)

}
= EQ

{
[E(e−sWj)]#bro(e0)

}
.

By conditional Jensen’s inequality, e−sWj = e−sE(W |Wj) ≤ E(e−sW |Wj), so

E(e−sWj) ≤ E(e−sW ). Since E(W ) = 1, we have 1 − E(e−sW ) ∼ s, s → 0.

Hence, there exists a constant c16 > 0 such that for all s ∈ (0, 1] and all

j ≥ 0,

EQ(e
−sm−jΛ(ej)) ≤ EQ

{
[1− c16 s]

#bro(e0)
}
≤ 1− c17 c16 s,

with c17 := Q(#bro(e0) ≥ 1) > 0. Consequently, with c18 := c17 c16,

EQ(η ∧ 1) ≍ 1−EQ(e
−η)

= 1−

λ1n∏

j=1

EQ

(
e−p(b+n)α m−b−n+ℓ m−jΛ(ej)

)

≥ 1−

λ1n∏

j=1

(
1− c18 p(b+ n)αm−b−n+ℓ

)

≍ p(b+ n)α nm−b−n+ℓ .

Going back to (4.12), this yields EQ(η ∧ 1) ≍ p(b + n)α nm−b−n+ℓ. In view

of (4.11), we obtain:

(4.13) E(Z) ≍ mn

λ2n∑

ℓ=λ1n

p nαm−ℓ p(b+n)α nm−b−n+ℓ ≍ p2 n2+α(b+n)α m−b ,
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uniformly in b ≥ 0.

For the second moment of Z, we write, by an abuse of notation,

Tk := {x ∈ T
(n) : |x| = k}, 0 ≤ k ≤ n;

then

Eω(Z
2) = Eω(Z) +

n∑

k=1

∑

x∈Tk

∑

(u, v)

Pω(Au ∩Av),

where
∑

(u, v) is over the pairs (u, v) ∈ T0 × T0 with uk = vk = x such that

uk−1 6= vk−1. We take expectation with respect to P on both sides, while

splitting the sum
∑n

k=1 into
∑n

k=λ1n+1 and
∑λ1n

k=1:

E(Z2) = E(Z) +
n∑

k=λ1n+1

E
∑

x∈Tk

∑

(u, v)

Pω(Au ∩Av)

+

λ1n∑

k=1

E
∑

x∈Tk

∑

(u, v)

Pω(Au ∩ Av).(4.14)

We treat the two sums on the right-hand side. See Figure 2.

First sum:
∑n

k=λ1n+1E(· · · ). When k > λ1n, the events Au and Av are

independent under Pω, so

Pω(Au ∩ Av) = Pω(Au)Pω(Av)

.
(
p2n1+α (b+ n)α

λ1n∑

j=1

m−(b+n)−jΛ(uj)
)
×

(
p2n1+α (b+ n)α

λ1n∑

j=1

m−(b+n)−jΛ(vj)
)
,

the inequality being a consequence of (4.10). We take the expectation with

20



First sum: |x| = k > λ1n

uk−1 vk−1

uλ1n+1

uλ1n

vλ1n+1

vλ1n

Au Avu v

x

x

u v

uk−1 vk−1

uk−2 vk−2

uλ1n = vλ1n

Second sum: |x| = k ≤ λ1n

Figure 2: In the first sum, Au and Av are independent under Pω . In the second sum,
max1≤j≤k−2 M(uj), max1≤j≤k−2 M(vj), M(uk−1, vk−1) are represented by the rectangle,
ellipse and hexagon respectively, and are independent under Pω (for the definition of
M(uk−1, vk−1), see (4.17)).

respect to P on both sides, to see that
n∑

k=λ1n+1

E
∑

x∈Tk

∑

(u, v)

Pω(Au ∩Av)

.

n∑

k=λ1n+1

mn−k m2k
(
p2n1+α (b+ n)α

λ1n∑

j=1

m−(b+n)−jmj
)2

≍
(
p2n2+α(b+ n)αm−b

)2

≍ (E(Z))2,(4.15)

the last line being a consequence of (4.13).

Second sum:
∑λ1n

k=1E(· · · ). This time, we argue differently, first by

conditioning on X(u) and X(v). For ℓu, ℓv ∈ [λ1n, λ2n], we have, by (4.5),

for w = u or v,

P(X(w) = ℓw) = c15 p(ℓw + γ)αm−ℓw ≍ pnαm−ℓw .
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So, for 1 ≤ k ≤ λ1n,

E
∑

x∈Tk

∑

(u, v)

Pω(Au ∩ Av) ≍ E
∑

x∈Tk

∑

(u, v)

λ2n∑

ℓu, ℓv=λ1n

p2n2αm−ℓu−ℓv

Pω(Au ∩ Av |X(u) = ℓu, X(v) = ℓv).

Write6

Bx,u,v := max
k≤j≤λ1n

M(xj) ∨M(uk−1, vk−1),(4.16)

M(uk−1, vk−1) := max
r∈bro(uk−1, vk−1)

max
w∈T0(r)

(X(w)− (k − 1))+ ,(4.17)

where a ∨ b := max{a, b}, and bro(uk−1, vk−1) := bro(uk−1)\{vk−1} =

bro(vk−1)\{uk−1}. [Observe that uj = xj = vj for k ≤ j ≤ λ1n.] The ran-

dom variables X(u), X(v), max1≤j≤k−2M(uj), max1≤j≤k−2M(vj) and Bx,u,v

are independent under Pω (see Figure 2). As such, for ℓu, ℓv ∈ [λ1n, λ2n],

Pω(Au ∩ Av |X(u) = ℓu, X(v) = ℓv)

= Pω

(
max

1≤j≤k−2
M(uj) ∨Bx,u,v ≥ b+ n− ℓu,

max
1≤j≤k−2

M(vj) ∨ Bx,u,v ≥ b+ n− ℓv

)

≤ Pω(Bx,u,v ≥ b+ n− ℓu) + Pω(Bx,u,v ≥ b+ n− ℓv) +

+Pω( max
1≤j≤k−2

M(uj) ≥ b+ n− ℓu)Pω( max
1≤j≤k−2

M(vj) ≥ b+ n− ℓv).

The first two probability expressions on the right-hand side play the same

role by symmetry in ℓu and ℓv, so let us only look at the first one: By (4.8),

Pω(Bx,u,v ≥ b+ n− ℓu) . p(b+ n− ℓu)
α

λ1n∑

j=k−1

m−(b+n−ℓu)−jΛ(uj)

. p(b+ n)α
λ1n∑

j=k−1

m−(b+n−ℓu)−jΛ(uj) .

6Notation: max∅ := 0.
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[Note that uj = xj for k ≤ j ≤ λ1n.] Similarly, for the third probability

expression, we have, by (4.8) again, for w = u or v,

Pω( max
1≤j≤k−2

M(wj) ≥ b+ n− ℓw) . p(b+ n)α
k−2∑

j=1

m−(b+n−ℓw)−jΛ(wj) .

Assembling these pieces together yields, for 1 ≤ k ≤ λ1n,

E
∑

x∈Tk

∑

(u, v)

Pω(Au ∩ Av)

. E
∑

x∈Tk

∑

(u, v)

λ2n∑

ℓu, ℓv=λ1n

p2n2αm−ℓu−ℓv p(b+ n)α
λ1n∑

j=k−1

m−(b+n−ℓu)−jΛ(uj)

+E
∑

x∈Tk

∑

(u, v)

λ2n∑

ℓu, ℓv=λ1n

p2n2αm−ℓu−ℓv p2(b+ n)2α

( k−2∑

j=1

m−(b+n−ℓu)−jΛ(uj)
)( k−2∑

j=1

m−(b+n−ℓv)−jΛ(vj)
)
.

On the right-hand side, both expectations can be easily estimated by means

of the branching property. The first expectation is

. mn−k m2k

λ2n∑

ℓu, ℓv=λ1n

p2n2αm−(ℓu+ℓv) p(b+ n)α
λ1n∑

j=k−1

m−(b+n−ℓu)−jmj

≍ mk−λ1n p3n1+2α(b+ n)αm−b(λ1n− k) ,

whereas the second probability expression is

. mn−k m2k

λ2n∑

ℓu, ℓv=λ1n

p2n2αm−ℓu−ℓv p2(b+ n)2α

( k−1∑

j=1

m−(b+n−ℓu)−jmj
)( k−1∑

j=1

m−(b+n−ℓv)−jmj
)

≍ k2mk−n−2bp4n2+2α(b+ n)2α.
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Consequently, for 1 ≤ k ≤ λ1n,

E
∑

x∈Tk

∑

(u, v)

Pω(Au ∩ Av)

. mk−λ1n p3n1+2α(b+ n)αm−b(λ1n− k) + k2mk−n−2bp4n2+2α(b+ n)2α .

Summing over 1 ≤ k ≤ λ1n yields that

λ1n∑

k=1

E
∑

x∈Tk

∑

(u, v)

Pω(Au ∩Av)

. p3n1+2α(b+ n)αm−b +m−(1−λ1)n−2bp4n3+2α(b+ n)2α

≍ p3n1+2α(b+ n)αm−b ,

which, by (4.13), is . E(Z) if pnα−1 ≤ 1. Combining this with (4.15) and

(4.14), we see that E(Z2) . E(Z) + (EZ)2, as long as pnα−1 ≤ 1.

Under the condition p n1+α ≤ 1, we have E(Z) . 1 by (4.13), so (EZ)2 .

E(Z); it follows from the Cauchy–Schwarz inequality that P(Z ≥ 1) ≥
(EZ)2

E(Z2)
& E(Z) ≍ p2 n2+α(b + n)αm−b (by (4.13)). The lemma follows now

from (4.7).

4.2 Second step: The spinal advantage

Let α > −2 and ε > 0.

Lemma 4.2. Assume E(ν3) < ∞ and m := E(ν) > 1. Under the assump-

tion (1.5), for any K > 2
2+α

, there exist constants s ≥ K and c19 > 0 such

that for 0 < p < 1 and n ≤ (1
p
)(s+1)/[(2+α)s+α],

(4.18) E(Xn) ≥ c19 p
s+1 n(2+α)s+α.

Proof of Lemma 4.2. [The condition K > 2
2+α

is to make sure that (2+α)s+

α > 0 whenever s ≥ K.]

Let i ≥ 1 be an integer. Let ai := 2i and bi := (2 + α)(2i − 1) (which

explains the condition α > −2: so that bi > 0). Applying Lemma 4.1 i
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times, we see that for any integer i ≥ 1 and any constant c > 0, there exists

a constant c(i) > 0 such that for 0 < p < 1 and n ≥ 1 with painbi+α ≤ c, we

have

(4.19) P(Xin ≥ b) ≥ c(i) painbi(b+ n)α m−b, ∀b > 0.

[For i = 1, (4.19) follows from Lemma 4.1 with γ = 1 and t = b. Assuming

(4.19) holds for i, it is immediately seen to hold for i+1: It suffices to apply

Lemma 4.1 to γ = n, t = b and to painbi in place of p.]

For integers ℓ ∈ [0, n], we use the above inequality for P(X(i−1)n ≥ b),

and apply Lemma 4.1 to n+ℓ in place of n, to see that there exists a constant

c′(i) > 0 for 0 < p < 1 and n ≥ 1 with pai(n+ ℓ)bi+α ≤ c, and for all integers

ℓ ∈ [0, n],

P(Xin+ℓ ≥ b) ≥ c′(i) painbi(b+ n)αm−b, ∀b > 0.

Integrating over b, this yields the existence of a constant c′′(i) > 0, depending

on i, such that for 0 < p < 1 and n ≥ 1 with painbi+α ≤ c,

E(Xin+ℓ) ≥ c′′(i) painbi+α.

We choose (and fix) i sufficiently large, how large depending on α, such that

ai ≥ K + 1. The lemma follows with s := ai − 1.

The rest of the proof of the lower bound in Theorem 1.5 consists in

improving the lower bound for E(Xn) in (4.18), and making it (strictly)

greater than 1
m−1

, so that by virtue of the first inequality in (1.6), which says

that F∞ ≥
E(Xn)−

1
m−1

mn , it will give the desired lower bound for the free energy

F∞ as stated in Theorem 1.5.

Without loss of generality, we assume that the law of X0, conditionally

on X0 > 0, is absolutely continuous.

To improve (4.18), we start with a new lower bound for Xn. For any

vertex v ∈ T
(n), we write X(v) for the random variable associated with the

vertex v: so if |v| = j, then X(v) is distributed as Xj. Let 1 ≤ k < ℓ < n be
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integers; the values of k and ℓ, both depending on (n, p), will be given later.

For u ∈ T0, let

M∗
k (u) := max

v∈T0(uk)\{u}
X(v), N∗

k (u) := max
v∈T0\T0(uk)

X(v).

[So M∗
k (u) ∨N∗

k (u) ∨X(u) coincides with maxw∈T0 X(w); moreover, M∗
k (u),

N∗
k (u), X(u) are independent random variables under Pω.]

Assume there exists u ∈ T0 such that X(u) > N∗
k (u) and M∗

k (u) ≤

ℓ < X(u). If such a vertex u exists (which must be unique, by defini-

tion), Xn ≥ X(u)− n+
∑ℓ

j=0

∑
v∈bro(uj)

X(v), which is greater than ℓ− n+
∑k−1

j=0

∑
v∈bro(uj)

X(v).7 [In case ℓ−n+
∑k−1

j=0

∑
v∈bro(uj)

X(v) is negative, the

statement is, of course, trivial.] We arrive at the following inequality:

Xn ≥
∑

u∈T0

1{X(u)>N∗

k
(u)∨ℓ} 1{M∗

k
(u)≤ℓ}

(
ℓ− n+

k−1∑

j=0

∑

v∈bro(uj)

X(v)
)
.

=:
∑

u∈T0

1{X(u)>N∗

k
(u)∨ℓ} ξ(u),(4.20)

where, for u ∈ T0,

ξ(u) := 1{M∗

k
(u)≤ℓ}

(
ℓ− n+

k−1∑

j=0

∑

v∈bro(uj)

X(v)
)
.

Note that X(u), N∗
k (u) and ξ(u) are independent under Pω. Hence

Eω(Xn) ≥
∑

u∈T0

Pω{X(u) > N∗
k (u) ∨ ℓ}Eω(ξ(u)) ,

Taking expectation with respect to P, we obtain, by the many-to-one formula

(4.1),

E(Xn) ≥ mn EQ

[
Pω{X(e0) > N∗

k (e0) ∨ ℓ}Eω(ξ(e0))
]
.

By the spinal decomposition theorem, the random variables Pω{X(e0) >

N∗
k (e0) ∨ ℓ} and Eω(ξ(e0)) are independent under Q. See Figure 3. So

(4.21) E(Xn) ≥ mn (Q⊗ Pω){X(e0) > N∗
k (e0) ∨ ℓ} (EQ ⊗Eω)(ξ(e0)) .

7Strictly speaking, we should write X(en) in place of Xn.
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en

ek

ek+1

en−1

ek−1

e2

e1

Eω(ξ(e0))Pω{X(e0) > N∗

k
(e0) ∨ ℓ}

e0

Figure 3: The random variables Pω{X(e0) > N∗
k (e0) ∨ ℓ} and Eω(ξ(e0)) are independent

under Q.

We study (EQ⊗Eω)(ξ(e0)) on the right-hand side. Since ℓ < n, we have,

ξ(e0) ≥ ℓ− n+ 1{M∗

k
(e0)≤ℓ}

k−1∑

j=0

∑

v∈bro(ej)

X(v)

= ℓ− n+

k−1∑

j=0

∑

v∈bro(ej)

X(v)−

k−1∑

j=0

1{M∗

k
(e0)>ℓ}

∑

v∈bro(ej)

X(v) .

We take expectation with respect to (Q ⊗ Pω) on both sides. By the spinal

decomposition theorem,

(EQ ⊗ Eω)(ξ(e0)) ≥ ℓ− n +
k−1∑

j=0

E(Xj)EQ[#bro(e0)]

−

k−1∑

j=0

(EQ ⊗ Eω)
(
1{M∗

k
(e0)>ℓ}

∑

v∈bro(ej)

X(v)
)
.(4.22)

27



Let us have a closer look at the last (EQ ⊗ Eω)(· · · ) expression on the

right-hand side. By the trivial inequality X(v) ≤
∑

r∈T0(v)
X(r), we have

∑

v∈bro(ej)

X(v) ≤
∑

v∈bro(ej)

∑

r∈T0(v)

X(r) ≤
∑

r∈T0(ej+1)

X(r) .

So by the Cauchy–Schwarz inequality,

(EQ ⊗ Eω)
(
1{M∗

k
(e0)>ℓ}

∑

v∈bro(ej)

X(v)
)

≤ [(Q⊗ Pω){M
∗
k (e0) > ℓ}]1/2

{
(EQ ⊗Eω)

[( ∑

r∈T0(ej+1)

X(r)
)2 ]}1/2

.

By definition, Pω{M
∗
k (e0) > ℓ} ≤ (#T0(ek))P(X0 > ℓ), which, by the as-

sumption (1.5), is . (#T0(ek)) p ℓ
αm−ℓ. Hence

(Q⊗ Pω){M
∗
k (e0) > ℓ} ≤ EQ(#T0(ek))P(X0 > ℓ) . EQ(#T0(ek)) p ℓ

αm−ℓ .

By (4.2), this yields

(Q⊗ Pω){M
∗
k (e0) > ℓ} . mk p ℓαm−ℓ .

On the other hand,

(EQ⊗Eω)
[( ∑

r∈T0(ej+1)

X(r)
)2 ]

= EQ

[( ∑

r∈T0(ej+1)

E(X0)
)2 ]

+EQ

[ ∑

r∈T0(ej+1)

σ2
]
,

where σ2 := Var(X0) ≤ c20 p, and E(X0) = c21 p. As such,

(EQ ⊗Eω)
[( ∑

r∈T0(ej+1)

X(r)
)2 ]

≤ (c21 p)
2EQ[(#T0(ej+1))

2] + c20 pEQ(#T0(ej+1) . p2m2j + pmj ,

the last inequality following from (4.2) and (4.3). Consequently,

(EQ ⊗Eω)
(
1{M∗

k
(e0)>ℓ}

∑

v∈bro(ej)

X(v)
)
.

[
mk p ℓαm−ℓ(p2m2j + pmj)

]1/2
.
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As such, as long as we take

(4.23) k := ⌊
ℓ

4
⌋, ℓ := n− c22 log n ,

we have, for some c23 > 0,

k−1∑

j=0

(EQ ⊗ Eω)
(
1{M∗

k
(e0)>ℓ}

∑

v∈bro(ej)

X(v)
)
≤ c23.

Going back to (4.22), we obtain, with c24 := EQ[#bro(e0)] < ∞,

(EQ ⊗ Eω)(ξ(e0)) ≥ ℓ− n + c24

k−1∑

j=0

E(Xj)− c23 .

Let ε > 0. Let s ≥ K be the constants in Lemma 4.2. We choose K so

large that s+1
(2+α)s+α

≤ 1
2+α

+ ε. If we take

(4.24) n = n(p) :=
(1
p

) s+1
(2+α)s+α

≤
(1
p

) 1
2+α

+ε

,

(the last inequality holding for all sufficiently small p), then by Lemma 4.2,
∑⌊ ℓ

4
⌋−1

j=0 E(Xj) ≥ c25 n for some constant c25 > 0. With our choice of ℓ in

(4.23), this implies (EQ ⊗ Eω)(ξ(e0)) ≥ c26 n, with c26 > 0. Going back to

(4.21), we obtain, for all sufficiently small p > 0,

(4.25) E(Xn) ≥ mn (Q⊗ Pω){X(e0) > N∗
k (e0) ∨ ℓ} c25 n .

By the many-to-one formula (4.1) again, this yields

E(Xn) ≥ E
( ∑

u∈T0

Pω{X(u) > N∗
k (u) ∨ ℓ}

)
c25 n

≥ E
( ∑

u∈T0

1{c27 mn≤#T0≤c28 mn} Pω{X(u) > N∗
k (u) ∨ ℓ}

)
c25 n ,

for any constants c28 > c27 > 0. For any u ∈ T0, since the conditional law of

X0 given X0 > 0 is assumed to be absolutely continuous, we have

Pω{X(u) > N∗
k (u) ∨ ℓ} ≥ Pω{X(u) = max

r∈T0

X(r)} − Pω{max
r∈T0

X(r) ≤ ℓ}.
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We have
∑

u∈T0
Pω{X(u) = maxr∈T0 X(r)} = 1, whereas Pω{maxr∈T0 X(r) ≤

ℓ} = [1− P(X0 > ℓ)]#T0 ≤ [1− c3ℓ
αm−ℓ]#T0 by (1.5); hence

E
( ∑

u∈T0

1{c27 mn≤#T0≤c28 mn} Pω{X(u) > N∗
k (u) ∨ ℓ}

)

≥ P(c27m
n ≤ #T0 ≤ c28 m

n)− E
( ∑

u∈T0

1{c27 mn≤#T0≤c28 mn}[1− c3ℓ
αm−ℓ]#T0

)

= P(c27m
n ≤ #T0 ≤ c28 m

n)− E
(
(#T0) 1{c27 mn≤#T0≤c28 mn}[1− c3ℓ

αm−ℓ]#T0

)
.

On the event {c27m
n ≤ #T0 ≤ c28 m

n}, we have (#T0) [1 − c3ℓ
αm−ℓ]#T0 ≤

c28m
n exp(−c3ℓ

αm−ℓ c27m
n), which tends to 0 with the choice of ℓ := n −

c22 logn, as long as c22 >
1−α
logm

. On the other hand, the constants c28 > c27 >

0 can be chosen such that P(c27m
n ≤ #T0 ≤ c28m

n) → c29 > 0, n → ∞.

Hence

lim inf
n→∞

E
( ∑

u∈T0

1{c27 mn≤#T0≤c28 mn} Pω{X(u) > N∗
k (u) ∨ ℓ}

)
≥ c29 > 0 .

In view of (4.25), we obtain: for some constant c30 > 0 and all sufficiently

small p, with n = n(p) given in (4.24),

E(Xn) ≥ c30 n.

By the first inequality in (1.6), we get F∞ ≥
E(Xn)−

1
m−1

mn ≥
c30 n−

1
m−1

mn . The

definition of n in (4.24) yields that for an arbitrary ε > 0 and all sufficiently

small p, F∞ ≥ exp(−(1
p
)

1
2+α

+ε), proving the lower bound in Theorem 1.5.

[We mention that the lower bound is proved under the assumption E(ν3) <

∞, instead of E(tν) < ∞ for some t > 1.]

5 Proof of Theorem 1.4: lower bound

We use the obvious stochastic inequality that Xn is stochastically greater

than or equal to maxu∈T0 X(u)− n. Hence for all b ≥ 0,

Pω(Xn > b) ≥ Pω

(
max
u∈T0

X(u)− n > b
)

= 1− [1− P(X0 ≤ n + b)]#T0 .

30



By assumption, for all sufficiently large n (say n ≥ n1), P(X0 ≤ n + b) ≥

p c1 e
−θ(n+b). Thus, for some constant c31 > 0, all n ≥ n1 and all b ≥ 0,

Pω(Xn > b) ≥ 1−
(
1− p c1 e

−θ(n+b)
)#T0

≥ c31 min{p e−θ(n+b)#T0, 1} .

We take n = N(p) := ⌈ c32+log(1/p)
(logm)−θ

⌉, where c32 > 0 is a sufficiently large

constant. Note that p e−θ(N(p)+b)mN(p) ≥ 1 if (and only if) b ≤ B(p) where

B(p) := 1
θ
[((logm)−θ)N(p)− log(1

p
)+θ]. Therefore, for all sufficiently small

p (such that N(p) ≥ n1) and all 0 < b ≤ B(p), we have8

P(XN(p) > b) ≥ c31P(#T0 ≥ mN(p)) = c31 P(#T0 ≥ mn) ≥ c33 ,

where c33 > 0 does not depend on p. This implies that E(Xn) =
∫∞

0
P(Xn >

b) db ≥ c33B(p), which, by definition of B(p) and N(p), is greater than
c33 (c32+θ)

θ
. The latter is greater than 2 if we choose c32 := 2θ

c33
. By the first

inequality in (1.6), we get, for all sufficiently small p,

F∞(p) ≥
2− 1

m−1

mN(p)
= (2−

1

m− 1
) exp

(
− ⌈

c32 + log(1/p)

(logm)− θ
⌉ logm

)
,

proving the lower bound in Theorem 1.4.

[The lower bound only requires E(ν log+ν) < ∞, instead of E(tν) < ∞

for some t > 1.]

6 Comments and questions

We present some remarks and open problems.

(a) Change of measures? Theorem A and Proposition 1.2 in the intro-

duction reveal the importance of E(X0m
X0). The latter strongly indicates

that there could be a change-of-measures story hidden in the model.

8To ensure that P(#T0 ≥ mn) is greater than a positive constant, uniformly in n, it
suffices to have E(ν log+ν) :=

∑∞

k=1 k(log k)P(ν = k) < ∞; see [21] or [25].
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Problem 6.1. Is it possible to prove Theorem A by means of a change-of-

measures argument?

(b) About the value of pc for non integer valued distributions.

Theorem A in the introduction gives the value of pc when ν = 2 a.s. and Y0

is integer valued. [They are valid whenever ν is deterministic (i.e., ν = m

a.s.), with E[(Y0 − 1)2Y0] and E(Y0 2
Y0) replaced by E[((m − 1)Y0 − 1)mY0 ]

and E(Y0m
Y0), respectively.] The following problem looks important to us.

Problem 6.2. Assume ν is deterministic. What can be said about pc without

the assumption that Y0 is integer valued?

Problem 6.2, which is borrowed from Derrida and Retaux [11], seems

challenging. For example, even assuming that ν = 2 a.s., and that Y0 takes

values in {1
2
, 1, 3

2
, 2, · · · }, we do not know what the value of pc should be in

general.

(c) More about the value of pc. When ν is not deterministic, even if

assuming Y0 is integer valued as in Theorem A (see the introduction), it is

not clear what pc should be. It is possible to have some bounds, but it seems

to be hard to have an analytical expression.

Problem 6.3. Assume ν is not deterministic and Y0 takes values in {1, 2, · · · }.

What can be said about pc?
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