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Abstract: The aim of this communication is to present a new way of how to structure modelling
process of complex and large scale systems by object oriented Bayesian network (OOBN) for
risk assessment and management purpose. In the first stage, we extend OOBN by presenting a
new definition that introduces some flexibility, in a second stage, dynamic Bayesian networks
(DBN) described by OOBN method are presented, that leads to a framework that we refer to
as Dynamic Objet Oriented Bayesian Network (DOOBN). A demonstration in the domain of
risk assessment of flash floods effect on the infrastructures inoperability is considered to show

potential applicability of the extended OOBN.
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1. INTRODUCTION

Damage caused to socio-economic and environmental sys-
tems by natural disasters such as earthquake, hurricane,
floods, forest fire, etc. depends highly on the interactions
of many things such as physical phenomena, social or-
ganization, geography of concerned zone, industrial and
agriculture activities, etc. On the other hand, damage
caused by these natural disasters is less and less acceptable
by citizens maybe because of the degree of technological
advanced era in which humanity is actually living. Decision
makers therefore need to dispose of a sound and efficient
tools, methods or framework to assists them, analyze,
predict, control and manage the effect of these disasters.
The challenge for scientists and researchers return then to
deriving and supplying such decision support system; and
this communication is an attempt toward this goal.

Modeling such systems necessitates to consider modeling
relationships (influence, correlation, causality, etc.), mod-
eling uncertainty (no well-known of the nature of relation-
ships, of the intensity of these relationships, or even of the
delimitation of the system under consideration), modeling
dynamics (the fact that interactions, intensities of these
interactions, the structure of the systems, etc. may vary
from time to time must be taken into account through
time as an important parameter) that characterize these
systems. Considering all these phenomena to model leads
to very complex and large scale systems on one hand
that prevent using classical physical laws to describe them
on other hand; appealing therefore for new approaches.
In this communication, a framework based on the object
oriented Bayesian networks (OOBN) that permit to take

into account uncertainty of relationships between different
variables or subsystems through Bayesian network (BN)
properties and the scale through object oriented (OO)
mechanisms in terms of repeatability for instance, is pro-
posed to model natural (with application to floods) disas-
ters. Modeling objectives are multiform and may consist in
the purpose of understanding the behavior of the system,
of controlling the behavior of the system to optimize for
instance some of its performance indices, of measuring and
monitoring their relationships, etc. The main purpose of
this communication is to model a system in order to facili-
tate its risk management decisions making. The remainder
of this communication is organized as follows: in the second
section, main features of complex interdependent systems
are briefly presented together with the necessity of dispos-
ing of a structured tool for the modelling process; section
three presents a state of the art on Bayesian network (BN)
family as useful tool of modelling the complex systems;
and the forth section is devoted to the main contribution
of this communication in terms of extended object oriented
Bayesian networks (OOBN) and dynamics Bayesian net-
works (DBN); and finally section considers applying these
approaches for modelling flash floods phenomena in order
to assess risk faced by infrastructures in zone where these
phenomena take place.

2. COMPLEX SYSTEM

A complex system is defined as a set of elements inter-
acting with each other and with the outside. However the
complex systems have four characteristics —large, inter-
connected, dynamic and uncertain. The behavior of the
system is highly unpredictable without a sound model. The



purpose of this communication is to develop an approach
that can be used for the modelling of complex systems to
evaluate the risk when one or some of the components are
destabilized by an external event or internal cause. Such
kind of model can be used in the many domains to assist
the evaluation of indicators or the decision making, such
as economy, medicine, production and so on. Because of
the characteristics of this kind of systems, the model must
be built by using the logical tool to have a more reliable
model. Next paragraph reviews existing approaches and
proposes those that can be used or adapted to fulfill our
needs.

Classical modelling methods suppose many simplifying
hypothesis which are not suitable to deal with all the
aspects of an interdependent, large, dynamic systems. The
simplifying hypothesis sometimes make the problem even
worse see Le Moigne (1990). Finding another approach
to simulate without too much hypothesis is a problem.
However today it is possible to collect data from a com-
plex processes, using these data to simulate the behav-
ior of the system becomes an approach which can keep
the system’s original characteristics as much as possible.
Learning approach offers the possibility to build a model
with these data that can reproduce the behavior of the
system. Learning is an artificial intelligence method that
permits to relate input data (causes) of a system to the ob-
servations (consequences or output). The learning process
may consist in determining the internal structure of the
system that is identifying relationships (or interactions)
between its different components referred to as structure
learning; or in determining the strength of interactions
between components of a system with known structure
known in the literature as parameter learning. Within
this framework, Bayesian Networks (BN) are very efficient
for modelling uncertainties. Dynamic Bayesian Network
(DBN) may be used when temporal dimension in the
behavior of the system is to be taken into see Murphy
(2002). In DBN, each sample instant t of time horizon is
constituted by a BN. For BN, there exist many learning
(mainly in what concern parameters learning) sound and
powerful algorithms in the literature ; this is not the case
for DBN for which existing learning algorithms are so com-
plicated that their deployment in real world applications is
not easy mainly in the case of systems with a huge number
of components. A possibility to reduce this complexity is
to use the so called Object Oriented BN (OOBN) in order
to exploit possibilities offered by this modelling technique.
The idea of modelling repeatable systems by object ori-
ented techniques has been already considered in a certain
number of studies such as works undertaken in references
see Jaeger (2000),Weber and Jouffe (2006),Xiang et al.
(2005) to mention just a few.

3. STATE OF THE ART
3.1 Bayesian Network

Bayesian Networks are used to formalize knowledge in the
form of a causal graph associated with a probability space
Nielsen and Jensen (2009), Pear] (1988). They are directed
acyclic graphs (DAGs) where knowledge is represented by
variables. Each node of the graph corresponds to a variable
and arcs represent the probabilistic dependencies between

these variables. Formally, a Bayesian network is defined
by:

e a graph-oriented without circuit, noted G = (V,¢),
with V), the set of nodes of G, and ¢, the set of arcs of
g,

e a finite probability space (€2, A4, P), where Q is the
universe, i.e. the set of all the elements considered
in the problem, A is a ¢ — algebra on € and P is
a measure on € such that P(Q) = 1; P(0) = 0;
P(A) < P(B) if A included in B,

e a set of random variables defined on (2, A, P), corre-
sponding to each node of the graph, such that the
set of probabilities associated with these variables
defines the distribution of probabilities attached to
the network: P(Vy,Va, ..., V,,) = I, P(V;|pa(V;))

with pa(V;), the parent set (also called predecessors or
causes) of V; in graph G. There are two types of probabil-
ity tables in Bayesian Networks Godichaud et al. (2012).
Tables of prior probabilities characterizes the chances that
the variable V, without any parent is in state a;. Tables
of conditional probabilities establish the chances that a
variable Vj, is in state b; based on the state of its parents
Matthieu et al. (2012), Godichaud et al. (2012). Inference
in a Bayesian network consists in propagating information
in the network Ben Hassen et al. (2013b), Ben Hassen
et al. (2015). Indeed, a model using this formalism is
generally not intended to be a static representation of
knowledge. Beyond the a priori reasoning, evidences may
be introduced to update the observed situation and to
insert into the model the changes enabling the refinement
of the results Ben Hassen et al. (2013a). This new knowl-
edge, takes the form of a so-called elementary information,
denoted 7, relative to a particular node. There are two
types of basic information. The deterministic information
allows instantiating a variable, that is affecting it a precise
value, (eg P(V, = a1]J) = 1). The imprecise information
modifies the distribution of probability of the variable,
either by excluding a value of the universe of the variable
(P(V, = a1|J) = 0) or, more usually, by changing the law
(P(Va = ailT) # P(Va = ar)).

3.2 Object Oriented Bayesian Network

Systems to model for risk assessment become more and
more large. The classic BN has some limits for modelling
large scale systems. That is why the structured represen-
tation offered by the object oriented techniques enables
to improve the performance of the Bayesian Networks
in terms of complexity of specification and inference of
large systems. An object-oriented Bayesian network, is a
direct application of the object paradigm see Bangss and
Wauillemin (2000), Koller and Pfeffer (1997). The basic
element is the class, fragment of a Bayesian network whose
nodes are broken down into three sets: input and output in-
terfaces together with internal nodes. The object oriented
Bayesian network takes advantage of classic Bayesian net-
works but introduce the concept of instance nodes. An
instance node is an abstraction of a part of a network into
a single unit. Consequently, instance nodes can be used to
represent different network classes within other networks.
The notion of encapsulation allows the transmission of all
properties of the net fragment. An object oriented network



can be viewed as a hierarchical description/model of a
problem domain. This makes the modelling easier since
the OOBN-fragments at different levels of abstraction are
more readable.
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Fig. 1. OOBN model of water supply

An example of an OOBN is presented in figure 1. Based
on Ambroise (1999) the model introduces four classes,
namely: rain, melting water, irrigation water and occult
water. Inputs are represented by dotted line such as energy
or thickness, outputs are characterized by solid lines like
for instance water state and water volume. Interstructure
associated with internal nodes is encapsulated in each
class.

Once the structure and relationships between the nodes
has been established, the main work consists in character-
izing the Conditional Probability Tables (CPT). Building
OOBN model may be somehow difficult when it con-
cerns a complex system with many variables, states or
relationships. The use of learning techniques might bring
some help for the identification of the relationship between
nodes as well as the CPTs values. InLangseth and Nielsen
(2003), Wuillemin and Torti (2012) the authors give some
insight over OOBN structure learning. In Langseth and
Bangsg (2001) the author extends the parameter learning
based on OO assumption (the parameters of the objects
who have the same structure are identical) and propose
a parameter learning method based on the reducing of
the parameter number during the learning phase. Using
OOBN to modelling a complex system has not only re-
ducing the design work, but also facility the update of
structure work. However, the limit of the OO assumption
and other researches of OOBN is the parameter part,
they suppose that the same structure has the identical
parameters. But actuality it not always likes this.

3.3 Dynamic Bayesian Network

A dynamic Bayesian network is a BN representing a
temporal probabilistic model. A DBN is an extension of
a BN, it adds a variable evaluates over time. The DBN is
a series of time-slice, each slice contains a set of random
variables, some observable and some not. The basic of
DBN can be present by the Hidden Markov Model (HMM)
Rabiner and Juang (1986), learning techniques in a DBN
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extends directly form the classical BN see Murphy (2002).
The extending parts are:

e the transition model: A = P(Xy,
o the intial state: ™= P(X,,
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Fig. 2. Dynamic Bayesian Network
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Figure 2 presents a basic DBN with 3 time-slices, where
the dynamic state is Xy,, the observable state is Y.
The communication between the time uses the transition
model. In Bangsg and Wuillemin (2000), it uses an OO
approach to present the dynamic part of BN.

4. EXTENDED OBJECT ORIENTED BAYESIAN
NETWORK

In this section we present an extended OOBN (EOOBN)
approach. After having described the different parameters
associated with the objects, we will propose a definition,
will show the construction steps and illustrate the con-
cepts through an example. The extension of OOBN to
time dynamic dimensions will be helpful in particular to
characterize the failure of the system with time.

4.1 Eztended OOBN

Due to the limits of the classical OOBN which do not con-
sider the possibility of changing their parameters between
the different instantiations Bangsg and Wuillemin (2000)
and the difficulty to take into account dynamic interactions
Koller and Pfeffer (1997), we propose here an extended
structure of OOBN much more flexible in terms of time
dependent process characterization.

Class and Object

In Bangsg and Wuillemin (2000), the authors define
together the structure and the CPT with respect to a
given object. Once the CPT of an object is defined, all
the others will inherit its properties including the CPT
parameters based on OO assumption. In this section we
will consider that the definition of a class is made at
structure level (that is the nodes and their connexions in
the object) but the object itself will be instantiated both
through the input values and with respect to its CPT
parameters which are likely to evolve with context or
time.

Class: A class (C) is the structure part S in a BN
independently of the CPT parameters values. It has three
kind of nodes namely: input nodes, output nodes and
internal nodes. Only the input and output nodes are visible
from outside the class.

Object: An object (O{S, P}) in the OOBN is an instan-
tiation of the corresponding class. There are two parts in



an object, the structure (S) which inherits from the class
and the parameters (P) which will be defined by experts
or learning processes.

Since only the input and output nodes in the class/object
can be seen from outer place, they are called and consid-
ered as communication channel for the class/object entity.

e Input node cannot have parents inside the class/object

e Input node is a reference node who is the projection
of an output or a normal node from outside

e Input nodes can be split into two parts: the local input
does not receive any information from other objects
and the external output which requires exchanging
information with outer nodes

e Internal node can have neither parents nor children
outside the class/object

e Output node cannot have children outside the class
/object
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Fig. 3. Class: Melting water

In Fig.3 an example of class is proposed dealing with the
Melting Water variable. Temperature, Sun, Snow stand
for the inputs while energy is an internal node and Melt-
ing Water represents the output in terms of liquid water
volume. The class characterizes only the structure of the
network. If a class has to be used, it must be converted
into an object.

The EOOBN inherits all the advantages of the classical
OOBN such as hierarchy or encapsulation. Moreover the
object in EOOBN are distributed the different parameters.

Construction method

Because the EOOBN is hierarchical, one can still use the
top-down method to make easier the network building.
This can be done by carrying out the following steps:

(1) Formalize the hierarchical structure S of a system
(2) Design the structure of each class (C) with respect to

corresponding to the object

Connect the objects through their communication
channels (because in a large scale system, there are a
lot of objects)

)
(3) Instantiate the class by introduction the parameters
)

(4

4.2 Eztended DBN

Although in Bangsg and Wuillemin (2000) a DBN simula-
tion approach is given based on a self-reference node in an
object, a confusion might appear when trying to add the
dynamic part within a large OOBN. To overcome this issue

we introduce a virtual input/output node in the extended
OOBN to simulate a dynamic network.

Virtual node: The virtual node is either an input or an
output in the class/object. It stands for the temporal node
in the class/object as a communication channel allowing
exchanging with other time-slices. The connexion between
the objects at time slices ¢ — 1 and t is as follows. The link
between the temporal node (at ¢ —1) and the virtual input
(at t) is characterized by the CPT while the relationship
between the virtual output (at ¢) and the temporal node
(at t) is certain (conditional probability equal to 1).
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Fig. 5. Dynamic Bayesian Network in 3 time-slices

In Fig.4, the temporal node is the energy who changes
through the influence of the sunshine, temperature and
energy cumulated at ¢ — 1. Within this set of assumptions
the virtual nodes associated with the variation of energy
are represented at time ¢ by the input node receiving the
information from the ¢ — 1 time slice and the output node
transmitting the information to the t+1 time-slice. The
transition model characterizing the relationship between
the object at time t-1 and time t is given by:

Ay -1 = P(energylenergy,_1)

The transition model characterizing the relationship be-
tween the object at time t and for the input of time t+1
is given by:

Ay = P(energyilenergy,) = 1.



Ayt ; just stores the information to the outside communi-
cation channel and can be considered from the next time-
slice as an input node (see Figure 5).

Adding the virtual node in the class/object protects the
encapsulation structure of an object. The communication
between the time-slice through the virtual node keeps the
independence of each time-slice. In the next section we try
to make compatible the dynamic behaviour with the object
oriented approach through the use of Dynamic Object
Oriented Bayesian Networks (DOOBN).

4.3 DOOBN

Today systems are made complex not only by their large
structure but also by their propensity to evolve with time.
To deal with this issue a suitable tool is required. Given
that OOBN and DBN seem appropriate to model complex
systems the idea is to join their specific capabilities to
generate a new class of tools called DOOBN.

This matter has already started to be tackled in Weber and
Jouffe (2006) where the authors tried to define a DOOBN
for the modelling and simulating complex systems. Never-
theless they did not formalize neither the definition nor the
construction of such a model. In our approach we propose
to extend the previously described Extended Dynamic
Bayesian Network by using the Object Oriented concept.
In order to reproduce the dynamic behaviour related to
a large and complex OOBN one just need to identify
the temporal nodes (that is the ones corresponding to
the time-dependent variables) and introduce the virtual
nodes to each one. The network shown figure 4 corresponds
indeed to a DOOBN since it makes clearly appear an
encapsulated object combined with virtual nodes as input
and/or output of the time-dependent nodes. By using the
extended OOBN approach we can set up the dynamic part
of the OOBN which solve the problem of setting up a
dynamic part to an OOBN from Koller and Pfeffer (1997).

5. APPLY TO THE FLASH FLOOD

Nowadays due to industrial development and wurban
progress, the climate is changing all over the planet.
Scientist predict that climate changes will increase the
frequency of heavy rains, putting many communities at
risk of ooding. Especially in the mountainous areas, this
risk is increased by the relief and its consequences in
terms of water ow kinematics. Flood directly threatens
human life and material issues due to the intensity and
suddenness of the events. Flood risk analyses are necessary
for protecting the population and infrastructure. Facing a
potential, announced or proven crisis, they lead to a better
design of insurance policies and actions of anticipation
or remediation implemented by companies, municipalities
or even citizens. The most common approach to dene
ood risk requires to combine a hazard characterized by
statistical aspects (frequency of occurrence) and physical
aspects (ow intensity) and an impact expressed in terms
of vulnerability; i.e. exposure and sensitivity of persons
and goods to potential damages. Torrential oods are rapid
gravity phenomena which include a share of irreducible
uncertainty related to randomness events (rain, snow...)
and to the knowledge of the involved processes. Risk

management decisions must compose and integrate this
stochastic dimension. Bayesian networks seem a suitable
tool for the implantation of such a model see Villeneuve
et al. (2011). The modelling work which is in progress has
been divided into 2 parts. It consists first in identifying
the inuential parameters in the generation of the ood
phenomenon by using extended OOBN (class) approach
which can build a main structure of the phenomenon for
the problem. The second part aims at initialise the class
to have the objects and distribute the CPT for them.
As a first step, an elementary time-independent extended
OOBN class will be established to characterize the inuence
of variables on a small geographical area homogeneous
in terms of topology. In order to characterize the spa-
tiality of the phenomenon, the idea is then to exploit
this basic model as a generic block of modelling, char-
acteristic of the evolution of all of the variables that may
be brought into play, and then to associate the dierent
bricks instantiated with respect to the considered area
and sequenced temporally according to the phenomenon
timeline. The Fig.6 is a class of the zone. There we don’t
make any different between internal and external input. In
this class we add the dynamic part to the temporal variable
by introducing the virtual node like snow_thichness_t_1
(virtual input) and snow_thickness_t(virtual output). The
instantiation of this class is the object which simulates the
river level at time ¢. Because the objective is to simulate
the whole area, all the objects will have to be placed to-
gether and exchange the information, for example the node
river_zone_i. Through input/output node in the objects
such as the node river_zone_i_1_t (the river level of zone
i—1) which gives the information for the next zone i as the
input (at time ¢). And modelling the dynamic of this place
we can link all the corresponding virtual nodes together.

6. CONCLUSION

This communication considered the issue of modelling
complex and large scale systems for risk management pur-
pose. The necessity to dispose of a structure and flexible
tool to tackle modelling of such systems, lead as to extends
the classical object oriented Bayesian networks (OOBN)
that we refer as (EOOBN) by defining the structure in
the class and distributing the parameters in the instanti-
ation level of object. This approach not only makes the
OOBN much more flexible, but also keeps all the benefits
of classical OOBN, such as encapsulation, hierarchy, top-
down design. The extended OOBN is more suitable for
modelling large complex situations encountered in risk
management framework. To take into account dynamics
of the systems and the possibility for parameters to vary
over time, we adapt the EOOBN to obtain dynamic OOBN
referred to as (DOOBN) where each time-slice is occupied
by an object and parameters are allowed to change from
slices through introduced virtual nodes.A multi-dimension
OOBN (MOOBN) can be built by using the virual nodes
which makes the model much more flexible. The construc-
tion of MOOBN will be developed in the next paper. An
application of the developed approach for flash floods effect
modelling show its usability at structural level; neverthe-
less, inference and learning processes have to be adapted
and this issue is one of the future work to be carried up.
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