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tistical inference.
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1 Introduction

Astronomical data are spatial data, in the sense that the elements of a given
data set have two major components, position in an observation space and
the associated characteristics, that is the measures performed at the cor-
responding location. Due to the data structure, it is often the case that
the different problem arising induce strong morphological aspects. There-
fore, the solutions to these problems can be formulated as the answer to the
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question ”what is the pattern hidden in the data ?”.

Let us give a list of some examples of patterns that may occur in astro-
nomical data: the filamentary structure outlined by the galaxy positions in
our Universe, the spatial intensity of the planetary perturbations applied to
comets dynamics, the confidence tube for the orbits available for a binary
system or the distribution of the space debris around the Earth. The key
hypothesis, that a pattern is a complex entity made of simple objects that
interact, is generally accepted. Therefore, a method able to detect and to
characterize these patterns should be able to extract the simple objects from
the data set and to put them together in order to build the pattern. This is
a typical analysis - synthesis approach. Clearly, even if the analysis part is
far from being trivial, the challenge within this approach is the construction
of the synthesis method, that is the integration mechanism.

The common point of all the applications presented in this paper is that
the chosen integrator is a probabilistic model. This choice allows not only
the harmonious melting of the analysis elements into a mathematical model.
But, the moments computed using the probability density of the model lead
to measures that characterize the pattern, both from a statistical and mor-
phological perspective.

For the rest of the paper, let us assume that the pattern we are looking for it
is the realisation of a stochastic model described by the probability density

p(x, θ|d) = p(x|d, θ)p(θ), (1)

with d the observed data set, p(x|d, θ) the conditional law of the pattern
and p(θ) the a priori density for the model parameters.

The conditional law in (1) can be written as

p(x|d, θ) = exp

[
−
Ui(x|θ)Ud(x|θ)

Zd(θ)

]
, (2)

where the terms Ui(x|θ) and Ud(x|θ) are called the interaction energy and
the data energy, respectively. The term Zd(θ) determines the normalizing
constant of the model probability density. In statistical physics, it is called
the partition function. The interaction energy builds the pattern, while the
data energy locates the pattern in the data field.
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Classical examples of interactions forming patterns are attraction or repul-
sion. For instance, two objects may attract or reject if they are to close and
if they exhibit certain properties. There is a lot of freedom in defining such
interactions, provided the model (2) is well defined. For some specific family
of models, if the interaction has a finite range, that is an object interacts
only with the objects within a local neighbourhood, then the model becomes
Markovian. This may lead to a simplified writing of the energy functions,
known under the name of Hammersley-Clifford factorization [7, 5].

The natural way of modelling using the framework described by (2) is payed
by the fact that Zd(θ) cannot be always computed in an analytical closed
form. The solution to this drawback is to build MCMC simulation algo-
rithms that elude the computation of the normalising constant through
Zd(θ), hence allowing statistical inference. For instance, based on such a
simulation method it is perfectly possible to build a simulated annealing al-
gorithm, which is a global optimisation method. Under these circumstances,
an estimator of the hidden pattern in the data is given by:

(x̂, θ̂) = arg min
Ω×Ψ

{
Ud(x|θ) + Ui(x|θ)

Zd(θ)
− log p(θ)

}

with Ω and Ψ the corresponding state spaces for the pattern and the pa-
rameters, respectively.

2 Galaxy structures distribution using marked point

processes.

Spatial point patterns can be seen as random points configurations having
random characteristics. Marked point processes are probabilistic models
particularly adapted for studying such patterns [1, 3, 5, 7].

At a very large scale, the spatial distribution of the galaxies positions is
not uniform [6]. The galaxies are spread in our Universe forming amazing
structures such as clusters, walls and filaments. Under the hypothesis, that
the galactic filaments may be approximated by a configuration of random
connected segments, the marked point processes can be used for their de-
tection and characterisation.
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Figure 1: Filamentary pattern detected using the Bisous model.

The Bisous model is a marked point process specially constructed for mod-
elling general patterns made of objects that interact [10]. In [12, 13, 18],
the model was successfully applied for the detection of the cosmic filaments.
The Bisous model was also used for the morphological and the statistical
characterisation of the detected pattern. The filaments are estimated by
the segments configurations that maximise the probability density of the
model. The maximisation is achieved through a simulated annealing proce-
dure built on a tailored to the model Metropolis-Hastings dynamics. Since
no particular knowledge was available for the model parameters, the chosen
priors were non-informative. The morpho-statistical characterisation of the
filamentary pattern was performed through the sufficient statistics of the
model : the total number of segments, the number of segments connected at
one extremity and the number of segments connected at both extremities.
Figure 1 shows a detection result.
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Several cosmological questions were answered using the Bisous model. The
authors in [17, 15] showed that the spin axes of the spiral galaxies tend to
align along the galactic filaments, whereas for the elliptical galaxies, their
minor semi-axes are rather orthogonal to the filaments direction. These re-
sults have direct implication for the explanation of the mechanism of galaxy
formation. The connection between Bisous filaments and underlying veloc-
ity field using N-body simulations was investigated in [4, 16]. It was found
that Bisous detected filaments purely from dark matter halo and galaxy dis-
tribution are very well aligned with underlying velocity field. This confirms
that the filaments detected in galaxy/halo distribution are not only visual
structures, but physical systems. In [14], the galaxies distributions along
the filaments were studied. For this purpose, the two point correlation func-
tion was used to show that the galaxies distribution along filaments is not
uniform.

3 Spatial debris distribution using spatio-temporal

modelling.

Space debris are mostly produced by the collisions and explosions of the
artificial satellites around the Earth. The aim of our undergoing project
is to study the debris distribution using statistics for spatio-temporal point
processes [2]. The main question to answer is whether the debris behaviour
exhibits a spatial pattern, such as completely random, repulsive or cluster-
ing. One of the most challenging questions tackled by this project would be
the use of spatial statistics and modelling in order to find and characterize
the regions around the Earth exhibiting a particular behaviour of the debris
distribution. For instance, it is important to compute the probability of col-
lision of the existing debris with a new satellite, hence obtaining an impact
map for the space debris. The temporal evolution of the debris pattern is
also of high interest.

4 Study of the Öpik-Oort cloud comets planetary

perturbations using heavy tail distributions.

In the Solar System, most of the comets have very elongated orbits. Hence,
the comets trajectory may cross the orbit of one of the giant planets (Jupiter,
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Saturn, Uranus or Neptune). If this crossing happens at a moment whenever
the comet and the planet are relatively close, the comet trajectory may suf-
fer important modifications. This mechanism is the main factor responsible
of the transport of the comet in the Solar System. This mechanism is highly
chaotic, so no individual motion can be easily modelled over few encounters
with a planet. Our project is to consider this problem using probabilistic
modelling and statistical inference.

Such a study was already published in [11]. The authors analysed a sample
of Öpik-Oort cloud comets affected by the four giant planets. Following the
obtained results, the heavy tail distributions should be used to model the
planetary perturbations around the giant planets trajectories. These per-
turbations tend to form a spatial pattern that is naturally explained by the
Öpik theory [8].

This project continues today with a study that aims to understand the sep-
arate effect of each planet on the trajectory of a comet. Therefore a simpler
model composed by the Sun, a planet and the comet is under study. For the
perturbations with a perihelion distance of 5.1 A.U., perihelion argument,
w, and inclination angle, i, a parameter estimation was performed [11]. Af-
ter this, a detailed local investigation of the obtained results was done. For
the perturbations that tend to exhibit a tail exponent lower than 2, a distri-
bution made of three components was fitted. These components are a scaled
Beta distribution for the central part, and two Pareto distributions for the
tails. This situation is shown in the left column of the Figure 2. For the
perturbations that tend to exhibit a tail exponent greater than 2, again a
distribution made of three components was fitted. These components were
a scaled Beta distribution for the center, and Beta or Pareto distributions
for the tails. This situation is presented right column Figure 2.

The fitted distributions were tested using a simulation based local procedure.
First, the percentiles of the perturbations were estimated. Next, the per-
turbations were simulated 100 times using the fitted distributions, and the
percentiles were estimated each time. So, a confidence interval is obtained
for each percentile. Finally, the percentage of percentiles belonging to their
corresponding confidence interval is considered. The map of the obtained
values is shown Figure 3. The obtained results exhibit a pattern made of two
”arrows” oriented from left to right. The symmetry axes of these two arrows
are rather close to a perihelion argument of w = 20 and w = 160 degrees,
respectively. These values correspond to a trajectory crossing the Jupiter’s
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Figure 2: Local statistical analysis for the planet perturbations. The his-
tograms and the fitted distributions indicate that the planet perturbations
distributions may poses a heavy tail character (left column) or rather a Beta
distribution shape (right column).
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Figure 3: Results of a simulation based statistical test, in order to vali-
date the model fitting for the distribution of the planet perturbations. The
perturbations have a perihelion distance of 5.1 A.U.. The x and y axes rep-
resent, the inclination angle i and the perihelion argument w, respectively.
Left: results obtained for the perturbations exhibiting a rather heavy tail
behaviour. Right: results obtained for the perturbations exhibiting light or
bounded tail behaviour.

orbit. It appears, that the perturbations distributions in this region tend to
exhibit a heavy tail character. In the same time, the proposed perturbation
model was giving satisfactory results, for both regions, that is close and far
away from the orbit of the planet. Work is still needed, in order to make
all these encouraging results mathematically rigorous. The final conclusions
of these two studies should be used to start the construction of a general
probabilistic model for the planetary perturbations.

5 Binary asteroids orbit determination through

Bayesian modelling and MCMC statistical in-

ference

The process of binary asteroids development and evolution started since the
formation of our Solar System. Therefore, the detection and the study of
such binary systems may have important consequences regarding the theo-
retical models of the dynamical evolution of the Solar System.

Orbit determination is a classical problems of celestial mechanics. The sta-
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Table 1: Summary statistics for the mean orbit parameters obtained for the
asteroid 2000QL251.

Min. Median Mean Max.
Period, days 56.5324 56.5330 56.5330 56.5330
Semi-major axis, km 4930 4935 4936 4943
Excentrisity 0.4956 0.4958 0.4958 0.4960
Inclination, deg 46.814 46.908 46.883 46.931
Longitude of asc. node, deg 75.109 75.125 75.125 75.206
Argument of periapsis, deg 43.148 43.148 43.152 43.184
Time of periapsis, RJD 54314.25 54314.25 54314.26 54314.26

tistical ranging method for the heliocentric orbit of a simple asteroid has
been investigated by [19]. The case of the binary asteroids relative orbit
determination was already tackled by [9]. The idea of our approach is to
use the Bayesian framework described previously in order to perform Monte
Carlo statistical inference directly on the orbital parameters. This approach
has the advantage that it allows the introduction of dependencies among
the different orbital parameters, whenever these dependencies are a priori
known. The data term of the model is built using the differences between
observations and positions computed using the orbital parameters at given
observation times. The a priori term is chosen to be non-informative, in
the sense that for each parameter an uniform distribution is chosen. The
limits of these uniform distributions are fixed for some of them, as large as
possible, while for choosing the others, the observations may be used.

Figure 4 shows a partial result of our method applied to the trans-Neptunian
binary asteroid 2000QL251. The solid circle represents the primary asteroid.
The open circles indicate the relative positions of the secondary asteroid.
Large dotted line represents the sky plane projection of the mean fitted or-
bit at the mean time of the observations. The cross points are the predicted
positions at the observation times given by the mean fitted orbit solution.
The summary statistics given by our approach for this asteroid are shown
in the Table 1. This work is in progress. Some of perspectives we emphasize
are the application of the method on data provided by the GAIA satellite.
In the same, the simultaneous detection and model parameter estimation is
a challenging mathematical problem.
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Figure 4: Relative astrometric positions and fitted relative orbit projected
onto the sky plane for the asteroid 2000QL251.

6 Conclusions

The astronomy and cosmology applications presented in this paper illustrate
the extraordinary capacities of modelling and analysis of the probability and
statistics based methodologies. The very strong point of these methodolo-
gies is that they come automatically with a free integrator. This integrator
is the probability density of the model used to address the problem on hand.
In all these situations, the model is built by the users to answer a specific
question. The principle of these constructions is natural: synthesising within
the models, the information gathered by a local data analysis. These models
are connected with the classical mathematical models, hence allowing mu-
tual scientific benefits for both domains, mathematics and astronomy. The
common point of all the presented applications is that the solution we are
looking for is represented by a pattern in a chaotic dynamics.
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