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Abstract

Graphical models (CRFs, Markov Random Fields, Bayesian networks ...) are
probabilistic models fairly widely used in machine learning and other areas (e.g.
Ising model in statistical physics). For such models, computing a joint probability
for a set of random variables relies on a Markov assumption on the dependencies
between the variables. Even so, the calculation may be intractable in the general
case, forcing one to consider approximation methods (MCMC, loopy belief propa-
gation, etc.). Hence the maximum likelihood estimator is, except in very particular
cases, impossible to compute. We propose a very general probabilistic model, for
which parameter estimation can be obtained by tensor factorization techniques
(similarly to spectral methods or methods of moments), bypassing the calculation
of a joint probability thanks to algebraic results.

1 Introduction

This paper addresses the problem of parameter estimation for probability distributions over graphs.
We consider the class of probability distributions that can be computed by Graph Weighted Mod-
els (GWMs), a computational model on graphs and hypergraphs that has been recently introduced
in [3] (see also [8]). This class of distributions is a generalization of the distributions modeled by
HMMs on sequences or trees. The observations are provided as graphs, which can be interpreted as
graphs of Markov dependencies for a set of underlying latent variables.

We make the strong hypothesis that the joint probability operator that describes on the one hand
the dependencies between a latent state and its related observation, and on the other hand between
a latent state and its neighbors, is constant over the whole graph. It is worth mentioning that this
hypothesis boils down to the Markov property assumed by the HMM model when one considers
linear graphs (i.e. strings). For sequences and trees, the linear operators (i.e. transition matrices and
transition tensors) are usually estimated by maximizing the likelihood (MLE) of the observations.
Alternative techniques have been lately developed (spectral methods [4, 6], method of moments [1, 2],
etc.) based on direct estimation involving basic algebraic properties of the model with respect to a
particular tensor: the Hankel tensor.

When it comes to graphs, the maximum likelihood estimation is hardly available, as computing the
exact probability of a given configuration is in general intractable. However, methods based on
Hankel tensor factorization are still available even though they need to be adapted. We show in this
paper that the problem of estimating the transition operators from a set of observations generated by
a GWM can be reduced to a 3-way tensor factorization problem, similar to the well-known RESCAL
or DEDICOM factorizations [7, 5].

We present two main results related to the problem of learning graph weighted models:

• Under some assumptions, the set of probability distributions modeled by graph weighted
models (GWM) is dense in the space of probability distributions over graphs, for the ∥∥1-
norm induced topology.
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• The estimation of the parameters of a GWM can be achieved through a tensor decomposition
problem subject to linear constraints on the factors.

We give a formal definition of Graph Weighted Models and present the density result mentioned
above in Section 2 and we show how the learning result can be reduced to a tensor factorization
problem in Section 3.

Notations. For any integer k we use [k] to denote the set of integers from 1 to k, and we denote
by Sk the set of permutations of [k]. We use lower case bold letters for vectors (e.g. v ∈ Rd1),
upper case bold letters for matrices (e.g. M ∈ Rd1×d2) and bold calligraphic letters for higher order
tensors (e.g. T ∈ Rd1×d2×d3). The d × d identity matrix will be written as Id. The ith row (resp.
column) of a matrix M will be denoted by Mi,∶ (resp. M∶,i). This notation is extended to slices of a
tensor in the straightforward way. We use the ⊗ symbol for the Kronecker product and we denote by
(Rd)⊗k = Rd×d×⋯×d the space of d-dimensional hypercubic tensors of order k. Given a tensor T, its
vectorization will be written as vec(T).

2 Graph Weighted Models

Let O be a ranked alphabet where no denotes the arity of the symbol o for each o ∈ O. We consider
(connected) graphs build on the ranked alphabet O, that is graphs whose vertices are labeled by
symbols in O and where the degree of each vertex coincides with the arity of the symbol it is labeled
with. Formally a graph G = (V,E, `) is composed of a set of vertices V , a labeling ` ∶ V → O and a
set of edges E partitioning the set of ports PG = {(v, i) ∶ v ∈ V, i ∈ [n`(v)]} into sets of cardinality 2.

2.1 Definitions

Definition 1. A Graph Weighted Model (GWM) with d latent states over an alphabet O is given by a
set of tensors {Ao ∈ (Rd)⊗no}o∈O (each symbol o ∈ O is associated with a tensor whose order is the
arity of o). It computes a function that maps any graph on O to a real value.

A GWM maps each graph G = (V,E, `) on O to a real number by first taking the tensor product of
the tensors associated with all the vertices of G, and then performing contractions according to the
edges in G. More formally, the computation of a GWM can be described as follows:

• construct the tensor M = ⊗
v∈V

A`(v) (each mode of M corresponds to a port of G),

• obtain a tensor M′ by permuting the modes of M in such a way that for each edge e of G,
the two modes corresponding to the ports connected by e are following each other,

• compute the final value with

f(G) =
d

∑
i1=1

d

∑
i2=1

⋯
d

∑
i∣E∣=1

M
′
i1,i1,i2,i2,⋯,i∣E∣,i∣E∣

One can check that GWMs are a direct generalization of weighted automata on strings and trees.

2.2 Polarized Graphs, Covering-Free Families and Density

It can easily be shown that the set of probability distributions that can be computed by GWMs is not
dense in the space of probability distributions over graphs:
Example 1. Let O = {a, b} with na = nb = 1; it is easy to check that only three connected graphs (up
to isomorphisms) can be built on this ranked alphabet: G1 (resp. G2) with two vertices labeled by
a (resp. b) and G3 with one vertex labeled by a and the other by b.

Furthermore a GWM with d states over O is given by two d-dimensional vectors a =Aa and b =Ab.
We have f(G1) = a⊺a, f(G2) = b⊺b and f(G3) = a⊺b, thus f(G3)2 < f(G1)f(G2) for any
function f computed by a GWM.

Even though one cannot hope to obtain density results for GWMs defined over arbitrary family of
graphs, it has been shown in [3, 8] that such results can be obtained when one considers covering free
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families of polarized graphs. The notion of polarized graph echoes the traditional notion of directed
graph for the definition of graphs we consider here, while covering is a fundamental graph theoretical
notion of local isomorphism.
Definition 2. A family S of graphs over O is polarized if the ports of all symbols o ∈ O can be
partitioned in positive and negative ports in such a way that the edges of any graph in S only connects
ports with opposite signs1.
Definition 3. Let G = (V,E, `) and G′ = (V ′,E′; `′) be two graphs. One says that G is a covering
of G′ if there exists a mapping φ ∶ V ↦ V ′ such that (i) `(v) = `′(φ(v)) for any v ∈ V and (ii) for
any edge {(u, i), (v, j)} ∈ E of G: {(φ(u), i), (φ(v), j)} ∈ E′.

We say that a family S of graphs is covering free if for any G ∈ S the only coverings of G in S are
graphs that are isomorphic to G.
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Figure 1: (left) Two polarized graphs. (right) The graph G is a covering of the graph T .

3 Learning Graph Weighted Models

For sake of clarity, we consider that all symbols o ∈ O have the same arity r. Let S be a family of
graphs on the ranked alphabet O and let A = {Ao}o∈O be a GWM with d latent states computing the
function f∗ ∶ S → R that we wish to infer. Observe that each tensor Ao is in (Rd)⊗r.
We introduce the notion of contexts which are graphs with holes. A 2-context C is a graph from
which an edge with its two vertices has been removed; we denote the set of all 2-contexts on O by C.
Given two symbols o, o′ ∈ O and two permutations σ,σ′ ∈Sr of the port numbers [r], we denote by
C[oσ, o′σ′] the graph obtained by pluging the hole in C with two vertices labeled respectively by o
and o′, these two vertices being connected by an edge between their σ−1(1) and σ′−1(1) ports (i.e.
the first ports after permutation by σ and σ′ are connected to each other while the other ports are
connected to the context C).

With any 2-context C we associate the tensor TC ∈ (Rd)⊗2r−2 obtained by performing the computa-
tion of the GWMA on C2 and we denote by TC ∈ Rd

r−1×dr−1 the corresponding matricization (where
modes corresponding to the first removed vertex are mapped to rows and the others to columns). For
any permutation σ ∈Sr, let Πσ be the corresponding permutation matrix, that is Πσvec(Ao) is the
vectorization of the tensor Ao after permutation of its modes with σ. Then, one can show that

f∗(C[oσ, o′σ′]) = vec(Ao)⊺Π⊺
σ(Id ⊗TC)Πσ′vec(Ao′)

for any 2-context C, symbols o, o′ ∈ O and permutations σ,σ′ ∈Sr. Observe that the identity matrix
Id in the product above corresponds to the contraction operation performed by the GWM A for the
edge between the two vertices plugged in C.

Furthermore, let O ∈ RO×O×C×Sr×Sr be the 5th order tensor defined by

Oo,o′,C,σ,σ′ = f∗(C[oσ, o′σ′])
1 Observe that in the example above (used to show that GWMs are not dense when defined over arbitrary

families of graphs) the graphs G1 and G2 cannot be polarized.
2In this case we obtain a tensor rather than a real value since not all the modes of the tensor M′ are contracted

during the computation.
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and let A ∈ RO×d
r

be the matrix whose rows are the vectorizations of the tensors Ao, i.e. Ao,∶ =
vec(Ao) for each o ∈ O. Then one can check that for any 2-context C and permutations σ,σ′, the
matrix O∶,∶,C,σ,σ′ can be factorized as

O∶,∶,C,σ,σ′ = A(Π⊺
σ(Id ⊗TC)Πσ′)A⊺.

As shown in the following theorem, it turns out that finding a matrix Â ∈ RO×d
r

satisfying these
factorizations of the tensor O is sufficient to recover a GWM computing the target function f∗.
Similarly to the classical spectral method for weighted automata that relies on the redundancy of the
information stored in the Hankel matrix, our method relies on the fact that the tensor O is a highly
redundant representation of the function f∗.
Theorem 1. Let O ∈ RO×O×C×Sr×Sr be the 5th order tensor defined above. Suppose that for any
2-context C ∈ C and permutations σ,σ′ ∈Sr we have the factorization

O∶,∶,C,σ,σ′ = Â(Π⊺
σ(Id ⊗TC)Πσ′)Â⊺ (1)

for some matrix Â ∈ RO×d
r

and matrices TC ∈ Rd
r−1×dr−1 for C ∈ C.

Then, under the condition that ∣O∣ ≥ dr, the GWM Â = {Âo}o∈O defined by the relation vec(Âo) =
(Âo,∶)⊺ for all o ∈ O computes a mapping f̂ which is equal, up to a normalization factor Z, to the
target function f∗ (i.e ∃Z ∶ ∀G, f̂(G) = Zf∗(G)).

(sketch of proof). We will say that a matrix M can be factorized (to the left) by a matrix X if there
exists a matrix Y such that M = XY. Let G = (V,E) be a graph structure with N vertices v1,⋯, vn,
without any labeling of the vertices. We consider the tensor HG ∈ (RO)⊗N that gathers the values of
f∗ for all possible labelings of G, i.e. (HG)o1,⋯,oN = f∗(G[o1,⋯, oN ]) where G[o1,⋯, oN ] is the
graph obtained using the labeling vi ↦ oi. Since any matricization (HG)(e) of HG along two modes
connected by an edge e in G is a part of the tensor O, one can check that (HG)e can be factorized to
the left by (Â⊗ Â)(Idr−1 ⊗ vec(Id2) ⊗ Idr−1) (which follows from Eq. (1)), where we assumed for
sake of simplicity that the edge e connects the last port of the first vertex to the first port of the second
one (hence the vector vec(Id2) performs the contraction corresponding to the edge e). Similarly, one
can check that this implies that any matricization (HG)(e,e′) of HG along three modes connected by
two edges e, e′ in G, can be factorized both by (Â⊗ Â⊗ Â)(Idr−1 ⊗ vec(Id2) ⊗ Idr−1 ⊗ Idr) and
(Â⊗ Â⊗ Â)(Idr ⊗ Idr−1 ⊗ vec(Id2)⊗ Idr−1) (where we assumed again that the last port of a vertex
is connected to the first port of the following one). It can then be shown (under the condition ∣O∣ ≥ dr)
that (HG)(e,e′) can be factorized by (Â ⊗ Â ⊗ Â)(Idr−1 ⊗ vec(Id2) ⊗ Idr−2 ⊗ vec(Id2) ⊗ Idr−1).
By induction, the vector vec(HG) can be factorized by (Â⊗N)vE where vE is a vector that
represents all the contraction operations performed by a GWM on the graph structure G; that is
(HG)o1,...,oN = f∗(G[o1, . . . , oN ]) is equal to (Âo1,∶⊗Âo2,∶⊗⋯⊗ÂoN ,∶)vE = f̂(G[o1, . . . , oN ])
for any o1,⋯, oN ∈ O up to a normalization factor.

As in the original spectral algorithm for weighted automata, one can consider a finite number of
contexts, as long as they correspond to sufficient statistics, i.e. there are enough statistics to identify
the distribution. Moreover, the linearity of the problem allows one to sum over the contexts, hence
to consider generalized contexts (e.g. specifying only immediate neighborhoods). In practice, the
condition ∣O∣ ≥ dr can be relaxed provided a correct regularization. Experiments also show that in
the case of a noisy observation tensor (e.g. empirical distribution deduced from an i.i.d. sample), the
error is linearly dependent on the noise magnitude, which is what is expected.

For the more general case where not all symbols have the same arity, the problem can be solved by
considering simultaneous tensor factorizations.

4 Conclusion

In this paper, we provide a way to estimate the parameters of a probability distribution defined over
graphs. We show that the estimation problem can be reduced to a particular tensor factorization
problem. The next steps include finding efficient methods to perform this factorization and explore
different types of regularization to enhance the stability of the model.
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