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Abstract

Latent stochastic block models are flexible statistical models that are widely used
in social network analysis. In recent years, efforts have been made to extend these
models to temporal dynamic networks, whereby the connections between nodes are
observed at a number of different times. In this paper we extend the original stochas-
tic block model by using a Markovian property to describe the evolution of nodes’
cluster memberships over time. We recast the problem of clustering the nodes of
the network into a model-based context, and show that the integrated completed
likelihood can be evaluated analytically for a number of likelihood models. Then, we
propose a scalable greedy algorithm to maximise this quantity, thereby estimating
both the optimal partition and the ideal number of groups in a single inferential
framework. Finally we propose applications of our methodology to both real and
artificial datasets.

Keywords: Stochastic Block Models, Dynamic Networks, Greedy Optimisation,
Bayesian Inference, Integrated Completed Likelihood.

1 Introduction

In the last few years, there has been an increasing amount of data stored characterising

interactions between individuals or, more generally, units of interest. An interaction,

represented by a triple (i, j, η), indicates that units i and j have a connection at a specific

time point η. Interactions can for instance describe email exchanges between individuals

or posts on social media. In Biology, units can correspond to genes and interactions to

regulation events between the genes. A natural approach to model the set of all observed

interactions is to rely on a dynamic graph where each unit is associated with a node and
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an edge (i, j) is present between two units i and j, at time η, if the interaction (i, j, η) is

recorded.

A long series of methods have been proposed recently to cluster the nodes of dynamic

networks in order to summarise the information hidden in such data. A large number

of these consider the Stochastic Block Model (SBM) (Wang and Wong 1987; Nowicki

and Snijders 2001) as a starting point and propose extensions to the dynamic framework.

Moreover, they are usually discrete in time, that is, predefined time intervals are intro-

duced and interactions during those time intervals are aggregated to obtain snapshots

indexed by a discrete time variable t. In the case of a binary dynamic network, two nodes

are connected in a snapshot if they have at least one interaction in the corresponding

time interval. We recall that the SBM was originally introduced to cluster nodes in static

networks where nodes and edges do not evolve through time. The model assumes that

nodes are spread in latent clusters, which, in practice, have to be inferred from the data.

The probability for two nodes to connect is then only dependent on their respective clus-

ters. Because no constraints are imposed on the connection probabilities, various types

of clusters can be extracted from the data, which makes methodologies based on SBM

applicable to networks with different connectivity structures (Daudin et al. 2008). The

dynamic SBM-like model of Yang et al. (2011) allows, for example, each node to switch

its cluster at time t depending on its state at time t− 1. A transition matrix is employed

to characterise the switching probabilities. While clusters can change over time, fixed

connection probabilities are used. Conversely, the model of Xu and Hero (2014) relies

on evolving connection probabilities and temporal changes are described through a state

space model. Therefore, the inference requires the use of optimisation tools such as the

Kalman filter and the Rauch-Tung-Striebel smoother. The work of Yang et al. (2011)

was then extended by Matias and Miele (2016) for the clustering of nodes in dynamic

networks where edges are not necessarily binary. We emphasise that theoretical results

are also provided in their paper to show that dynamic SBM-like models should not let

both the clusters and connection parameters evolve through time without incurring into

identifiability issues.

In the static framework, many extensions have been considered for the SBM model.

Many of them have then been adapted to deal with dynamic networks. For example,

the well-known mixed-membership SBM of Airoldi et al. (2008) has been extended to a

dynamic framework by several works including Xing et al. (2010), Ho et al. (2011) and
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Kim and Leskovec (2013). Note that the latent position model of Hoff et al. (2002), which

is also popular in the network community, was also adapted by Sarkar and Moore (2005)

and Friel et al. (2016) to deal with dynamic interactions.

In this paper, our objective is to model the evolution of the cluster memberships

over time by relying on a Markovian property. We take advantage of prior conjugacy

to integrate out analytically most of the model parameters, with an approach similar to

that of McDaid et al. (2013) and Côme and Latouche (2015). This so-called collapsing

allows one to obtain an analytical expression for the integrated completed data likelihood

for a number of likelihood models. A greedy optimisation algorithm is then employed for

inferential purposes. It allows estimation of both the number of clusters and the cluster

memberships of the nodes to the clusters.

Section 2 introduces the model and the notation. A Bayesian hierarchical structure is

then proposed in Section 3. Finally, the optimisation procedure is given in Section 5 and

experiments are carried out in Sections 6, 7, and 8 to assess the proposed methodology.

2 Markovian Stochastic Block Model

The observed data consist of a sequence of network objects X =
{
X(t)

}
t∈T

defined on

the same set of nodes V = {1, . . . , N}. We focus our attention on dynamic networks,

where T = {1, . . . , T} denotes the temporal span.

The random variable X(t)
ij models the value exhibited by the edge from i to j at time

t, ∀t ∈ T and ∀i, j ∈ V . We outline our methodology on directed networks, however

it applies also to undirected network as we illustrate in the applications we consider. A

typical scenario is that of a binary dynamic network, where:

x
(t)
ij =

{
1, if an edge from i to j appears at time t;
0, otherwise.

(1)

Also, self-edges are not allowed, i.e. x(t)ii = 0, ∀t ∈ T and ∀i ∈ V .
The random variable Z(t)

i characterises the allocation of a node, whereby Z
(t)
i = g

indicates that node i is allocated to group g at time t, for a certain g ∈ K = {1, . . . , K}.
The set Z(t) =

{
Z

(t)
i

}
i∈V

therefore corresponds to a random hard clustering (i.e. a

partitioning) of V , ∀t ∈ T . We also denote the full set of allocations with Z =
{
Z(t)
}
t∈T

.

The total number of groups in this underlying structure is denoted by K, hence Z(t)
i ∈

K, ∀t ∈ T and ∀i ∈ V . Note that K represents the total number of groups in Z, implying
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that, at each time frame t, the current number of non-empty groups K(t) may be any

number in K.
The allocations characterise the connection profiles of the nodes of the network, in

that nodes allocated to the same group have their edges drawn from the same probability

distribution. The edges of the dynamic network are marginally dependent, however they

are conditionally independent given the allocations:

p (X|Z) =
∏
t∈T

p
(
X(t)

∣∣∣Z(t)
)
, (2)

and ∀t ∈ T :
p
(
X(t)

∣∣∣Z(t)
)

=
∏
i∈V

∏
j∈V:j 6=i

p
(
X

(t)
ij

∣∣∣Z(t)
i , Z

(t)
j

)
. (3)

The distribution for the value of a single edge is determined by the allocations of the

nodes, as follows:

p
(
X

(t)
ij = x

∣∣∣z(t)i = g, z
(t)
j = h,Θ

)
= f (x; θgh) , (4)

where Θ and θgh are collections of model parameters. In the binary network case, f cor-

responds to the mass probability function of a Bernoulli variable with success probability

θgh ∈ [0, 1]. In such case the likelihood of the model may be written as:

LX =
∏
g∈K

∏
h∈K

∏
t∈T

∏
{
i∈V: z(t)i =g

}
∏

{
j∈V: j 6=i; z(t)j =h

} θ
x
(t)
ij

gh (1− θgh)1−x
(t)
ij . (5)

Concerning the modelling of the temporal evolution of the network, a Markovian prop-

erty on the nodes’ allocations is adopted. The sequences Zi =
{
Z

(t)
i

}
t∈T

are assumed to

be independent Markov chains realised using the same K×K kernel matrix Π. Therefore

the prior structure on the allocations factorises as follows:

p (Z|Π) = p
(
Z(1)

) ∏
t∈T \{1}

p
(
Z(t)
∣∣∣Z(t−1),Π

)
, (6)

where, ∀t ∈ T \ {1} and ∀i ∈ V :

p
(
Z

(t)
i = h

∣∣∣Z(t−1)
i = g,Π

)
= πgh ∈ [0, 1]. (7)

Note that the rows of Π must sum to 1, whereas no constraint is imposed on the columns of

the same matrix. Combining (6) and (7), the prior on the allocations may be alternatively

written as:

p (Z|Π) = p
(
Z(1)

)∏
g∈K

∏
h∈K

π
Rgh

gh , (8)

where Rgh denotes the total number of switches from group g to h.
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3 Bayesian hierarchical structure

We propose a hierarchical structure to further model the parameters θ and Π. In par-

ticular, we focus on the use of conjugate priors, since these allow one to integrate out

(collapse) most of the model parameters.

Concerning the transition probabilities, we specify a Dirichlet distribution over the

rows of Π:

(πg1, . . . , πgK) ∼ Dir (δg1, . . . , δgK) , ∀g ∈ K. (9)

By analytically integrating out the parameters {πgh}g,h, the following compound distri-

bution (“marginal prior”) for the allocations arises:

p (Z|δ) = p
(
Z(1)

)∏
g∈K

{ ∏
h∈K Γ (δgh +Rgh)

Γ
(∑

h∈K δgh +
∑

h∈KRgh

) Γ
(∑

h∈K δgh
)∏

h∈K Γ (δgh)

}
. (10)

We assume a uninformative flat prior distribution for the hyperparameters {δgh}g,h and

thus fix all of them to 1.

A separate and independent Multinomial-Dirichlet model may be specified for Z(1).

However, for these starting allocations, we opt for a more pragmatic and parsimonius

approach: we use a Multinomial distribution with parameters {αg}g∈K, where:

αg ∝
∑

t∈T \{1}

∑
i∈V

1{
Z

(t)
i =g

}, ∀g ∈ K. (11)

The distribution on the initial states so defined approximates the stationary distribution

associated to Π.

Regarding the likelihood structure, a number of conjugate models can be considered,

encompassing most edges’ types. Table 1 provides a list of possible scenarios that may

be of interest. In this paper, we focus on binary edges, and hence specify an independent

Beta prior on the likelihood parameters Θ = {θgh : g ∈ K, h ∈ K}. In such a case the

compound distribution for X (“marginal likelihood”) is:

p (X|Z, a, b) =
∏
g∈K

∏
h∈K

{
Γ (a+ b)

Γ (a) Γ (b)

Γ (a+ ηgh) Γ (b+Ngh − ηgh)
Γ (a+ b+Ngh)

}
, (12)

where a and b are the Beta hyperparameters, ηgh counts the number of edges from group

g to h:

ηgh =
∑
t∈T

∑
{
i∈V: z(t)i =g

}
∑

{
j∈V: j 6=i; z(t)j =h

}X
(t)
ij (13)
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Table 1: A list of edge types that can be accounted for using the methodology proposed. For each
case the corresponding Bayesian hierarchical structure is shown.

Edge type Likelihood Conjugate prior

Binary Bernoulli Beta
Categorical Multinomial Dirichlet

Counts (positive integers) Poisson Gamma
Positive weights Gamma Gamma

Truncated counts or proportions Binomial Beta
Heavy tailed positive weights Pareto Gamma

Real numbers Normal Normal-Gamma
Real numbers with covariates Multivariate Normal Normal-Gamma

and Ngh counts the total number of possible edges from group g to h:

Ngh =
∑
t∈T

∑
{
i∈V: z(t)i =g

}
∑

{
j∈V: j 6=i; z(t)j =h

} 1. (14)

Note that, similarly to the hyperparameter δ, we make a “symmetric” assumption on

the hyperparameters a and b, making them identical over all of the groups. In the

applications, these are both fixed to 1 yielding a uninformative flat prior distribution.

Figure 1 shows a graphical model summarising the hierarchical structure and the

dependencies between the variables introduced.

δ φπ θ

Z(t− 1)

Z(t)

X(t− 1)

X(t)

Figure 1: Graphical model for the Markovian stochastic block model described.

A similar modelling framework has been recently proposed by Matias and Miele

(2016). In this paper, we take advantage of some of their results on model-identifiability

and we propose a radically different estimation technique.
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3.1 Incomplete weighted networks

When dealing with weighted networks, graphs are often incomplete, in that not all the

edges exhibit a value. The presence-absence of edge values can be modelled using a

Bernoulli random variable ρij, which is equal to one if the edge from i to j is present

and is 0 otherwise. This adds an extra layer in the modelling, which is unrelated to the

likelihood model specified on the present edge values. In fact, any likelihood structure

can be used to model the edges that appear (ρij = 1) in the network.

Assuming a Beta prior on the presence-absence indicator, the marginal likelihood of

the network is simply the product of the two compound distributions:

p (X|Z, aρ, bρ,φ) = p (ρ|Z, aρ, bρ) p (X|Z,ρ,φ) ; (15)

where (aρ, bρ) and φ denote the hyperparameters for ρ and θ, respectively. Note that the

modelling on ρ can capture the heterogeneity induced by the block structure, in that the

probability of an edge exhibiting a value may depend on its allocation.

4 Exact Integrated Completed Likelihood

In the previous section, we have shown that in a binary Markovian dynamic network the

marginal likelihood p (X|Z, a, b) and the marginal prior p (Z|δ) have an exact analytical

form. These terms can be recombined to obtain a particularly meaningful quantity, the

so-called exact Integrated Completed Likelihood (ICL), defined as:

ICLex = log [p (X|Z, a, b)] + log [p (Z|δ)] . (16)

Such a quantity corresponds to the exact value that the ICL criterion of Biernacki et

al. (2000) propose to maximise when choosing the number of groups in a finite mixture

context. We stress that, although the definition in (16) relates to the specific case of

binary dynamic networks, the same quantity can be evaluated analytically for all of the

likelihood models listed in Table 1.

We propose to use ICLex as a model-based optimality criterion for the clustering

problem on the nodes of our dynamic network: in the space of all possible allocations, we

seek a Ẑ maximising ICLex. Note that, thanks to the discrete nature of the allocation

variables, the optimal total number of groups K̂ can be deduced automatically from Ẑ,
along with the values

{
K(t)

}
t∈T .
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We also emphasise that, from a Bayesian perspective, Ẑ corresponds to a Maximum

A Posteriori (MAP) solution:

p (X|Z, a, b) p (Z|δ) = p (X ,Z|a, b, δ) ∝ p (Z|X , a, b, δ) , (17)

where the proportionality is intended with respect to Z.

5 Greedy optimisation

In the Markovian dynamic stochastic block model described, we seek a clustering solution

Ẑ maximising the ICLex value defined in (16). A complete exploration of all possible

allocations is not feasible, even for small datasets. However, similar combinatorial prob-

lems have been recently tackled successfully using heuristic greedy routines, resembling

the well known Iterated Conditional Modes of Besag (1986). Greedy algorithms have

been applied in a hierarchical clustering framework for networks by Newman 2004. More

recently, they have been adapted to maximise the ICLex in a model-based clustering

context for networks in Côme and Latouche (2015) and Wyse et al. (2017) and Corneli

et al. (2016) and for Gaussian finite mixtures in Bertoletti et al. (2015). Here, we propose

an extension of the same ideas to our dynamic network context.

The algorithm repeatedly sweeps over the network’s nodes and attempts to reallocate

them using a greedy behaviour. In each step, a random time frame t and a random node

i are chosen, and the variation of ICLex is evaluated for all the possible reallocations of

the corresponding node. For every group g, the value `(t,i)→g is evaluated, corresponding

to the ICLex value after moving the node identified by (t, i) to g. Eventually the node is

reallocated to the group that yields the best increase in the objective function. This pro-

cedure continues until no reallocation can provide a further increase. The corresponding

pseudocode is shown in Algorithm 1.

As input, the algorithm requires a starting partition, the hyperparameters’ values,

and a parameter Kup denoting the largest admissible number of groups. During the

optimisation, groups may be deleted (if they remain empty at all time frames) and created

(if a node is reallocated to an empty group). In practice, the former case is very frequent

whereas the latter is rather rare. Hence the best performance is achieved when the

starting partition is composed of Kup groups, with Kup set to a fairly large value.

The algorithm is bound to find only a local optimum for the objective function, and

its initialisation plays a crucial role. Due to the random update order, it is possible
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Algorithm 1 GreedyIcl

Initialise Z(t)
i , ∀t ∈ T , ∀i ∈ V .

Evaluate ICLex and set ` = ICLex and `stop = ICLex.
Set stop = false.
while !stop do

Set U = {(t, i) : t ∈ T , i ∈ V}.
Shuffle the elements of U .
while U is not empty do

(t, i) = pop (U).
ĝ = arg maxg=1,2,...,Kup `(t,i)→g.
` = `(t,i)→ĝ.
Z

(t)
i = ĝ.

end while
if ` ≤ `stop then stop = true else `stop = `.
end if

end while
Return Z and `.

that different starting partitions return different solutions, however we find that good

initialisations often lead to a unique maximum.

As concerns the complexity of the algorithm, in the binary case one iteration can be

performed in O
(
M + TNK2

up

)
, where M is the total number of edges appearing in the

network. Once a node (t, i) is selected, the number of edges to and from group g are

counted, for every g ∈ {1, . . . , Kup}. Evidently this implies a cost of O (m), where m

is the average value for the sum of in-degree and out-degree of a random node. Then,

the quantities `(t,i)→g are evaluated for every g. For each of these, the computational

bottleneck is given by the calculation of the variation of the marginal likelihood value,

which can be performed inO (Kup). This makes the average cost of updating an allocation

O
(
m+K2

up

)
. Since all of the allocations are repeatedly updated, the overall complexity

of one iteration is O
(
TNm+ TNK2

up

)
as previously claimed.

5.1 Final merge step

Once the GreedyIcl has converged, we additionally propose a hierarchical clustering on

the optimal solution, following the approach of Côme and Latouche (2015). We consider

all possible pairs of groups and attempt to merge each pair into a single cluster. Such

9



a move is accepted only if the ICLex value increases, and everytime a merge move is

performed the procedure is restarted. For each try, the computational bottleneck is given

by the evaluation of the variation for the marginal prior, which can be performed in

O
(
K̂2
)
. Since the number of pairs is O

(
K̂2
)
, and the number of accepted merge moves

is capped at K̂, the overall complexity of this final step is O
(
K̂5
)
. Here K̂ denotes

the number of groups for the optimal solution obtained through the GreedyIcl, which

is normally much smaller than Kup. We find that in practice this final merge step does

not impact the overall computational time by much, and the additional computational

burden may be neglected.

6 Simulation study

We propose an experiment to validate our methodology and compare it to the existing

algorithm of Matias and Miele (2016), using artificial data. The number of time frames,

the number of nodes, and the true underlying number of groups are fixed throughout as

follows: T = 4, N = 50 and K = 4, respectively. As concerns the transition probabilities

matrices, the following general structure is assumed:

Π =


π ν ν ν
ν π ν ν
ν ν π ν
ν ν ν π

 (18)

where ν = (1−π)/(K−1), so that rows sum to one. Choosing a high π value, the clusters

tend to be very stable and allocations do not change often over time. By contrast, a small

π value represents the opposite scenario, corresponding to a highly instable system. In

either case, the stationary distribution, which is used to generate the starting partition,

is α =
{

1
K
, 1
K
, 1
K
, 1
K

}
. In our simulations we consider two different scenarios: π = 0.7 and

π = 0.9, which are denoted low-stability and high-stability, respectively. Although these

two cases may offer only a limited view of all the situations encompassed by the model,

we believe these to be the most interesting examples and that most realised networks are

in fact well captured by this representation.

As concerns the connection probability matrices, an affiliation structure is assumed:
θ0 ε0 ε0 ε0
ε0 θ0 ε0 ε0
ε0 ε0 θ0 ε0
ε0 ε0 ε0 θ0

 . (19)

10



A small perturbation is added independently to each of the entries of such matrix:

θ = θ0 + 0.1u ε = ε0 + 0.1u, (20)

where u is drawn from a Uniform distribution in the interval [−1, 1] for each entry. While

ε0 is always fixed to 0.1, θ0 is different for each matrix and determines the difficulty level

in recovering the underlying latent clustering. We consider 9 different scenarios, each cor-

responding to a different choice of θ0, ranging from 0.1 to 0.9. The perturbation created

by the random variable u is necessary to ensure identifiability of the model, as explained

in Matias and Miele (2016).

The experiment is executed as follows: for every choice of π and θ0, 100 random

dynamic undirected networks are generated, each corresponding to a different random

realisation of the connection probability matrix. In each network, the variational algo-

rithm of Matias and Miele (2016), implemented in the R package dynsbm (version 0.3),

and our implementation of the greedy algorithm are executed. As concerns the varia-

tional approach, dynsbm is run 4 times for every value of K in the set {1, 2, . . . , 6}, and
the best run is retained as optimal solution according to the approximate ICL criterion

advocated in Matias and Miele (2016). Higher values of K make dynsbm particularly

time consuming and hence are not considered, however, we note that in all of the runs

the approximate ICL criterion never favours the model with 6 groups. As concerns our

greedy algorithm (denoted GreedyIcl), we consider several types of initialisations, as

follows:

• aggregated: an adjacency matrix of size N ×N is obtained, by aggregating (sum-

ming) the T adjacency matrices of the generated network. Then, the kmeans algo-

rithm is run on such a matrix using as number of centres a random draw from the

discrete interval b0.5 ∗Nc, . . . , b0.75 ∗Nc. This associates a cluster membership to

each of the N nodes. These allocations are assumed not to change over time, so

that the initial partition is given by the output of the kmeans repeated over all the

time frames.

• colbind: the only difference with the aggregated initialisation lies in the fact that

kmeans is run on a matrix obtained by gathering the adjacency matrices one next

to the other, obtaining a N × TN matrix. Note that this is the same initialisation

used for the dynsbm algorithm.
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• rowbind: in this case kmeans is instead run on a matrix obtained by stacking up

the observed adjacency matrices. Since the size of this matrix is TN × N , the

number of groups considered by kmeans is not capped at N as in the other cases:

hence we use a draw from the discrete interval b0.5 ∗ T ∗Nc, . . . , b0.75 ∗ T ∗Nc as
number of centres. Also, in contrast with the previous cases, kmeans returns the

allocations for every node at every time frame, hence allocations are not assumed

to be unchanged over time.

• random: the GreedyIcl is initialised unsing a random partition, with Kup chosen

as in GreedyIcl rowbind.

Once initialised, the GreedyIcl algorithm is run once for each type of initialisation. The

additional label

• all: is used to indicate the best solution obtained through GreedyIcl over all

possible types of initialisations.

The optimal clusterings obtained using each method are compared to the true alloca-

tions using the Normalised Mutual Information (NMI) index (Strehl and Ghosh 2003).

This index takes values in the interval [0, 1] and describes how similar two partitions are.

These partitions must be vectors, hence the optimal clusterings obtained are vectorised

by concatenating the partitions time-wise.

Figure 2 shows the results obtained regarding the clustering performance. It appears

that the greedy optimisation coupled with kmeans initialisations and dynsbm achieve the

best results, whereas the greedy optimisation with random intialisations perform poorly.

The average computing times are provided in Table 2.

As concerns model selection, our methodology outperforms the existing algorithm of

Matias and Miele 2016, as shown in Figure 3.

7 Enron dataset

The data. The Enron Corporation filed for bankruptcy in late 2001, leading to an

unprecedented scandal and to dire consequences for the US stock market. The data we

use in this paper consists of all the emails exchanged from January 2000 to March 2002

between the Enron members. This data was originally made public, and posted to the

web, by the Federal Energy Regulatory Commission during its investigation.
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Figure 2: Simulation study. Average Normalised Mutual Information index between the true
clustering and the optimal clustering solutions obtained through dynsbm (version 0.3) and several
versions of GreedyIcl. Shaded regions represent the 90% quantile region associated to each
scenario. These regions are plotted only for GreedyIcl all (black colour) and dynsbm (blue
colour). It appears that the greedy algorithm with a good initialisation performs as well as the
existing algorithm dynsbm.

Table 2: Simulation study. Average computing time required by each of the algorithms to
be run on a generated dynamic network. Note that the variational expectation-maximisation of
dynsbm and the greedy updates of our algorithm are both run exactly 4 times for each dataset.
The initialisation may be different, but we find that this does not impact the computing time by
much.

Algorithm Average computing time (seconds)

dynsbm 35.46
GreedyIcl all 4.58
GreedyIcl aggregated 1.18
GreedyIcl colbind 1.19
GreedyIcl rowbind 1.14
GreedyIcl random 1.07
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Figure 3: Simulation study. For each combination of π and θ0, the proportion of networks
where K is properly estimated is shown, for all of the algorithms considered.

We construct a binary directed dynamic network of emails transforming the data into

an adjacency cube X , such that:

x
(t)
ij =

{
1, at least an email is sent from member i to member j at time frame t;
0, otherwise.

(21)

with each time frame t corresponding to a one month period. The number of nodes is

N = 148 and the number of time frames is T = 27. The number of edges observed at

each time is shown in Figure 4. Along with the email data, the status of each member

within the company is known, and is one of the following: CEO, Director, Employee, In

House Lawyer, Manager, Managing Director, N/A, President, Trader, Vice President. To

simplify the exposition of the results, we gather every status other than Employee and

N/A into a single class named Manager, so that only three status classes are considered.

We run our GreedyIcl all algorithm as in the simulation study, with each single run

of the algorithm taking on average about 400 seconds. The overall best solution has 17

groups. An analysis of this clustering solution follows.

Activity levels and connectivity. As shown in the left panel of Figure 5, the clus-

tering solution has very high stability over time, in that nodes do not change allocations

frequently. The connection probability matrix, shown on the right panel, exhibits instead

a much more complex situation. Evidently, a strong community structure is present,
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Figure 4: Number of edges at each time frame for the Enron email dataset. The peak in October
2001 corresponds to the disclosure of bankruptcy.
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Figure 5: Enron dataset. On the left panel, the estimated transition probabilities are shown. It
appears that the network is very stable over time, and nodes tend not to change their allocations
often. On the right panel, the estimated connection probabilities are shown. Most groups have
high within cluster connectivity, although a number of off-diagonal entries are also relevant. The
groups are ordered according to their aggregated size (i.e. the sum of their sizes over all times),
in descending order. Some entries cannot be properly estimated due to a small cluster size, hence
are left blank.
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since most of the diagonal elements of this matrix are fairly large.

We propose a brief characterisation of the role played by each group, using the infor-

mation provided by this connection probability matrix, in conjunction with Tables 3, 4

and 5.

• Group 1: this group contains inactive nodes only. These members do not send

emails, but they may receive a few newsletters.

• Groups 2 to 8: these contain a massive portion of the nodes, and hence describe

the most common connectivity profiles that may arise. The nodes in these groups

are not particularly active (the connection probabilities are typically not large) and

tend to receive more emails than they send. The sizes of these groups swell increas-

ingly by acquiring nodes from group 1 until the bankruptcy, signalling increased

activity in the months before the default.

• Groups 9, 11, 12, 13: these groups are mainly composed of managers, and corre-

spond to active nodes, who send more than they receive. These groups represent the

different profiles of the executives of the company. Also note that these groups have

a high within cluster connectivity, hence it is reasonable to find the corresponding

conversations particularly meaningful in terms of intelligence and company direc-

tives.

• Groups 10, 14, 15: three groups of very active nodes, although these are mainly

composed of employees. Note that groups 10 and 15 only become relevant during

the year 2001.

• Group 16: this group actually only ever contains one person (with a non-specified

role). This person apparently has some special position and hence may be consid-

ered as an outlier.

• Group 17: the smallest of groups, containing 4 unique members, each for 1 time-

frame only. Since this group has high connection probabilities towards many groups,

it is reasonable to believe that nodes join this group whenever they send out newlet-

ters to all members.
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Table 3: Rounded average degrees for the Enron dataset, for each of the 17 clusters found.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Avg. out-degree 0 3 3 1 3 4 3 5 5 3 7 10 13 12 11 11 57
Avg. in-degree 1 3 3 3 4 5 4 5 4 2 6 5 7 7 5 7 2

Table 4: Cluster counts separated by status for the Enron dataset. For this table, the same node
at two different time frames is considered as two separate entities, hence the sum of all entries
is TN .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Employee 576 90 36 45 92 50 61 22 7 46 1 18 0 17 18 0 1
Manager 1027 231 191 102 34 83 53 16 89 40 87 45 41 6 5 0 2
N/A 475 57 27 50 59 40 12 84 2 9 4 5 2 16 5 16 1

Table 5: Group sizes at each time step for the Enron dataset.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2000-01-01 115 8 3 2 1 2 5 4 2 0 2 0 1 2 0 1 0
2000-02-01 114 5 6 2 1 2 5 4 2 0 3 1 0 2 0 1 0
2000-03-01 112 5 7 3 2 2 4 4 2 0 3 1 0 2 0 1 0
2000-04-01 107 5 8 4 4 3 4 3 2 0 3 1 0 3 0 1 0
2000-05-01 103 7 6 6 5 3 4 2 2 0 3 2 1 3 0 1 0
2000-06-01 96 10 7 6 6 3 5 3 2 1 3 2 1 2 0 1 0
2000-07-01 93 10 6 5 5 4 5 3 3 1 5 3 1 2 1 1 0
2000-08-01 87 14 4 5 6 5 4 4 3 2 6 3 2 2 0 1 0
2000-09-01 86 13 5 6 7 4 4 5 2 2 5 3 2 2 1 1 0
2000-10-01 79 16 7 5 8 5 5 5 3 0 5 4 2 2 1 1 0
2000-11-01 71 15 7 5 8 5 5 5 6 6 4 4 2 2 2 1 0
2000-12-01 71 14 6 7 9 5 6 5 6 5 5 3 1 2 2 1 0
2001-01-01 72 14 8 7 9 4 7 5 3 4 3 4 2 2 3 1 0
2001-02-01 68 17 7 8 10 5 7 5 3 4 3 3 2 2 3 1 0
2001-03-01 69 15 7 9 11 5 5 6 3 4 3 3 3 1 3 1 0
2001-04-01 61 18 10 8 10 6 4 6 4 6 3 4 4 1 2 1 0
2001-05-01 52 21 15 8 11 7 4 7 3 6 3 4 4 0 2 0 1
2001-06-01 58 17 19 10 9 7 4 7 3 6 4 1 1 1 1 0 0
2001-07-01 67 13 13 9 6 8 4 5 5 7 4 3 2 1 1 0 0
2001-08-01 58 15 13 10 9 9 4 5 5 7 4 3 3 1 1 0 1
2001-09-01 50 19 16 10 10 11 5 5 5 7 4 4 1 0 1 0 0
2001-10-01 42 25 16 11 10 11 5 5 5 7 4 4 1 0 1 0 1
2001-11-01 41 26 17 11 10 11 5 5 6 6 3 4 1 1 1 0 0
2001-12-01 56 20 17 12 6 11 4 4 6 4 3 2 1 1 1 0 0
2002-01-01 64 20 14 10 3 11 3 5 5 5 2 1 3 1 1 0 0
2002-02-01 78 13 9 9 5 11 5 2 5 5 1 1 2 1 0 0 1
2002-03-01 108 3 1 9 4 13 4 3 2 0 1 0 0 0 0 0 0
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Figure 6: Enron dataset. On the left panel, the evolution of the number of non-empty groups
is shown. This quantity appears to increase until the collapse, signalling an increase in hetero-
geneity in the network. On the right panel, the proportions of managers and employees allocated
to the first group are shown. These proportions correspond to the nodes that are not particularly
active.

Temporal dynamics. Our model allows for groups to become inactive, whenever their

sizes decrease to zero. This means that the connection profile associated to a particular

group is not exhibited by any of the nodes in the time frame considered. Hence, the

number of non-empty groups can be used as a measure of heterogeneity in the network,

and the temporal dynamics of this quantity can be used to assess how heterogeneity

evolves over time. In the left panel of Figure 6, the evolution of the number of non-empty

groups is shown. It appears that the network is particularly heterogeneous in the year

before the collapse (K(t) = 15 or 16), whereas it eventually becomes rather homogeneous

(K(t) = 10) after the default. A similar message is conveyed by the plot on the right

panel of Figure 6. Here the number of inactive nodes (i.e. nodes allocated to group 1) is

shown to decrease convincingly for both employees and managers. Eventually, after the

collapse, the first group is repopulated as members quit their jobs and activities.

8 London bike sharing

Data obtained from bike sharing systems is particularly suited to perform network analy-

sis. Statistical analysis of the flows of bikes may provide important information regarding

the management of the system and could help increase the efficiency of the service. Cycle
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Figure 7: The number of edges in each time frame for the London bikes dataset are shown on
the left panel. The right panel shows instead the total number of edges in each day.

hires data can be easily rearranged and visualised as a dynamic network structure, where

edges correspond to hires and nodes to stations. Similar approaches have been recently

proposed in a number of works, such as: Guigourès et al. (2015), Randriamanamihaga

et al. (2014) and Matias et al. (2016). In a similar fashion, here we propose an application

of our methodology to a dataset of cycle hires in London.

The data. The cycle hire data for the London bike sharing system is publicly available

from Transport for London (2016). We use here the data from Wednesday, 5 June 2013

to Wednesday, 12 June 2013 (included). The discrete time frames correspond to blocks of

three hours. For each time frame, we create a network adjacency matrix by transmuting

bike trips into directed edges: an edge from station i to station j appears at time frame

t if at least one bike is hired at station i during the corresponding three hours, and the

same bike is then returned to station j. Bikes may be returned to the same station where

they were hired: we consider this information not important for our analysis and hence

discard all of the self-edges. The dynamic network so obtained is made of N = 566

nodes and T = 64 time frames. The data exhibits a very strong temporal heterogeneity,

mainly due to the day-night cycle and the presence of the weekend days. In Figure 7

the observed number of edges is shown at every time frame. Weekdays typically exhibit

two peaks in the activity level, corresponding to the start and the end of office hours.

This suggests that commuters are the main users during working days. By contrast, low
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Figure 8: This plot shows the number of non-empty groups at each time frame for the London
bikes dataset. The total number of unique groups found is 43. The level of heterogeneity in the
network has a noticeable temporal dynamic, which mimics the evolution of the number of links
shown in Figure 7.

activity is observed throughout the weekend, with a single activity peak appearing in the

late mornings.

Results. We run our algorithm GreedyIcl once for each of the initialisation methods,

with each run taking about six hours long. The optimal clustering found has a total of

K = 43 groups.

Heterogeneity. The temporal dynamic of the activity level is also exhibited in Figure

8 by the number of active groups at each time frame: as in the Enron dataset, we use this

as a measure for the level of heterogeneity in the network. It appears that, as activity

peaks in weekdays, the number of active groups doubles, signaling a heavy increase in

heterogeneity within the network. Surprisingly, weekend days do not exhibit a markedly

different heterogeneity level with respect to weekdays, even though the overall activity

level is lower. This suggests that fewer nodes become active in the weekend, but their

connection patterns are not particularly different than those seen in weekdays.

Characterisation of the groups. The groups can be roughly divided in two cate-

gories: the first 20 groups have a large aggregated size, mostly high stability, low connec-

tion probabilities and a good balance between expected out-degree and in-degree. The
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Figure 9: London bikes data. Temporal dynamics for the sizes of some of the groups found.
The three groups on the upper row belong to the first category (groups containing mostly inactive
nodes): group 2 swells consistently every night; group 6 is stably present throughout; whereas
group 12 is almost emptied in every weekday at the start of the office hours. The groups on the
lower row contain instead very active stations: group 18 is emptied every night; group 21 is also
emptied throughout the weekends; whereas group 33 activates every weekday at the start of office
hours.

rest of the groups have smaller sizes, high instability, higher connection probabilities and

in some cases very unbalanced out-degrees and in-degrees.

Figure 9 shows the temporal evolution of the size of a selection of groups. It appears

that the trends in the activity level have a huge effect on the migrations of stations

between groups. As nodes become more active, they leave the large groups (first category)

and move to smaller groups, which are better suited to capture the details of their new

connection profile in the network. During the high-activity regime these nodes may end up

visiting several groups based on the evolution of their connectivity patterns. Nonetheless

a good portion of nodes is not affected by the variation of activity level and simply

remains stably in the larger and inactive groups.

These arguments are very well supported by the plots in Figure 10. It appears that

the stability of nodes is very heterogeneous in that there are many very stable nodes but

also some very unstable ones (left panel). At the same time, the plot on the right hand

21



0 10 20 30 40 50 60

0
50

10
0

15
0

Stability of nodes

Number of swaps

F
re

qu
en

ci
es

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

● ● ●
● ● ● ● ●

●

●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion of nodes changing allocation

Aggregated group size

P
ro

po
rt

io
n

●

●

●
●●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

Figure 10: Stability level in the London bikes dataset. The left panel shows that although a good
portion of nodes are very stable, there are some stations changing their allocations in more than
45 out of 64 time frames. The plot on the right hand side studies instead the stability of groups.
It appears that larger groups are very stable, and viceversa smaller groups are not. The size of
the circles is proportional to the size of the group aggregated over time.

side reinforces the idea that larger groups are also very stable whereas smaller groups

exhibits high instability.

As shown in Figure 11 the stability does not seem to be particularly related to the

geographical position of stations. Furthermore, the number of groups containing stable

stations (nodes that never change allocation) is relatively high.

One additional feature that distinguishes the two categories of groups found can be

observed in Figure 12. Here, for every group, the expected out-degrees versus the expected

in-degrees are plotted. While stable groups (first category) tend to exhibit a good balance

between the two degrees, smaller and unstable groups can also have very unbalanced

degrees. This means, evidently, that whenever a node joins one of this unbalanced groups,

it may send many more edges than what it receives (or viceversa). In this bike sharing

context, the corresponding stations may require special attention due to temporary excess

of hiring demands (or excess of arrivals).

9 Conclusions

The statistical analysis of dynamic networks is particularly challenging, both from a

modelling point of view (due to the temporal dynamics) and from an estimation point

22



−0.20 −0.15 −0.10 −0.05 0.00

51
.4

6
51

.4
8

51
.5

0
51

.5
2

51
.5

4

Stations not changing allocation

Longitude

La
tit

ud
e

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
● ●

−0.20 −0.15 −0.10 −0.05 0.00

51
.4

6
51

.4
8

51
.5

0
51

.5
2

51
.5

4

Most unstable stations (more than 35 swaps)

Longitude
La

tit
ud

e

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

● ●
●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

●

● ●
●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

Figure 11: On the left panel, the spatial distribution of the stations not changing allocations is
shown for the London bikes dataset. The colour of the circles correspond to the group they are
allocated to at every time frame. On the right panel, instead, the stations performing more than
35 swaps are shown. In both plots the size corresponds to a combination of the out-degree and
in-degree of the nodes.
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Figure 12: Expected out-degree versus expected in-degree for the groups found in the London bikes
dataset. The size of circles is proportional to the size of groups aggregated over time. All of the
large groups of inactive nodes have balanced degrees, in that they tend to send and receive the
same number of edges. Smaller groups, instead, can exhibit very unbalanced degrees, either in
favour of the out-degree or in-degree.
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of view, due to the inherent computational difficulties. In this paper we have focused

on an extension of the stochastic block model to dynamic networks, where the temporal

evolution of the nodal information is captured by a Markovian process. Our formulation

allows one to integrate out all of the model parameters from both the likelihood and the

prior, thereby obtaining an analytical formula for the marginal posterior of the allocation

variables. In a model-based clustering context, such a marginal posterior is equivalent to

the exact integrated completed likelihood, which is widely used as an optimality criterion

for partitions.

Taking advantage of these results, we have proposed a greedy algorithm to estimate

the optimal clustering of the nodes. Our algorithm resembles other tools proposed in

the recent literature, and scales particularly well with the size of the data. However,

only convergence to a local optimum is guaranteed, hence several restarts and a careful

initialisation are particularly useful in order to find the global optimum.

One appealing feature of our approach is that model-choice is carried out automati-

cally, since the number of groups can be deduced at each time frame from the optimal

clustering solution.

Through a simulation study, we have validated both our optimality criterion and

the greedy algorithm used to estimate the optimal partition. Also, we have compared

our method to one based on a variational Expectation-Maximisation algorithm, showing

that with careful initialisation our approach achieves better results when the underlying

number of groups is unknown.

We have applied our methodology to the Enron email dataset, and found 17 underlying

groups. Each of the groups found appears to have a specific role within the network

and the original status of the members seem to be particularly related with the nodes’

allocations. Also, we have analysed some relevant summaries from our optimal clustering

underlining the dynamic evolution of the heterogeneity within the network and of the

overall activity level.

We have also applied our methodology to a London Bikes dataset, to study the flows

and connections between bike stations. Our method has returned an optimal clustering

made of 43 groups. The analysis of such a complex structure has been particularly

challenging but we have managed to extract some interesting information regarding the

dynamics captured by the model.

We note that, while the practice of integrating out the likelihood parameters has been
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exploited in a number of recent papers, the collapsing of the transition probabilities in

the Markov process is a rather new original technique. Not only this creates an ideal

setup for our method, but it may also be generalised and exploited in arbitrary discrete

hidden Markov models and their extensions.

Additionally, our work may be extended in a number of ways. We have used our

algorithm only on binary networks, but this approach generalises to networks with other

edge types. Incomplete weighted graphs can be easily handled using a Bernoulli presence-

absence indicator, and hence using the same framework based on the collapsing of the

parameters.

The initialisation plays an important role in our method, yet finding a good starting

partition is a great challenge. In fact, there is a lack of scalable methods that can handle

complex dynamic objects such as networks. Furthermore, clustering cannot be attempted

for each time frame independently since this result in label-switching problems. Here,

we have proposed two new intialisation methods which may in some cases improve the

results.

Extensions to the supervised classification case are also straightforward: if some of the

allocations are known, these need not be updated during the greedy optimisation. From

a Bayesian perspective, the optimal clustering solution obtained will then maximise the

posterior predictive distribution, rather than the posterior. This strategy would be useful

when dealing with nodes that join or leave the study dynamically, since, as suggested by

Matias and Miele (2016), a fixed group of inactive nodes may be created.

More generally, the optimisation of the exact Integrated Completed Likelihood is

a particularly challenging task, due to the discrete search space and the pronounced

multimodality of such objective function. The GreedyIcl algorithm introduced in this

paper was shown to perform well, although future extensions may improve upon our work

in terms of efficiency using alternative optimisation routines.
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