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The Proper Orthogonal Decomposition (POD) combined with the (Discrete) Empirical Interpolation Method (DEIM) can be used to 

reduce the computation time of the solution of a Finite Element (FE) model. However, it can lead to numerical instabilities. To increase 

the robustness, the POD_DEIM model must be constructed by preserving the structure of the full FE model. In this article, the 

structure preserving is applied for different potential formulations used to solve electromagnetic problems.    

 
Index Terms— Structure preserving, Proper Orthogonal Decomposition, Discrete Empirical Interpolation Method. 

 

I. INTRODUCTION 

O study electrical devices, the Finite Element (FE) 

method is often used to solve low frequency 

electromagnetic problems in the time or frequency domain. 

The computation time required to solve this kind of problems 

can be large due to a fine mesh, to an important number of 

time or frequency steps and to the nonlinear behaviour law of 

the ferromagnetic material. In the literature, to reduce the size 

of the FE model and the computation time, the Proper 

Orthogonal Decomposition (POD) is the most popular 

approach [1][2]. With a nonlinear behavior law, the POD is 

not so efficient due to the calculation of nonlinear terms. 

Then, to reduce this computation cost, interpolation methods 

have been developed [3-7]. The POD combined with the 

(Discrete) Empirical Interpolation Method (DEIM) has been 

used to solve a lot of problems in engineering. In 

electromagnetic modeling, this approach has been already 

applied to solve a nonlinear magnetostatic problem coupled 

with an electric circuit [8][9], a magneto-quasistatic problem 

including a motion of a subdomain [10] or a nonlinear 

magnetodynamic problem with a model order reduction of an 

adaptive subdomain [11]. 

To build the reduced model from the POD, the solution 

vector is approximated in a reduced basis deduced from the 

snapshot method [2]. In computational electromagnetics, 

potential formulations coupled with electric equations are 

commonly used to model a device. Different types of degree 

of freedom (DoF) (i.e. edges, nodes, voltages or/and currents, 

…) are considered in the solution vector. Then, a reduced 

basis associated with each type of DoF can be defined to 

preserve the structure of the matrix system between the full 

and reduced models.  

In this article, the structure preserving approach is applied 

for different potential formulations used to solve 

electromagnetic problems. The method is based on the 

construction of reduced basis attached to each type of DoF. 

Firstly, the general framework is presented. Secondly, the 

structure preserving is applied on the potential formulations of 

a nonlinear magnetostatic problem coupled with electric 

circuit and a magneto-quasistatic problem. Finally, the 

reduced models with and without the structure preserving 

approach are applied on academic examples. The results 

obtained with both types of reduced models are then compared 

in terms of accuracy with the full model.    

II. GENERAL FRAMEWORK 

The general form of the differential algebraic equations 

from low frequency electromagnetic problem solved by the 

finite element method is:  
 

(t))((t)
dt

(t)d
(t) fp XNF

X
KMX    (1) 

with M and K square matrices, F(t) the source vector, Nfp(t) 

the nonlinear term and X(t) the solution vector. The vector 

X(t) can be composed of different types of DoF. Usually, X(t) 

is written such as X(t)=[X1
t(t) X2

 t (t) … Xn
 t (t)]t with n the 

number of DoF types and Xi(t) the solution vector of the ith 

type of DoF (edges, nodes, currents, …). For example, in the 

case of the A-v electric formulation coupled with electric 

circuits, the unknowns related to edges, nodes and currents are 

concatenated in X(t). By applying the POD method [1][2] 

combined with the DEIM approach [3-5] on a nonlinear FE 

model (1), the solution vector X(t) of size Nt of the full 

problem is approximated by X(t)=Xr(t) with Xr(t) the 

solution vector of the reduced model of size NX and the 

nonlinear term is approximated by Nfp=MintNfp-m. The operator 

 is deduced from the snapshot matrix MX defined by 

MX=(X(tj))1jNs. This snapshot matrix is thus obtained from 

Ns solutions of the FE model during the first time steps or in a 

preprocessing step. Then, the matrix  is computed from the 

Singular Value Decomposition of MX. The interpolation 

matrix Mint and the vector Nfp-m which depends on a nonlinear 

function are approximated by the DEIM, where Nfp-m 

corresponds to a small number of nonlinear entries of Nfp. 

Finally, the reduced model can be written: 

T 
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(t))((t)
dt

(t)d
(t) rm-fpintr

r
rrr XNMF

X
KXM   (2) 

with Mr and Kr NXNX square matrices and Fr(t) and Nfp-m 

vectors of size NX.  

If one uses directly the snapshots of vector X(t) to define 

, the robustness of the reduced model might be worsened 

and it can be unstable. To preserve the structure of the full FE 

model with the reduced model, a reduced basis attached to 

each type of DoF is computed. The reduced basis i related to 

the ith type of DoF is defined from the snapshot matrix MXi of 

Xi(t). Then, we have Xi(t)=iXri(t). The matrix  is set as a 

block diagonal matrix such as 
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(3) 

 

and the reduced problem (2) is constructed and solved. 

III. LOW FREQUENCY ELECTROMAGNETIC PROBLEM 

A. NonLinear Magnetostatic problem coupled with Electric 

Equations 

We consider a domain D of boundary Γ (Γ=ΓBΓH and 

ΓB∩ΓH=0) (Fig. 1). The problem is solved on D[0,T] with T 

the length of the time interval. The inductors are supposed to 

be stranded and the eddy current effect is neglected. For the 

ferromagnetic materials, the nonlinear behaviour law is 

considered.  
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Fig. 1. Non-linear magnetostatic problem coupled with electric circuits. 

 

In magnetostatics, the problem can be solved with the 

vector potential formulation. Then, the strong formulation is 

t)),(((-(t))i(t)),(( fp
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jjfp
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stjjj

D

j N .., 1,j  with (t) v (t)iR)dD(t).,(
dt

d
 xNxA   

(5) 

with A the vector potential, Nj, ij and vj the unit current 

density, the current and the voltage of the jth stranded inductor 

respectively. Nst is the number of stranded inductors, fp 

denotes a constant reluctivity and Hfp(B(x,t))=((B)(x) - 

fp)B(x,t) a virtual magnetization vector depending on the 

nonlinear reluctivity (B)(x) and on the magnetic flux density. 

The field A(x,t) is discretised using edge elements in 3D and 

nodal elements in 2D, while Nj(x) is computed using facet 

elements [12]. We denote Ai(t) the line integral of A along the 

ith edge in 3D or the value of A on the ith node in 2D. Then, 

applying the FE method to (4) leads to the following system of 

differential algebraic equations: 
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where XA(t) is a vector such that (XAi(t))1iNe=(Ai(t))1iNe and 

Ne is the number of DoF associated with XA(t). Mfp is a 

NeNe square matrix, while F(t) and Nfp(XA(t)) are vectors of 

size Ne. Equation (6) can be rewritten in a condensed form 

similar to (2) by considering that X(t)=Xr(t) with: 
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where X(t) is the vector of unknowns of size Nt=Ne+Nst, 

(Ij(t))1jNst =(ij(t))1jNst, A is the reduced basis associated 

with XA(t) and Id is the identity matrix of size NstNst. In 

practice, the number of stranded inductors associated with 

electrical devices is low. Then, it is not necessary to construct 

a reduced basis for the currents vector I(t).  

B. Magneto-quasistatic problem 

We consider a domain D of boundary Γ (Γ=ΓBΓH and 

ΓB∩ΓH=0) (Fig. 2). The inductors are supposed to be stranded 

and the eddy current effect is taken into account in a 

conducting subdomain Dc of boundary Γc (Γc=ΓEΓJ and 

ΓE∩ΓJ=0). For simplify the reading, we consider only one 

stranded inductor and a linear behavior law for the 

ferromagnetic materials. 
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Fig. 2. Magneto-quasistatic problem. 

 

The magneto-quasistatic problem can be solved with the 

following electric formulation: 
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where A and v denote the magnetic vector potential and the 

electric scalar potential defined in Dc,  and  are the 

magnetic reluctivity and the electric conductivity. The field 

v(x,t) is discretised using nodal elements. Then, applying the 

FE method to (8) and (9) leads to: 
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with XA(t) a vector such that (XAi(t))1iNe=(Ai(t))1iNe, Xv(t) a 

vector such that (Xvi(t))1iNn=(vi(t))1iNn and Nn the number of 

DoF of v. MA and KA are NeNe square matrices, Mv is a 

NnNn square matrix. CAv is a NeNv matrix and FA a vector of 

size Ne. Finally, equation (10) can be rewritten in a condensed 

form similar to (2) (without the nonlinear term) by considering 

that X(t)=Xr(t) with: 
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IV. APPLICATIONS 

A. Example 1: Three phase transformer 

A 2D magnetostatic example, made of a three phase EI 

transformer supplied at 50Hz with sinusoidal voltages, is 

studied (Fig. 3(a)) [13]. The nonlinear behavior of the 

ferromagnetic core is considered (Fig. 3(b)). The full model 

corresponds to the one presented in the section III-A. The 

number of DoF of the full system is 2073. To deduce the 

reduced model, an Offline/Online approach is used [8][9]. 

This approach is based on the expertise of the engineer. In 

electrical engineering, typical test procedures are used to 

determine parameters of equivalent circuit models which 

describes the behavior of the device on the whole range of 

operation. Then, the idea is to consider the same approach to 

construct a reduced model of a FE model. We apply the POD 

by combining the snapshots obtained by simulating the typical 

test procedures. For the Offline step, to deduce the reduced 

models, test procedures at no load and in short-circuit are 

simulated on the first period of voltages with 40 time steps. 

The snapshots are merged in the same snapshot matrix in 

order to define the reduced basis. The size of the reduced 

models is 41. For the Online step, the evolutions of the 

primary currents obtained from the reduced models with and 

without the structure preserving and from the full model are 

compared. Fig. 4, 5 and 6 present the currents associated with 

two primary windings versus the time on several periods for 

the simulations at no load, in short-circuit and for a resistive 

load coupled with the secondary windings. We can observe 

that the evolutions of the currents are more accurate with the 

structure preserving reduced model than those from the 

reduced model without the structure preserving. The 

differences of the results from both reduced models are most 

significant when the saturation of the ferromagnetic core is 

high (Fig. 4 and 6). 
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Fig. 3. (a) 2D three phase EI transformer, (b) B(H) curve of the magnetic core. 
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Fig. 4. Evolutions of the current associated with two primary windings at no 

load. 
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Fig. 5. Evolutions of the current associated with two primary windings in 

short circuit. 
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Fig. 6. Evolutions of the current associated with two primary windings for 

resistor load (R=200). 

B. Example 2: Stranded inductor and two conducting plates 

A 3D magneto-quasistatic example, made of two conducting 

plates and a stranded inductor supplied by a sinusoidal current, 

is studied (Fig. 7). The problem is solved in the frequency 

domain. The full model is presented in the section III-B. 

Nevertheless, we consider the problem in the frequency 

domain, the number of DoF is 298867. We study the evolution 

of the Joule losses versus the frequency obtained from the 

reduced models with and without the structure preserving 

approach and from the full model. During the Offline step, we 

consider a logarithm distribution of snapshots on the 

frequency interval [50;2.5k]Hz in order to deduce the reduced 

models. During the Online step, the number of frequency steps 

is 40 with a logarithm distribution. Fig 8. presents the 

evolution of the Joule losses computed with the full model. 

Fig. 9 gives the curves of the error versus the number of 

snapshots for the reduced models. We can observe that the 

error associated with the structure preserving reduced model is 

always smaller than the one from the reduced model without 

the preserving structure. When the number of snapshots 

increases, the error curves of both reduced models converge 

toward the same error. In term of local quantity, Fig. 10 

presents the distribution of the eddy current density in a 
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conducting plate calculated with the full model for f=1kHz. 

The error distributions of the eddy current density between the 

full model and both reduced models are presented in Fig. 11. 

The maximal error of the structure preserving reduced model 

is smaller than the one of the reduced model without structure 

preserving approach. The most significant difference between 

the error distributions of the two reduced models is located on 

the boundary J of the conducting plates. In fact, without the 

structure preserving, supplementary coupling terms between 

the magnetic vector potential and the electric scalar potential 

defined in Dc are introduced by the matrix . These terms 

influence the boundary condition J where the condition J.n=0 

is weakly imposed.  
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Fig. 7. Stranded inductor and two conducting plates. 
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Fig. 8. Joule Losses versus the frequency. 
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Fig. 9. Error versus the number of snapshots. 
 

  
Fig. 10. Distribution of the eddy current density (A/m2) in a conducting plate. 

 

 (a) (b) 

Fig. 11. Error of the eddy current density between the full model and both 
reduced models ((a) with the structure preserving and (b) without the structure 

preserving). 

V. CONCLUSION 

A structure preserving approach has been applied to the 

reduced models based on the potential formulations used to 

solve low frequency electromagnetic problems. To construct 

the reduced models, the POD combined with the DEIM has 

been used. With the studied examples, it seems that the 

reduced models with the structure preserving are more 

accurate in term of local and global quantities than those 

without the structure preserving. 
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