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Abstract Due to the significant increase of communications between individuals via social media (Face-
book, Twitter, Linkedin) or electronic formats (email, web, e-publication) in the past two decades, net-
work analysis has become a unavoidable discipline. Many random graph models have been proposed to
extract information from networks based on person-to-person links only, without taking into account
information on the contents. This paper introduces the stochastic topic block model (STBM), a prob-
abilistic model for networks with textual edges. We address here the problem of discovering meaningful
clusters of vertices that are coherent from both the network interactions and the text contents. A clas-
sification variational expectation-maximization (C-VEM) algorithm is proposed to perform inference.
Simulated data sets are considered in order to assess the proposed approach and to highlight its main
features. Finally, we demonstrate the effectiveness of our methodology on two real-word data sets: a
directed communication network and a undirected co-authorship network.

Keywords Random graph models · topic modeling · textual edges · clustering · variational inference

Mathematics Subject Classification (2000) 62F15 · 62F86

1 Introduction

The significant and recent increase of interactions between individuals via social media or through
electronic communications enables to observe frequently networks with textual edges. It is obviously of
strong interest to be able to model and cluster the vertices of those networks using information on both
the network structure and the text contents. Techniques able to provide such a clustering would allow
a deeper understanding of the studied networks. As a motivating example, Figure 1 shows a network
made of three “communities” of vertices where one of the communities can in fact be split into two
separate groups based on the topics of communication between nodes of these groups (see legend of
Figure 1 for details). Despite the important efforts in both network analysis and text analytics, only a
few works have focused on the joint modeling of network vertices and textual edges.
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Fig. 1 A sample network made of 3 “communities” where one of the communities is made of two topic-specific groups.
The left panel only shows the observed (binary) edges in the network. The center panel shows the network with only the
partition of edges into 3 topics (edge colors indicate the majority topics of texts). The right panel shows the network with
the clustering of its nodes (vertex colors indicate the groups) and the majority topic of the edges. The latter visualization
allows to see the topic-conditional structure of one of the three communities.

1.1 Statistical models for network analysis

On the one hand, there is a long history of research in the statistical analysis of networks, which has
received strong interest in the last decade. In particular, statistical methods have imposed theirselves
as efficient and flexible techniques for network clustering. Most of those methods look for specific
structures, so called communities, which exhibit a transitivity property such that nodes of the same
community are more likely to be connected (Hofman and Wiggins , 2008). Popular approaches for
community discovering, though asymptotically biased (Bickel and Chen , 2009), are based on the
modularity score given by Girvan and Newman (2002). Alternative clustering methods usually rely on
the latent position cluster model (LPCM) of Handcock et al. (2007), or the stochastic block model
(SBM) (Wang and Wong , 1987; Nowicki and Snijders , 2001). The LPCM model, which extends the
work of Hoff et al. (2002), assumes that the links between the vertices depend on their positions in a
social latent space and allows the simultaneous visualization and clustering of a network.

The SBM model is a flexible random graph model which is based on a probabilistic generalization of
the method applied by White et al. (1976) on Sampson’s famous monastery (Fienberg and Wasserman
, 1981). It assumes that each vertex belongs to a latent group, and that the probability of connection
between a pair of vertices depends exclusively on their group. Because no specific assumption is made
on the connection probabilities, various types of structures of vertices can be taken into account.
At this point, it is important to notice that, in network clustering, two types of clusters are usually
considered: communities (vertices within a community are more likely to connect than vertices of
different communities) and stars or disassortative clusters (the vertices of a cluster highly connect to
vertices of another). In this context, SBM is particularly useful in practice since it has the ability to
characterize both types of clusters.

While SBM was originally developed to analyze mainly binary networks, many extensions have been
proposed since to deal for instance with valued edges (Mariadassou et al. , 2010), categorical edges (Jer-
nite et al. , 2014) or to take into account prior information (Zanghi et al. , 2010; Matias and Robin
, 2014). Note that other extensions of SBM have focused on looking for overlapping clusters (Airoldi
et al. , 2008; Latouche et al. , 2011) or on the modeling of dynamic networks (Yang et al. , 2011; Xu
and Hero III , 2013; Bouveyron et al. , 2016; Matias and Miele , 2016).

The inference of SBM-like models is usually done using variational expectation maximization (VEM) (Daudin
et al. , 2008), variational Bayes EM (VBEM) (Latouche et al. , 2012), or Gibbs sampling (Nowicki and
Snijders , 2001). Moreover, we emphasize that various strategies have been derived to estimates the
number of corresponding clusters using model selection criteria (Daudin et al. , 2008; Latouche et al. ,
2012), allocation sampler (Mc Daid et al. , 2013), greedy search (Côme and Latouche , 2015), or non
parametric schemes (Kemp et al. , 2006). We refer to (Salter-Townshend et al. , 2012) for a overview
of statistical models for network analysis.
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1.2 Statistical models for text analytics

On the other hand, the statistical modeling of texts appeared at the end of the last century with an
early model described by Papadimitriou et al. (1998) for latent semantic indexing (LSI) (Deerwester
et al. , 1990). LSI is known in particular for allowing to recover linguistic notions such as synonymy and
polysemy from “term frequency - inverse document frequency” (tf-idf) data. Hofmann (1999) proposed
an alternative model for LSI, called probabilistic latent semantic analysis (pLSI), which models each
word within a document using a mixture model. In pLSI, each mixture component is modeled by a
multinomial random variable and the latent groups can be viewed as “topics”. Thus, each word is
generated from a single topic and different words in a document can be generated from different topics.
However, pLSI has no model at the document level and may suffer from overfitting. Notice that pLSI
can also be viewed has an extension of the mixture of unigrams, proposed by Nigam et al. (2000).

The model which finally concentrates most desired features was proposed by Blei et al. (2003)
and is called latent Dirichlet allocation (LDA). The LDA model has rapidly become a standard tool in
statistical text analytics and is even used in different scientific fields such has image analysis (Lazebnik
et al. , 2006) or transportation research (Côme et al. , 2014) for instance. The idea of LDA is that
documents are represented as random mixtures over latent topics, where each topic is characterized by
a distribution over words. LDA is therefore similar to pLSI except that the topic distribution in LDA
has a Dirichlet distribution. Several inference procedures have been proposed in the literature ranging
from VEM (Blei et al. , 2003) to collapsed VBEM (Teh et al. , 2006).

Note that a limitation of LDA would be the inability to take into account possible topic correlations.
This is due to the use of the Dirichlet distribution to model the variability among the topic proportions.
To overcome this limitation, the correlated topic model (CTM) was also developed by Blei and Lafferty
(2006). Similarly, the relational topic model (RTM) (Chang and Blei , 2009) models the links between
documents as binary random variables conditioned on their contents, but ignoring the community ties
between the authors of these documents. Notice that the “itopic” model (Sun et al. , 2009) extends
RTM to weighted networks. The reader may refer to Blei (2012) for an overview on probabilistic topic
models.

1.3 Statistical models for the joint analysis of texts and networks

Finally, a few recent works have focused on the joint modeling of texts and networks. Those works are
mainly motivated by the will of analyzing social networks, such as Twitter or Facebook, or electronic
communication networks. Some of them are partially based on LDA: the author-topic (AT) (Steyvers
et al. , 2004; Rosen-Zvi et al. , 2004) and the author-recipient-topic (ART) (McCallum et al. , 2005)
models. The AT model extends LDA to include authorship information whereas the ART model includes
authorships and information about the recipients. Though potentially powerful, these models do not
take into account the network structure (communities, stars, ...) while the concept of community is
very important in the context of social networks, in the sense that a community is a group of users
sharing similar interests.

Among the most advanced models for the joint analysis of texts and networks, the first models
which explicitly take into account both text contents and network structure are the community-user-
topic (CUT) models proposed by (Zhou et al. , 2006). Two models are proposed: CUT1 and CUT2,
which differ on the way they construct the communities. Indeed, CUT1 determines the communities only
based on the network structure whereas CUT2 model the communities based on the content information
solely. The CUT models therefore deal each with only a part of the problem we are interested in. It is
also worth noticing that the authors of these models rely for inference on Gibbs sampling which may
prohibit their use on large networks.

A second attempt was made by Pathak et al. (2008) who extended the ART model by introducing
the community-author-recipient-topic (CART) model. The CART model adds to the ART model that
authors and recipients belong to latent communities and allows CART to recover groups of nodes that
are homogenous both regarding the network structure and the message contents. Notice that CART
allows the nodes to be part of multiple communities and each couple of actors to have a specific
topic. Thus, though extremely flexible, CART is also a highly parametrized model. In addition, the
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recommended inference procedure based on Gibbs sampling may also prohibit its application to large
networks.

More recently, the topic-link LDA (Liu et al. , 2009) also performs topic modeling and author
community discovery in a unified framework. As its name suggests, topic-link LDA extends LDA with
a community layer where the link between two documents (and consequently its authors) depends on
both topic proportions and author latent features through a logistic transformation. However, whereas
CART focuses only on directed networks, topic-link LDA is only able to deal with undirected networks.
On the positive side, the authors derive a variational EM algorithm for inference, allowing topic-link
LDA to eventually be applied to large networks.

Finally, a family of 4 topic-user-community models (TUCM) were proposed by Sachan et al. (2012).
The TUCM models are designed such that they can find topic-meaningful communities in networks with
different types of edges. This in particular relevant in social networks such as Twitter where different
types of interactions (followers, tweet, re-tweet, ...) exist. Another specificity of the TUCM models is
that they allow both multiple community and topic memberships. Inference is also done here through
Gibbs sampling, implying a possible scale limitation.

1.4 Contributions and organization of the paper

We propose here a new generative model for the clustering of networks with textual edges, such as
communication or co-authorship networks. Conversely to existing works which have either too simple or
highly-parametrized models for the network structure, our model relies for the network modeling on the
SBM model which offers a sufficient flexibility with a reasonable complexity. This model is one of the
few able to recover different topological structures such as communities, stars or disassortative clusters
(see Latouche et al. , 2012, for instance). Regarding the topic modeling, our approach is based on the
LDA model, in which the topics are conditioned on the latent groups. Thus, the proposed modeling will
be able to exhibit node partitions that are meaningful both regarding the network structure and the
topics, with a model of limited complexity, highly interpretable, and for both directed and undirected
networks. In addition, the proposed inference procedure – a classification-VEM algorithm – allows the
use of our model on large-scale networks.

The proposed model, named stochastic topic block model (STBM), is introduced in Section 2.
The model inference is discussed in Section 3 as well as model selection. Section 4 is devoted to
numerical experiments highlighting the main features of the proposed approach and proving the validity
of the inference procedure. Two applications to real-world networks (the Enron email and the Nips
co-authorship networks) are presented in Section 5. Section 6 finally provides some concluding remarks.

2 The model

This section presents the notations used in the paper and introduces the STBM model. The joint
distributions of the model to create edges and the corresponding documents are also given.

2.1 Context and notations

A directed network with M vertices, described by its M ⇥M adjacency matrix A, is considered. Thus,
Aij = 1 if there is an edge from vertex i to vertex j, 0 otherwise. The network is assumed not to have
any self-loop and therefore Aii = 0 for all i. If an edge from i to j is present, then it is characterized
by a set of Dij documents, denoted Wij = (W d

ij)d. Each document W d
ij is made of a collection of Nd

ij

words W d
ij = (W dn

ij )n. In the directed scenario considered, Wij can model for instance a set of emails
or text messages sent from actor i to actor j. Note that all the methodology proposed in this paper
easily extends to undirected networks. In such a case, Aij = Aji and W d

ij = W d
ji for all i and j. The

set W d
ij of documents can then model for example books or scientific papers written by both i and j.

In the following, we denote W = (Wij)ij the set of all documents exchanged, for all the edges present
in the network.

Our goal is to cluster the vertices into Q latent groups sharing homogeneous connection profiles,
i.e. find an estimate of the set Y = (Y1, . . . , YM ) of latent variables Yi such that Yiq = 1 if vertex i
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belongs to cluster q, and 0 otherwise. Although in some cases, discrete or continuous edges are taken
into account, the literature on networks focuses on modeling the presence of edges as binary variables.
The clustering task then consists in building groups of vertices having similar trends to connect to
others. In this paper, the connection profiles are both characterized by the presence of edges and the
documents between pairs of vertices. Therefore, we aim at uncovering clusters by integrating these two
sources of information. Two nodes in the same cluster should have the same trend to connect to others,
and when connected, the documents they are involved in should be made of words related to similar
topics.

2.2 Modeling the presence of edges

In order to model the presence of edges between pairs of vertices, a stochastic block model (Wang and
Wong , 1987; Nowicki and Snijders , 2001) is considered. Thus, the vertices are assumed to be spread
into Q latent clusters such that Yiq = 1 if vertex i belongs to cluster q, and 0 otherwise. In practice,
the binary vector Yi is assumed to be drawn from a multinomial distribution

Yi ⇠ M (1, ⇢ = (⇢1, . . . , ⇢Q)) ,

where ⇢ denotes the vector of class proportions. By construction,
PQ

q=1 ⇢q = 1 and
PQ

q=1 Yiq = 1, 8i.
An edge from i to j is then sampled from a Bernoulli distribution, depending on their respective

clusters
Aij |YiqYjr = 1 ⇠ B(⇡qr). (1)

In words, if i is in cluster q and j in r, then Aij is 1 with probability ⇡qr. In the following, we denote
⇡ the Q⇥Q matrix of connection probabilities. Note that in the undirected case, ⇡ is symmetric.

All vectors Yi are sampled independently, and given Y = (Y1, . . . , YM ), all edges in A are assumed
to be independent. This leads to the following joint distribution

p(A, Y |⇢,⇡) = p(A|Y,⇡)p(Y |⇢),

where

p(A|Y,⇡) =
MY

i 6=j

p(Aij |Yi, Yj ,⇡)

=

MY

i 6=j

QY

q,l

p(Aij |⇡qr)YiqYjr ,

and

p(Y |⇢) =
MY

i=1

p(Yi|⇢)

=

MY

i=1

QY

q=1

⇢Yiq
q .

2.3 Modeling the construction of documents

As mentioned previously, if an edge is present from vertex i to vertex j, then a set of documents Wij =

(W d
ij)d, characterizing the oriented pair (i, j), is assumed to be given. Thus, in a generative perspective,

the edges in A are first sampled using previous section. Given A, the documents in W = (Wij)ij are
then constructed. The generative process we consider to build documents is strongly related to the
latent Dirichlet allocation (LDA) model of Blei et al. (2003). The link between STBM and LDA is
made clear in the following section. The STBM model relies on two concepts at the core of the SBM
and LDA models respectively. On the one hand, a generalization of the SBM model would assume that
any kind of relationships between two vertices can be explained by their latent clusters only. In the
LDA model on the other hand, the main assumption is that words in documents are drawn from a
mixture distribution over topics, each document d having its own vector of topic proportions ✓d. The
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STBM model combines these two concepts to introduce a new generative procedure for documents in
networks.

Each pair of clusters (q, r) of vertices is first associated to a vector of topic proportions ✓qr = (✓qrk)k
sampled independently from a Dirichlet distribution

✓qr ⇠ Dir (↵ = (↵1, . . . ,↵K)) ,

such that
PK

k=1 ✓qrk = 1, 8(q, r). We denote ✓ = (✓qr)qr and ↵ = (↵1, . . . ,↵K) the parameter vector
controlling the Dirichlet distribution. Note that in all our experiments we set each component of ↵
to 1 in order to obtain a uniform distribution. Since ↵ is fixed, it does not appear in the conditional
distributions provided in the following. The nth word W dn

ij of documents d in Wij is then associated
to a latent topic vector Zdn

ij assumed to be drawn from a multinomial distribution, depending on the
latent vectors Yi and Yj

Zdn
ij | {YiqYjrAij = 1, ✓} ⇠ M (1, ✓qr = (✓qr1, . . . , ✓qrK)) . (2)

Note that
PK

k=1 Z
dnk
ij = 1, 8(i, j, d), Aij = 1. Equations (1) and (2) are related: they both involve the

construction of random variables depending on the cluster assignment of vertices i and j. Thus, if an
edge is present (Aij = 1) and if i is in cluster q and j in r, then the word W dn

ij is in topic k (Zdnk
ij = 1)

with probability ✓qrk.
Then, given Zdn

ij , the word W dn
ij is assumed to be drawn from a multinomial distribution

W dn
ij |Zdnk

ij = 1 ⇠ M (1,�k = (�k1, . . . ,�kV )) , (3)

where V is the number of (different) words in the vocabulary considered and
PV

v=1 �kv = 1, 8k as well
as
PV

v=1 W
dnv
ij = 1, 8(i, j, d, n). Therefore, if W dn

ij is from topic k, then it is associated to word v of
the vocabulary (W dnv

ij = 1) with probability �kv. Equations (2) and (3) lead to the following mixture
model for words over topics

W dn
ij | {YiqYjrAij = 1, ✓} ⇠

KX

k=1

✓qrkM (1,�k) ,

where the K ⇥ V matrix � = (�kv)kv of probabilities does not depend on the cluster assignments.
Note that words of different documents d and d

0
in Wij have the same mixture distribution which only

depends on the respective clusters of i and j. We also point out that words of the vocabulary appear
in any document d of Wij with probabilities

P(W dnv
ij = 1|YiqYjrAij = 1, ✓) =

KX

k=1

✓qrk�kv.

Because pairs (q, r) of clusters can have different vectors of topics proportions ✓qr, the documents they
are associated with can have different mixture distribution of words over topics. For instance, most
words exchanged from vertices of cluster q to vertices of cluster r can be related to mathematics while
vertices from q0 can discuss with vertices of r0 with words related to cinema and in some cases to sport.

All the latent variables Zdn
ij are assumed to be sampled independently and, given the latent variables,

the words W dn
ij are assumed to be independent. Denoting Z = (Zdn

ij )ijdn, this leads to the following
joint distribution

p(W,Z, ✓|A, Y,�) = p(W |A,Z,�)p(Z|A, Y, ✓)p(✓),

where

p(W |A,Z,�) =
MY

i 6=j

8
<

:

DijY

d=1

Nd
ijY

n=1

p(W dn
ij |Zdn

ij ,�)

9
=

;

Aij

=

MY

i 6=j

8
<

:

DijY

d=1

Nd
ijY

n=1

KY

k=1

p(W dn
ij |�k)Z

dnk
ij

9
=

;

Aij

,
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⇡

Fig. 2 Graphical representation of the stochastic topic block model.

and

p(Z|A, Y, ✓) =
MY

i 6=j

8
<

:

DijY

d=1

Nd
ijY

n=1

p(Zdn
ij |Yi, Yj , ✓)

9
=

;

Aij

=

MY

i 6=j

8
<

:

DijY

d=1

Nd
ijY

n=1

QY

q,r

p(Zdn
ij |✓qr)YiqYjr

9
=

;

Aij

,

as well as

p(✓) =
QY

q,r

Dir(✓qr;↵).

2.4 Link with LDA and SBM

The full joint distribution of the STBM model is given by

p(A,W, Y, Z, ✓|⇢,⇡,�) = p(W,Z, ✓|A, Y,�)p(A, Y |⇢,⇡), (4)

and the corresponding graphical model is provided in Figure 2. Thus, all the documents in W are
involved in the full joint distribution through p(W,Z, ✓|A, Y,�). Now, let us assume that Y is avail-
able. It then possible to reorganize the documents in W such that W = (

˜Wqr)qr where ˜Wqr =�
W d

ij , 8(d, i, j), YiqYjrAij = 1

 
is the set of all documents exchanged from any vertex i in cluster q

to any vertex j in cluster r. As mentioned in the previous section, each word W dn
ij has a mixture

distribution over topics which only depends on the clusters of i and j. Because all words in ˜Wqr are
associated with the same pair (q, r) of clusters, they share the same mixture distribution. Removing
temporarily the knowledge of (q, r), i.e. simply seeing ˜Wqr as a document d, the sampling scheme de-
scribed previously then corresponds to the one of a LDA model with D = Q2 independent documents
˜Wqr, each document having its own vector ✓qr of topic proportions. The model is then characterized
by the matrix � of probabilities. Note that contrary to the original LDA model (Blei et al. , 2003), the
Dirichlet distributions considered for the ✓qr depend on a fixed vector ↵.

As mentioned in Section 2.2, the second part of Equation (4) involves the sampling of the clusters
and the construction of binary variables describing the presence of edges between pairs of vertices.
Interestingly, it corresponds exactly to the complete data likelihood of the SBM model, as considered in
Zanghi et al. (2008) for instance. Such a likelihood term only involves the model parameters ⇢ and ⇡.

3 Inference

We aim at maximizing the complete data log-likelihood

log p(A,W, Y |⇢,⇡,�) = log

X

Z

Z

✓
p(A,W, Y, Z, ✓|⇢,⇡,�)d✓, (5)

with respect to the model parameters (⇢,⇡,�) and the set Y = (Y1, . . . , YM ) of cluster membership
vectors. Note that Y is not seen here as a set of latent variables over which the log-likelihood should be
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integrated out, as in standard expectation maximization (EM) (Dempster et al. , 1977) or variational
EM algorithms (Hathaway , 1986). Moreover, the goal is not to provide any approximate posterior
distribution of Y given the data and model parameters. Conversely, Y is seen here as a set of (binary)
vectors for which we aim at providing estimates. This choice is motivated by the key property of the
STBM model, i.e. for a given Y , the full joint distribution factorizes into a LDA like term and SBM like
term. In particular, given Y , words in W can be seen as being drawn from a LDA model with D = Q2

documents (see Section 2.4), for which fast optimization tools have been derived, as pointed out in
the introduction. Note that the choice of optimizing a complete data log-likelihood with respect to the
set of cluster membership vectors has been considered in the literature, for simple mixture model such
as Gaussian mixture models, but also for the SBM model (Zanghi et al. , 2008). The corresponding
algorithm, so called classification EM (CEM) (Celeux and Govaert , 1991) alternates between the
estimation of Y and the estimation of the model parameters.

As mentioned previously, we introduce our methodology in the directed case. However, we emphasize
that the STBM package for R we developed, implements the inference strategy for both directed and
undirected networks.

3.1 Variational decomposition

Unfortunately, in our case, Equation (5) is not tractable. Moreover the posterior distribution p(Z, ✓|A,W, Y, ⇢,⇡,�)
does not have any analytical form. Therefore, following the work of Blei et al. (2003) on the LDA
model, we propose to rely on a variational decomposition. In the case of the STBM model, it leads to

log p(A,W, Y |⇢,⇡,�) = L (R(·);Y, ⇢,⇡,�) + KL (R(·) k p(·|A,W, Y, ⇢,⇡,�)),

where
L (R(·);Y, ⇢,⇡,�) =

X

Z

Z

✓
R(Z, ✓) log

p(A,W, Y, Z, ✓|⇢,⇡,�)
R(Z, ✓)

d✓, (6)

and KL denotes the Kullback-Leibler divergence between the true and approximate posterior distribution
R(·) of (Z, ✓), given the data and model parameters

KL (R(·) k p(·|A,W, Y, ⇢,⇡,�)) = �
X

Z

Z

✓
R(Z, ✓) log

p(Z, ✓|A,W, Y, ⇢,⇡,�)

R(Z, ✓)
d✓.

Since log p(A,W, Y |⇢,⇡,�) does not depend on the distribution R(Z, ✓), maximizing the lower bound
L with respect to R(Z, ✓) induces a minimization of the KL divergence. As in Blei et al. (2003), we
assume that R(Z, ✓) can be factorized over the latent variables in ✓ and Z. In our case, this translates
into

R(Z, ✓) = R(Z)R(✓) = R(✓)
MY

i 6=j,Aij=1

DijY

d=1

Nd
ijY

n=1

R(Zdn
ij ).

3.2 Model decomposition

As pointed out in Section 2.4, the set of latent variables in Y allows the decomposition of the full joint
distribution in two terms, from the sampling of Y and A to the construction of documents given A and
Y . When deriving the lower bound (6), this property leads to

L (R(·);Y, ⇢,⇡,�) = ˜L (R(·);Y,�) + log p(A, Y |⇢,⇡),

where
˜L (R(·);Y,�) =

X

Z

Z

✓
R(Z, ✓) log

p(W,Z, ✓|A, Y,�)

R(Z, ✓)
d✓, (7)

and log p(A, Y |⇢,⇡) is the complete data log-likelihood of the SBM model. The parameter � and the
distribution R(Z, ✓) are only involved in the lower bound ˜L while ⇢ and ⇡ only appear in log p(A, Y |⇢,⇡).
Therefore, given Y , these two terms can be maximized independently. Moreover, given Y , ˜L is the lower
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bound for the LDA model, as proposed by Blei et al. (2003), after building the set W = (

˜Wqr)qr of
D = Q2 documents, as described in Section 2.4. In the next section, we derive a VEM algorithm to
maximize ˜L with respect � and R(Z, ✓), which essentially corresponds to the VEM algorithm of Blei
et al. (2003). Then, log p(A, Y |⇢,⇡) is maximized with respect to ⇢ and ⇡ to provide estimates. Finally,
L (R(·);Y, ⇢,⇡,�) is maximized with respect to Y , which is the only term involved in both ˜L and the
SBM complete data log-likelihood. Because the methodology we propose requires a variational EM
approach as well as a classification step, to provide estimates of Y , we call the corresponding strategy
a classification VEM (C-VEM) algorithm.

3.3 Optimization

In this section, we derive the optimization steps of the C-VEM algorithm we propose, which aims at
maximizing the lower bound L. The algorithm alternates between the optimization of R(Z, ✓), Y and
(⇢,⇡,�) until convergence of the lower bound.

Estimation of R(Z, ✓) The following propositions give the update formulae of the E step of the VEM
algorithm applied on Equation (7).

Proposition 1 (Proof in Appendix A.1) The VEM update step for each distribution R(Zdn
ij ) is given

by

R(Zdn
ij ) = M

�
Zdn
ij ; 1,�dnij = (�dn1ij , . . . ,�dnKij )

�
,

where

�dnkij /
 

VY

v=1

�
Wdnv

ij

kv

!
QY

q,r

exp

⇣
 (�qrk �  (

KX

l=1

�qrl)
⌘YiqYjr

, 8(d, n, k).

�dnkij is the (approximate) posterior distribution of words W dn
ij being in topic k.

Proposition 2 (Proof in Appendix A.2) The VEM update step for distribution R(✓) is given by

R(✓) =
QY

q,r

Dir(✓qr; �qr = (�qr1, . . . , �qrK)),

where

�qrk = ↵k +

MX

i 6=j

AijYiqYjr

Nd
ijX

d=1

Ndn
ijX

n=1

�dnkij , 8(q, r, k).

Estimation of the model parameters Maximizing the lower bound L in Equation (7) is used to provide
estimates of the model parameters (⇢,⇡,�). We recall that � is only involved in ˜L while (⇢,⇡) only
appear in the SBM complete data log-likelihood. The derivation of ˜L is given in Appendix A.3.

Proposition 3 (Proofs in Appendices A.4, A.5, A.6) The estimates of �, ⇢, and ⇡, are given by

�kv /
MX

i 6=j

Aij

DijX

d=1

Ndn
ijX

n=1

�dnkij W dnv
ij , 8(k, v),

⇢q /
MX

i=1

Yiq, 8q,

⇡qr =

PM
i 6=j

PQ
q,r YiqYjrAij

PM
i 6=j

PQ
q,r YiqYjr

, 8(q, r).
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Estimation of Y At this step, the model parameters (⇢,⇡,�) along with the distribution R(Z, ✓) are
held fixed. Therefore, the lower bound L in (7) only involves the set Y of cluster membership vectors.
Looking for the optimal solution Y maximizing this bound is not feasible since it involves testing
the QM possible cluster assignments. However, heuristics are available to provide local maxima for
this combinatorial problem. These so called greedy methods have been used for instance to look for
communities in networks by Newman (2004); Blondel et al. (2008) but also for the SBM model (Côme
and Latouche , 2015). They are sometimes referred to as on line clustering methods (Zanghi et al. ,
2008).

The algorithm cycles randomly through the vertices. At each step, a single vertex is considered and
all membership vectors Yj are held fixed, except Yi. If i is currently in cluster q, then the method looks
for every possible label swap, i.e. removing i from cluster q and assigning it to a cluster r 6= q. The
corresponding change in L is then computed. If no label swap induces an increase in L, then Yi remains
unchanged. Otherwise, the label swap that yields the maximal increase is applied, and Yi is changed
accordingly.

3.4 Initialization strategy and model selection

The C-VEM introduced in the previous section allows the estimation of R(Z, ✓), Y , as well as (⇢,⇡,�),
for a fixed number Q of clusters and a fixed number K of topics. As any EM-like algorithms, the C-VEM
method depends on the initialization and is only guaranteed to converge to a local optimum (Bilmes ,
1998). Strategies to tackle this issue include simulated annealing and the use of multiple initializations
(Biernacki et al. , 2003). In this work, we choose the latter option. Our C-VEM algorithm is run for
several initializations of a k-means like algorithm on a distance matrix between the vertices obtained as
follows.

1. The VEM algorithm (Blei et al. , 2003) for LDA is applied on the aggregation of all documents
exchanged from vertex i to vertex j, for each pair (i, j) of vertices, in order to characterize a type
of interaction from i to j. Thus, a M ⇥ M matrix X is first built such that Xij = k if k is the
majority topic used by i when discussing with j.

2. The distance M ⇥M matrix � is then computed as follows

�(i, j) =
NX

h=1

�(Xih 6= Xjh)AihAjh +

NX

h=1

�(Xhi 6= Xhj)AhiAhj . (8)

The first term looks at all possible edges from i and j towards a third vertex h. If both i and j
are connected to h, i.e. AihAjh = 1, the edge types Xih and Xjh are compared. By symmetry, the
second term looks at all possible edges from a vertex h to both i as well as j, and compare their
types. Thus, the distance computes the number of discordances in the way both i and j connect to
other vertices or vertices connect to them.

Regarding model selection, since a model based approach is proposed here, two STBM models will
be seen as different if they have different values of Q and/or K. Therefore, the task of estimating Q and
K can be viewed as a model selection problem. Many model selection criteria have been proposed in the
literature, such as the Akaike information criterion (Akaike , 1973) (AIC) and the Bayesian information
criterion (Schwarz , 1978) (BIC). In this paper, because the optimization procedure considered involves
the optimization of the binary matrix Y , we rely on a ICL-like criterion. This criterion was originally
proposed by Biernacki et al. (2000) for Gaussian mixture models. In the STBM context, it aims at
approximating the integrated complete data log-likelihood log p(A,W, Y ).

Proposition 4 (Proof in Appendix A.7) A ICL criterion for the STBM model can be obtained

ICLSTBM =

˜L(R(·);Y,�)�K(V � 1)

2

logQ2
+max

⇢,⇡
log p(A, Y |⇢,⇡, Q)�Q2

2

logM(M�1)�Q� 1

2

logM

Notice that this result relies on two Laplace approximations, a variational estimation, as well as Stirling
formula. It is also worth noticing that this criterion involves two parts, as shown in the appendix: a BIC
like term associated to a LDA model (see Than and Ho , 2012, for instance) with Q2 documents and
the ICL criterion for the SBM model, as introduced by Daudin et al. (2008).
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Scenario A Scenario B Scenario C

Fig. 3 Networks sampled according to the three simulation scenarios A, B and C. See text for details.

Scenario A B C
M (nb of nodes) 100
K (topics) 4 3 3
Q (groups) 3 2 4
⇢ (group prop.) (1/Q, ..., 1/Q)

⇡ (connection prob.)

(
⇡qq = 0.25

⇡qr, r 6=q = 0.01
⇡qr, 8q,r = 0.25

(
⇡qq = 0.25

⇡qr, r 6=q = 0.01

✓ (prop. of topics)

8
>>><

>>>:

✓111 = ✓222 = 1

✓333 = 1

✓qr4, r 6=q = 1

otherwise 0

8
><

>:

✓111 = ✓222 = 1

✓qr3, r 6=q = 1

otherwise 0

8
>>><

>>>:

✓111 = ✓331 = 1

✓222 = ✓442 = 1

✓qr3, r 6=q = 1

otherwise 0

Table 1 Parameter values for the three simulation scenarios (see text for details).

4 Numerical experiments

This section aims at highlighting the main features of the proposed approach on synthetic data and
at proving the validity of the inference algorithm presented in the previous section. Model selection is
also considered to validate the criterion choice. Numerical comparisons with state-of-the-art methods
conclude this section.

4.1 Experimental setup

First, regarding the parametrization of our approach, we chose ↵k = 1, 8k which induces a uniform
distribution over the topic proportions ✓qr.

Second, regarding the simulation setup and in order to illustrate the interest of the proposed method-
ology, three different simulation setups will be used in this section. To simplify the characterization and
facilitate the reproducibility of the experiments, we designed three different scenarios. They are as
follows:

– scenario A consists in networks with Q = 3 groups, corresponding to clear communities, where
persons within a group talk preferentially about a unique topic and use a different topic when
talking with persons of other groups. Thus, those networks contain K = 4 topics.

– scenario B consists in networks with a unique community where the Q = 2 groups are only dif-
ferentiated by the way they discuss within and between groups. Persons within groups 1 and 2
talk preferentially about topics 1 and 2 respectively. A third topic is used for the communications
between persons of different groups.

– scenario C, finally, consists in networks with Q = 4 groups which use K = 3 topics to communicate.
Among the 4 groups, two groups correspond to clear communities where persons talk preferentially
about a unique topic within the communities. The two other groups correspond to a single com-
munity and are only discriminated by the topic used in the communications. People from group 3
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Scenario A (Q = 3, K = 4)
K\Q 1 2 3 4 5 6

1 0 0 0 0 0 0
2 12 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 82 2 0 2
5 0 0 2 0 0 0
6 0 0 0 0 0 0

Scenario B (Q = 2, K = 3)
K\Q 1 2 3 4 5 6

1 0 0 0 0 0 0
2 12 0 0 0 0 0
3 0 88 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Scenario C (Q = 4, K = 3)
K\Q 1 2 3 4 5 6

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 2 82 0 0
4 0 0 0 16 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0

Table 2 Percentage of selections by ICL for each STBM model (Q,K) on 50 simulated networks of each of three scenarios.
Highlighted rows and columns correspond to the actual values for Q and K.

use topic 1 and the topic 2 is used in group 4. The third topic is used for communications between
groups.

For all scenarios, the simulated messages are sampled from four texts from BBC news: one text is about
the birth of Princess Charlotte, the second one is about black holes in astrophysics, the third one is
focused on UK politics and the last one is about cancer diseases in medicine. All messages are made
of 150 words. Table 1 provides the parameter values for the three simulation scenarios. Figure 3 shows
simulated networks according to the three simulation scenarios. It is worth noticing that all simulation
scenarios have been designed such that they do not to strictly follow the STBM model and therefore
they do not favor the model we propose in comparisons.

4.2 Introductory example

As an introductory example, we consider a network of M = 100 nodes sampled according to scenario
C (3 communities, Q = 4 groups and K = 3 topics). This scenario corresponds to a situation where
both network structure and topic information are needed to correctly recover the data structure. Indeed,
groups 3 and 4 form a single community when looking at the network structure and it is necessary to
look at the way they communicate to discriminate the two groups.

The C-VEM algorithm for STBM was run on the network with the actual number of groups and
topics (the problem of model selection will be considered in next section). Figure 4 first shows the
obtained clustering, which is here perfect both regarding the simulated node and edges partitions.
More interestingly, Figure 5 allows to visualize the evolution of the lower bound L along the algorithm
iterations (top-left panel), the estimated model parameters ⇡ and ⇢ (right panels), and the most frequent
words in the 3 found topics (left-bottom panel). It turns out that both the model parameters, ⇡ and
⇢ (see Table 1 for actual values), and the topic meanings are well recovered. STBM indeed perfectly
recovers the three themes that we used for simulating the textual edges: one is a “royal baby” topic,
one is a political one and the last one is focused on Physics. Notice also that this result was obtained
in only a few iterations of the C-VEM algorithm, that we proposed for inferring STBM models.

A useful and compact view of both parameters ⇡ and ⇢, and of the most probable topics for group
interactions can be offered by Figure 6. Here, edge widths correspond to connexion probabilities between
groups (⇡), the node sizes are proportional to group proportions (⇢) and edge colors indicate the majority
topics for group interactions. It is important to notice that, even though only the most probable topic
is displayed here, each textual edge may use different topics.

4.3 Model selection

This experiment focuses on the ability of the ICL criterion to select appropriate values for Q and K. To
this end, we simulated 50 networks according to each of the three scenarios and STBM was applied on
those networks for values of Q and K ranging from 1 to 6. Table 2 presents the percentage of selections
by ICL for each STBM model (Q,K) on 50 simulated networks of each of the three scenarios.

In the three different situations, ICL succeeds most of the time in identifying the actual combination
of the number of groups and topics. For scenarios A and B, when ICL does not select the correct
values for Q and K, the criterion seems to underestimate the values of Q and K whereas it tends to
overestimate them in case of scenario C. One can also notice that wrongly selected models are usually
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Final clustering

Fig. 4 Clustering result for the introductory example (scenario C). See text for details.

●

●

●

●

●

●

●

●

● ● ● ● ●

2 4 6 8 10 12

−5
20

00
0

−5
00

00
0

−4
80

00
0

−4
60

00
0

−4
40

00
0

Lower−Bound

Iterations

Va
lu

e 
of

 th
e 

Lo
we

r−
Bo

un
d

Connexion probabilities between groups (πq)

Recipient

Se
nd

er

0.23 0.01 0.01 0.23

0.01 0.26 0.01 0.01

0.01 0.01 0.23 0.01

0.25 0.02 0.01 0.26

1 2 3 4

1

2

3

4

Topics

Topic 1 Topic 2 Topic 3

event party greatgranddaughter

credit government kensington

shadow lost duke

light resentment duchess

gravity united palace

see snp queen

will kingdom cambridge

holes political charlotte

hole david birth

black seats princess

Group proportions (ρq)

Q (clusters)

Fr
ac

tio
n 

of
 th

e 
sa

m
pl

e

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

27

23

25 25

1 2 3 4

Fig. 5 Clustering result for the introductory example (scenario C). See text for details.
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Fig. 6 Introductory example: summary of connexion probabilities between groups (⇡, edge widths), group proportions (⇢,
node sizes) and most probable topics for group interactions (edge colors).

close to the simulated one. Let us also recall that, since the data are not strictly simulated according
to a STBM model, the ICL criterion does not have the model which generated the data in the set of
tested models. This experiment allows to validate ICL as a model selection tool for STBM.

4.4 Benchmark study

This third experiment aims at comparing the ability of STBM to recover the network structure both in
term of node partition and topics. STBM is here compared to SBM, using the mixer package (Ambroise
et al. , 2010), and LDA, using the topicmodels package (Grun and Hornik , 2013). Obviously, SBM
and LDA will be only able to recover either the node partition or the topics. We chose here to evaluate
the results by comparing the resulting node and topic partitions with the actual ones (the simulated
partitions). In the clustering community, the adjusted Rand index (ARI) (Rand , 1971) serves as a
widely accepted criterion for the difficult task of clustering evaluation. The ARI looks at all pairs of
nodes and checks whether they are classified in the same group or not in both partitions. As a result,
an ARI value close to 1 means that the partitions are similar. Notice that the actual values of Q and
K are provided to the three algorithms.

In addition to the different simulation scenarios, we considered three different situations: the standard
simulation situation as described in Table 1 (hereafter “Easy”), a simulation situation (hereafter “Hard
1”) where the communities are less differentiated (⇡qq = 0.25 and ⇡q 6=r = 0.2, except for scenario B)
and a situation (hereafter “Hard 2”) where 40% of message words are sampled in different topics than
the actual topic.

In the “Easy” situation, the results are coherent with our initial guess when building the simulation
scenarios. Indeed, besides the fact that SBM and LDA are only able to recover one of the two partitions,
scenario A is an easy situation for all methods since the clusters perfectly match the topic partition.
Scenario B, which has no communities and where groups only depend on topics, is obviously a difficult
situation for SBM but does not disturb LDA which perfectly recovers the topics. In scenario C, LDA
still succeeds in identifying the topics whereas SBM well recognizes the two communities but fails in
discriminating the two groups hidden in a single community. Here, STBM obtains in all scenarios the
best performance on both nodes and edges.

The “Hard 1” situation considers the case where the communities are actually not well differentiated.
Here, LDA is little affected (only in scenario A) whereas SBM is no longer able to distinguish the groups
of nodes. Conversely, STBM relies on the found topics to correctly identifies the node groups and obtains,
here again, excellent ARI values in all the three scenarios.

The last situation, the so-called “Hard 2” case, aims at highlighting the effect of the word sampling
in the recovering of the used topics. On the one hand, SBM now achieves a satisfying classification
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Ea
sy

Scenario A Scenario B Scenario C
Method node ARI edge ARI node ARI edge ARI node ARI edge ARI
SBM 1.00±0.00 – 0.01±0.01 – 0.69±0.07 –
LDA – 0.97±0.06 – 1.00±0.00 – 1.00±0.00

STBM 0.98±0.04 0.98±0.04 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
H

ar
d

1
Scenario A Scenario B Scenario C

Method node ARI edge ARI node ARI edge ARI node ARI edge ARI
SBM 0.01±0.01 – 0.01±0.01 – 0.01±0.01 –
LDA – 0.90±0.17 – 1.00±0.00 – 0.99±0.01

STBM 1.00±0.00 0.90±0.13 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.03

H
ar

d
2

Scenario A Scenario B Scenario C
Method node ARI edge ARI node ARI edge ARI node ARI edge ARI
SBM 1.00±0.00 – -0.01±0.01 – 0.65±0.05 –
LDA – 0.21±0.13 – 0.08±0.06 – 0.09±0.05

STBM 0.99±0.02 0.99±0.01 0.59±0.35 0.54±0.40 0.68±0.07 0.62±0.14

Table 3 Clustering results for the SBM, LDA and STBM on 20 networks simulated according to the three scenarios.
Average ARI values are reported with standard deviations for both node and edge clustering. The “Easy” situation
corresponds to the simulation situation describes in Table 1. In the “Hard 1” situation, the communities are very few
differentiated (⇡qq = 0.25 and ⇡q 6=r = 0.2, except for scenario B). The “Hard 2” situation finally corresponds to a setup
where 40% of message words are sampled in different topics than the actual topic.

of nodes for scenarios A and C while LDA fails in recovering the majority topic used for simulation.
On those two scenarios, STBM performs well on both nodes and topics. This proves that STBM is
also able to recover the topics in a noisy situation by relying on the network structure. On the other
hand, scenario B presents an extremely difficult situation where topics are noised and there are no
communities. Here, although both LDA and SBM fail, STBM achieves a satisfying result on both nodes
and edges. This is, once again, an illustration of the fact that the joint modeling of network structure
and topics allows to recover complex hidden structures in a network with textual edges.

5 Application to real-world problems

In this section, we present two applications of STBM to real-world networks: the Enron email and the
Nips co-authorship networks. These two data sets have been chosen because one is a directed network
of moderate size whereas the other one is undirected and of a large size.

5.1 Analysis of the Enron email network

We consider here a classical communication network, the Enron data set, which contains all email
communications between 149 employees of the famous company from 1999 to 2002. The original data
set is available at https://www.cs.cmu.edu/~./enron/. Here, we focus on the period September,
1st to December, 31th, 2001. We chose this specific time window because it is the denser period in
term of sent emails and since it corresponds to a critical period for the company. Indeed, after the
announcement early September 2001 that the company was “in the strongest and best shape that it has
ever been in”, the Securities and Exchange Commission (SEC) opened an investigation on October, 31th
for fraud and the company finally filed for bankruptcy on December, 2nd, 2001. By this time, it was
the largest bankruptcy in U.S. history and resulted in more than 4,000 lost jobs. Unsurprisingly, those
key dates actually correspond to breaks in the email activity of the company, as shown by Figure 7.

The data set considered here contains 20 940 emails sent between the M = 149 employees. All
messages sent between two individuals were coerced in a single meta-message. Thus, we end up with
a data set of 1 234 directed edges between employees, each edge carrying the text of all messages
between two persons.

The C-VEM algorithm we developed for STBM was run on these data for a number Q of groups
from 1 to 14 and a number K of topics from 2 to 20. As one can see on Figure 1 of the supplementary
material the model with the highest value was (Q,K) = (10, 5). Figure 8 shows the clustering obtained
with STBM for 10 groups of nodes and 5 topics. As previously, edge colors refer to the majority topics
for the communications between the individuals. The found topics can be easily interpreted by looking



16 C. Bouveyron et al.

Date

Fr
eq
ue
nc
y

0
50
0

10
00

15
00

20
00

09/01 09/09 09/17 09/25 10/03 10/11 10/19 10/27 11/04 11/12 11/20 11/28 12/06 12/14 12/22 12/30

Fig. 7 Frequency of messages between Enron employees between September 1st and December 31th, 2001.

at the most specific words of each topic, displayed in Figure 9. In a few words, we can summarize the
found topics as follows:

– Topic 1 seems to refer to the financial and trading activities of Enron,
– Topic 2 is concerned with Enron activities in Afghanistan (Enron and the Bush administration were

suspected to work secretly with Talibans up to a few weeks before the 9/11 attacks),
– Topic 3 contains elements related to the California electricity crisis, in which Enron was involved,

and which almost caused the bankruptcy of SCE-corp (Southern California Edison Corporation)
early 2001,

– Topic 4 is about usual logistic issues (building equipment, computers, ...),
– Topic 5 refers to technical discussions on gas deliveries (mmBTU represents 1 million of British

thermal unit, which is equal to 1055 joules).

Figure 10 presents a visual summary of connexion probabilities between groups (the estimated ⇡
matrix) and majority topics for group interactions. A few elements deserve to be highlighted in view of
this summary. First, group 10 contains a single individual who has a central place in the network and
who mostly discusses about logistic issues (topic 4) with groups 4, 5, 6 and 7. Second, group 8 is made
of 6 individuals who mainly communicates about Enron activities in Afghanistan (topic 2) between
them and with other groups. Finally, groups 4 and 6 seem to be more focused on trading activities
(topic 1) whereas groups 1, 3 and 9 are dealing with technical issues on gas deliveries (topic 5).

As a comparison, the network has also been processed with SBM, using the mixer package (Ambroise
et al. , 2010). The chosen number K of groups by SBM was 8. Figure 11 allows to compare the partitions
of nodes provided by SBM and STBM. One can observe that the two partitions differ on several points.
On the one hand, some clusters found by SBM (the bottom-left one for instance) have been split
by STBM since some nodes use different topics than the rest of the community. On the other hand,
SBM isolates two “hubs” which seem to have similar behaviors. Conversely, STBM identifies a unique
“hub” and the second node is gathered with other nodes, using similar discussion topics. STBM has
therefore allowed a better and deeper understanding of the Enron network through the combination of
text contents with network structure.

5.2 Analysis of the Nips co-authorship network

This second network is a co-authorship network within a scientific conference: the Neural Information
Processing Systems (Nips) conference. The conference was initially mainly focused on computational
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Fig. 8 Clustering result with STBM on the Enron data set (Sept.-Dec. 2001).

Topics

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
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Fig. 9 Most specific words for the 5 found topics with STBM on the Enron data set.
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Fig. 10 Enron data set: summary of connexion probabilities between groups (⇡, edge widths), group proportions (⇢, node
sizes) and most probable topics for group interactions (edge colors).

SBM STBM

Fig. 11 Clustering results with SBM (left) and STBM (right) on the Enron data set. The selected number of groups for
SBM is Q = 8 whereas STBM selects 10 groups and 5 topics.

neurosciences and is nowadays one of the famous conferences in statistical learning and artificial in-
telligence. We here consider the data between the 1988 and 2003 editions (Nips 1–17). The data set,
available at http://robotics.stanford.edu/~gal/data.html, contains the abstracts of 2 484 ac-
cepted papers from 2 740 contributing authors. The vocabulary used in the paper abstracts has 14 036
words. Once the co-authorship network reconstructed, we have an undirected network between 2 740
authors with 22 640 textual edges.

We applied STBM on this large data set and the selected model by ICL was (Q,K) = (13, 7).
The values of ICL are presented in Figure 4 of the supplementary material. Note that the values of the
criterion for K > Q are not indicated since we found ICL to have higher values for K  Q on this
data set. It is worth noticing that STBM chose here a limited number of topics compared to what a
simple LDA analysis of the data would have provided. Indeed, STBM looks for topics which are useful
for clustering the nodes. In this sense, the topics of STBM may be slightly different than those of
LDA. Figure 12 shows the clustering obtained with STBM for 13 groups of nodes and 7 topics. Due to
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Fig. 12 Clustering result with STBM on the Nips co-authorship network.
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Fig. 13 Nips co-authorship network: summary of connexion probabilities between groups (⇡, edge widths), group propor-
tions (⇢, node sizes) and most probable topics for group interactions (edge colors).



20 C. Bouveyron et al.

Topics

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

weight test fig wiesel updating input motor

cluster phonemes tension cortex weight spikes israel

search operation procedure index noise firing steveninck

earning functions stochastic hubel feedback likelihood van

gain threshold reinforcement drift fig overlap tishby

reinforcement neuron supervised orientations groups activity naftali

noise dynamic electronic map learning data brenner

analog phoneme synapse models network stimulus rob

neuron learning noise centers equilibrium learning code

synapse formal learning orientation group spike universality

Fig. 14 Most specific words for the 5 found topics with STBM on the Nips co-authorship network.

size and density of the network, the visualization and interpretation from this figure are actually tricky.
Fortunately, the meta-view of the network shown by Figure 13 is of a greater help and allows to get a
clear idea of the network organization. To this end, it is necessary to first picture out the meaning of
the found topics (see Figure 14):

– Topic 1 seems to be focused on neural network theory, which was and still is a central topic in Nips,
– Topic 2 is concerned with phoneme classification or recognition,
– Topic 3 is a more general topic about statistical learning and artificial intelligence,
– Topic 4 is about Neuroscience and focuses on experimental works about the visual cortex,
– Topic 5 deals with network learning theory,
– Topic 6 is also about Neuroscience but seems to be more focused on EEG,
– Topic 7 is finally devoted to neural coding, i.e. characterizing the relationship between the stimulus

and the individual responses.

In light of these interpretations, we can eventually comment some specific relationships between groups.
First of all, we have an obvious community (group 1) which is disconnected with the rest of the network
and which is focused on neural coding (topic 7). One can also clearly identifies, on both Figure 13 and the
reorganized adjacency matrix (Figure 6 of the supplementary material) that groups 2, 5 and 10 are three
“hubs” of a few individuals. Group 2 seems to mainly work on the visual cortex understanding whereas
group 10 is focused on phoneme analysis. Group 5 is mainly concerned with the general neural network
theory but has also collaborations in phoneme analysis. From a more general point of view, topics 6
and 7 seem to be popular themes in the network. Notice that group 3 has a specific behavior in the
network since people in this cluster publish preferentially with people in other groups than together. This
is the exact definition of a disassortative cluster. This appears clearly on Figure 6 of the supplementary
material. It is also of interest to notice that statistical learning and artificial intelligence (which are
probably now 90% of the submissions at Nips) were not yet by this time proper thematics. They were
probably used more as tools in phoneme recognition studies and EEG analyses. This is confirmed by
the fact that words used in topic 3 are less specific to the topic and are frequently used in other topics
as well (see Figure 7 of the supplementary material).
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As a conclusive remark on this network, STBM has proved its ability to bring out concise and
relevant analyses on the structure of a large and dense network. In this view, the meta-network of
Figure 13 is a great help since it summarizes several model parameters of STBM.

6 Conclusion

This work has introduced a probabilistic model, named the stochastic topic bloc model (STBM), for
the modeling and clustering of vertices in networks with textual edges. The proposed model allows
the modeling of both directed and undirected networks, authorizing its application to networks of
various types (communication, social medias, co-authorship, ...). A classification variational EM (C-
VEM) algorithm has been proposed for model inference and model selection is done through the ICL
criterion. Numerical experiments on simulated data sets have proved the effectiveness of the proposed
methodology. Two real-world networks (a communication and a co-authorship network) have also been
studied using the STBM model and insightful results have been exhibited. It is worth noticing that STBM
has been applied to a large co-authorship network with thousands of vertices, proving the scalability of
our approach.

Further work may include the extension of the STBM model to dynamic networks and networks with
covariate information on the nodes and / or edges. The extension to the dynamic framework would
be possible by adding for instance a state space model over group and topics proportions. Such an
approach has already been used with success on SBM-like models, such as in Bouveyron et al. (2016).
It would also be possible to take into account covariate information available on the nodes by adopting
a mixture of experts approach, such as in Gormley and Murphy (2010). Extending the STBM model to
overlapping clusters of nodes would be another natural idea. It is indeed commonplace in social analysis
to allow individuals to belong to multiple groups (family, work, friends, ...). One possible choice would
be to derive an extension of the MMSBM model (Airoldi et al. , 2008). However, this would increase
significantly the parameterization of the model. Finally, STBM could also be adapted in order to take
into account the intensity or the type of communications between individuals.
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A Appendix

A.1 Optimization of R(Z)

The VEM update step for each distribution R(Zdn
ij ), Aij = 1, is given by

logR(Zdn
ij ) = EZ\i,j,d,n,✓[log p(W |A,Z,�) + log p(Z|A, Y, ✓)] + const
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(9)

where all terms that do not depend on Zdn
ij have been put into the constant term const. Moreover,  (·) denotes the

digamma function. The functional form of a multinomial distribution is then recognized in (9)
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�dnk
ij is the (approximate) posterior distribution of words W dn

ij being in topic k.
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A.2 Optimization of R(✓)

The VEM update step for distribution R(✓) is given by

logR(✓) = EZ [log p(Z|A, Y, ✓)] + const
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We recognize the functional form of a product of Dirichlet distributions

R(✓) =
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A.3 Derivation of the lower bound ˜L (R(·);Y,�)

The lower bound ˜L (R(·);Y,�) in (7) is given by
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A.4 Optimization of �

In order to maximize the lower bound ˜L (R(·);Y,�), we isolate the terms in (10) that depend on � and add Lagrange
multipliers to satisfy the constraints
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A.5 Optimization of ⇢

Only the distribution p(Y |⇢) in the complete data log-likelihood log p(A, Y |⇢,⇡) depends on the parameter vector ⇢ of
cluster proportions. Taking the log and adding a Lagrange multiplier to satisfy the constraint

PQ
q=1 ⇢q = 1, we have

log p(Y |⇢) =
MX

i=1

QX

q=1

Yiq log ⇢q .

Taking the derivative with respect ⇢ to zero, we find

⇢q /
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i=1

Yiq .

A.6 Optimization of ⇡

Only the distribution p(A|Y,⇡) in the complete data log-likelihood log p(A, Y |⇢,⇡) depends on the parameter matrix ⇡
of connection probabilities. Taking the log we have
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Taking the derivative with respect to ⇡qr to zero, we obtain
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.

A.7 Model selection

Assuming that the prior distribution over the model parameters (⇢,⇡,�) can be factorized, the integrated complete data
log-likelihood log p(A,W, Y |K,Q) is given by

log p(A,W, Y |K,Q) = log
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Note that the dependency on K and Q is made explicit here, in all expressions. In all other sections of the paper, we did
not include these terms to keep the notations uncluttered. We find
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(11)
Following the derivation of the ICL criterion, we apply a Laplace (BIC-like) approximation on the second term of Equation
(11). Moreover, considering a Jeffreys prior distribution for ⇢ and using Stirling formula for large values of M , we obtain
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For more details, we refer to Biernacki et al. (2000). Furthermore, we emphasize that adding these two approximations
leads to the ICL criterion for the SBM model, as derived by Daudin et al. (2008)

ICLSBM = max
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Q� 1

2

logM.

In Daudin et al. (2008), M(M � 1) is replaced by M(M � 1)/2 and Q2 by Q(Q+1)/2 since they considered undirected
networks.

Now, it is worth taking a closer look at the first term of Equation (11). This term involves a marginalization over
�. Let us emphasize that p(W |A, Y,�,K,Q) is related to the LDA model and involves a marginalization over ✓ (and
Z). Because we aim at approximating the first term of Equation (11), also with a Laplace (BIC-like) approximation, it
is crucial to identify the number of observations in the associated likelihood term p(W |A, Y,�,K,Q). As pointed out in
Section 2.4, given Y (and ✓), it is possible to reorganize the documents in W as W = (

˜Wqr)qr is such a way that all
words in ˜Wqr follow the same mixture distribution over topics. Each aggregated document ˜Wqr has its own vector ✓qr
of topic proportions and since the distribution over ✓ factorizes (p(✓) =

QQ
q,r p(✓qr)), we find
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where `( ˜Wqr|�,K,Q) is exactly the likelihood term of the LDA model associated with document ˜Wqr, as described in
Blei et al. (2003). Thus

log
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Applying a Laplace approximation on Equation (12) is then equivalent to deriving a BIC-like criterion for the LDA model
with documents in W = (

˜Wqr)qr. In the LDA model, the number of observations in the penalization term of BIC is the
number of documents (see Than and Ho , 2012, for instance). In our case, this leads to

log

Z

�
p(W |A, Y,�,K,Q)p(�|K)d� ⇡ max

�
log p(W |A, Y,�,K,Q)�

K(V � 1)

2
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Unfortunately, log p(W |A, Y,�,K,Q) is not tractable and so we propose to replace it with its variational approximation
˜L, after convergence of the C-VEM algorithm. By analogy with ICLSBM , we call the corresponding criterion BICLDA|Y
such that

log p(A,W, Y |K,Q) ⇡ BICLDA|Y + ICLSBM .
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