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L. Montier1,2, S. Clénet1, T. Henneron1 and B. Goursaud2

1Univ. Lille, Arts et Métiers Paris Tech - L2EP - Laboratoire d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France

2EDF R&D, THEMIS, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
laurent.montier@ensam.eu

In the field of computational electromagnetics, taking into account the rotation of a sub-domain is required to simulate certain
devices such as electrical machines. Several methods have been proposed in the literature, but they remain quite difficult to implement.
In this paper, we propose a sliding surface method based on a spatial Fourier interpolation in order to take into account any rotation
angle with a very simple numerical implementation.

Index Terms—Finite Element Method, Fourier Series, Rotation of a Subdomain, Electrical Machine

I. INTRODUCTION

Modeling electrical machines with the Finite Element (FE)
method is now common since it allows to obtain accurate
results on complex geometries. Moreover, it is possible to
model the nonlinear behaviour of ferromagnetic materials with
this technique. Furthermore, the FE method model can be
coupled with electric circuit equations to model the electrical
environment of the machine. To take into account the motion
of the rotor, several methods have been proposed in the
literature. These approaches can be classified in two categories.
The first one consists in computing the motion interaction
inside a third thin subdomain located in the air gab between the
rotor and the stator. The second one carries out the motion by
ensuring a certain continuity of the potentials along a sliding
interface, also located in the air gap.

In the first category, the remeshing technique is sometimes
used. It consists in moving the mesh of the rotor at the desired
position, and only remeshing the thin subdomain. Although it
is quite simple to implement, this methods suffers from its
computational cost and its varying number of unknowns at
each different position. The moving band technique [1] and
the Overlapping Finite Element Method [2] are more advanced
approaches which allow to tackle those issues, at the cost of
a more complicated implementation. Furthermore, Demenko
has proposed in the moving band framework a method based
on trigonometric polynomial interpolation [3].

In the sliding surface category, the Locked-Step Method
(LSM) [4] might be the most used approach. It consists in
permuting unknowns along the interface of a regular mesh,
which leads to the exact solution for discrete values of the
rotation angle. However, this approach is restricted to constant
speed rotation cases and requires to remesh the interface
for each different angular velocity. Thus, the Polynomial
Interpolation Method (PIM) [5], the Mortar ELement Method
(MEM) [6] [5] or the Lagrange Multipliers (LM) [7] have been
developed to tackle these issues. However, these approaches
require complex geometrical integration, matrix inversions
associated with the interface of the stator and the rotor, or

more advanced numerical techniques.
In this paper, the Spatial Fourier Interpolation Method

(SFIM) is proposed. The SFIM allows to model any rotation by
considering the motion in the Fourier domain. Besides offering
very precise results, this method doesn’t require any complex
numerical calculations and is moreover simple to implement.

II. FINITE ELEMENT MODEL OF AN ELECTRICAL MACHINE

Let us consider a magnetostatic field problem of a 2D
synchronous generator in a domain D of boundary Γ. The
machine is composed of a rotor of domain DR and a
stator of domain DS where the nonlinear behaviour of their
ferromagnetic material is taken into account. Furthermore,
let Σ be the common interface of DR and DS located on
the airgap, as shown on figure 1. Four stranded inductors of
currents ik, k = 0, . . . , 3 are considered, i0 being the direct
current supplying the rotor inductor.
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Fig. 1. Electrical machine (NOM DES DOMAINES A MODIFIER!)

A. Nonlinear Magnetostatic Problem

When the rotor is in its initial position, the Maxwell
equations locally describing the magnetostatic problem are:
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curlH(x) =

3∑
j=0

ijN j(x), (1)

divB(x) = 0, (2)

where H denotes the magnetic field, B the magnetic flux
density and N j the unit current density vector flowing through
the jth stranded inductor.

In order to solve this problem, one has to add a constitutive
relation allowing to link the magnetic field H and the
magnetic flux density B. In the case of a nonlinear isotropic
ferromagnetic material, this relation reads: H = ν(‖B‖)B with
ν the magnetic reluctivity of the material.

Moreover, the uniqueness of the solution of this 2D problem
is ensured by adding the following boundary condition:

B · n = 0 on Γ. (3)

Finally, the vector potential A is used in order to solve this
problem. It may be defined from (2) and (3) such as:

B(x) = curlA(x) with A× n = 0 on Γ. (4)

By combining the constitutive relation, (1) and (4), the
nonlinear problem (5) obtained is:

curl
(
ν(‖B‖)curlA(x)

)
=

3∑
j=0

ijN j(x). (5)

B. Discretization of the problem with the Finite Element
method

By assuming that the unknown vector field A is orthogonal
to the plane of study of normal n⊥, the problem is discretized
on a 2D mesh composed of N nodes, with a Dirichlet
Boundary conditions on Γ. As it may be done for modeling
the motion of a subdomain [8], the FE method is applied
independently on the rotor part DR and the stator part DS

(the SFIM will later on allow to link these two domains in
order to model the motion of the rotor). To that end, the m
unknowns on Σ are duplicated such that the NR unknowns of
the rotor are dissociated from the NS unknowns of the stator.
Thus, the two FE approximations AR(x) = AR(x)n⊥ and
AS(x) = AS(x)n⊥ of the vector potential A(x) read:

AR(x) =

NR∑
k=1

XR
k w

R
k (x), (6)

AS(x) =

NS∑
k=1

XS
k w

S
k (x), (7)

where XR
k and XS

k denote the unknown associated to the kth

node in the rotor and the stator part respectively. Moreover
wRk (x) denotes the FE shape function associated to the kth

node of the rotor part, and which is always null in the stator
part DS . In the same way, its counterpart wSk (x) is null in the
rotor part DR.

Since Σ is located in the air gap where the magnetic
reluctivity is linear, the discretization of the two independent
problems (5) in DR and DS reads:(

MR(XR) 0

0 MS(XS)

)(
XR

XS

)
=

(
F0i0∑3
j=1 F jij

)
, (8)

with MR(XR) the stiffness matrix also accounting for
the nonlinear behavior of the ferromagnetic material in the
rotor, and MS(XS), its counterpart for the stator. XR =
(XR

k )k=1,...,NR denotes the unknown vector in DR, and
XS = (XS

k )k=1,...,NS , its counterpart for the stator. As for
Fk, k = 0, . . . , 3, they refer to the discretization of the unitary
current density flowing through the kth stranded inductor.

However, the nonlinear problem (8) is not well defined.
Indeed, boundary relations on Σ have to be taken into account
because of the domain decomposition approach used on DR

versus DS . If the rotor has not moved from its initial position,
this relation is simply AR(x)|Σ = AS(x)|Σ. The next section
is presenting how to model any position of the rotor through
the SFIM.

III. MOTION OF THE ROTOR WITH THE SFIM

The Spatial Fourier Interpolation Method consists in
modeling the motion of the rotor subdomain DR versus the
stator subdomain DS , by ensuring continuity of A along
the sliding interface Σ. Unlike the other sliding interface
techniques, the continuity of A is ensured through a Fourier
decomposition related to the curvilinear coordinates along Σ.

In order to apply further on the SFIM, the common interface
Σ separating DR from DS is composed of m equispaced
nodes by an angle ∆θ = 2π/m. Moreover, we denote by
XR

Σ , the values of XR accounting for the nodes located on Σ
and XS

Σ, its counterpart in DS . Let us further assume that XS
Σ

and XR
Σ are sorted such that their ith component corresponds

to the node located at the angle θi = (i− 1)∆θ, as shown on
figure 2.

Fig. 2. Mesh along the sliding interface Σ (A REFAIRE!!!!)

A. Motion boundary relation along the sliding interface

Let θr be the rotation angle of the rotor, with θr = 0
accounting for the initial position. In order to model the
rotation interactions between the two independent subdomains
DS and DR along the sliding interface Σ, the motion boundary
relation to be ensured is in the 2D case:

AR(r, θ − θr)|Σ = AS(r, θ)|Σ, ∀θ ∈ [0, 2π], (9)
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where (r, θ) denotes the polar coordinates centered along the
rotation axis, as shown in figure 1.

With the MEM or the LM, this relation is ensured in a weak
sense [8]. This is achieved by integrating along Σ the equation
(9) multiplied with the shape functions of the nodes located
on Σ. With the PIM, the motion equation (9) is approximated
by using a polynomial interpolation of XS

Σ with the values of
XR

Σ . As for the LSM, the equation (9) is strictly ensured by
permuting the unknowns XR

Σ along Σ. However in this case,
only discrete values of θr, corresponding to multiples of ∆θ,
can be taken into account.

The proposed approach consists in modeling the rotation of
angle θr by adding a phase-lag (of amplitude θr) between
aR(θ) and aS(θ) in the Fourier domain, where these two
functions are defined by:

aR(θ) : θ → AR(r, θ)|Σ (10)

aS(θ) : θ → AS(r, θ)|Σ. (11)

Indeed, the Fourier domain has two main advantages for this
kind of problem. Firstly, the two functions aR(θ) and aS(θ)
are by definition 2π-periodic. Hence, their Fourier spectrum is
a discrete set, the so-called harmonic frequencies. This means
that all the information contained in aR(θ) and aS(θ) can be
extracted onto a finite number of harmonics (under a further
assumption). Secondly, adding a delay of amplitude θr to a
periodic signal is performed in the Fourier domain by simply
multiplying its kth harmonic with ejkθr .

B. Spatial Fourier Interpolation Method

Let us assume that the periodic signal aR(θ) does not
produce harmonics of frequencies higher than the half of
the sampling frequency f∆ = 1/∆θ = m/(2π). Then, the
sampling theorem implies that the Fourier Transform âR(f)
of aR(θ) is equal to the Discrete Fourier Transform Y R

Σ of
XR

Σ (i.e. the signal aR(θ) sampled at the frequency f∆).
In other words, given that the number m of nodes along Σ
is sufficiently large, the signal aR(θ) can be reconstructed
without loss from the DFT Y R

Σ of the samples XR
Σ =

(aR(θi))i=1,...,m, with θi = (i− 1)∆θ:

aR(θ) =

∫ ∞
−∞

âR(f)e−2jπfθdf (12)

=

[(m+1)/2]∑
k=−[m/2]

Y RΣ,ke
−2jkπθ, (13)

where [·] accounts for the floor function. Y RΣ,k denotes the kth

m-cyclic component of the DFT Y R
Σ . The definition of the

DFT components Y R
Σ is given by:

Y R
Σ = MfX

R
Σ , (14)

with Mf = (m−1/2ej∆θ(i−1)(k−1))(i,k)∈[1:m]2 , the DFT
matrix of size m. Moreover, Mf is a square unitary matrix
which verifies M t

fMf = I where I is the identity matrix.

With the same assumption on aS(θ), we end up with:

aS(θ) =

[(m+1)/2]∑
k=−[m/2]

Y SΣ,ke
−2jkπθ, (15)

Y S
Σ = MfX

S
Σ, (16)

Then, replacing (13) and (15) into the motion relation (9)
leads to the following system of equations:

Y S = D(θr)Y
R (17)

where D(θr) is a diagonal matrix of size m defined by
Di(θr) = ejθr(i−1) ∀i ∈ [1,m+] and Dm−i(θr) =
e−jθri ∀i ∈ [1,m−], where m+ = [(m + 1)/2] and m− =
[m/2]. In fact, D(θr) is the matrix allowing to add a phase lag
of amplitude θr to a signal, by multiplying its kth harmonic
with ejθrk. Its peculiar form is due to the periodicity of the
DFT.

Finally, using (14), (16) and (17) leads to the discrete motion
relation:

XS
Σ = C(θr)X

R
Σ (18)

with C(θr) = Re(M t
fD(θr)Mf ) ∈ Rm×m. The real part,

denoted by R(·), is not mandatory when m is odd (although
it might be useful from a numerical point of view). When
m is even however, taking the real part of C(θr) ensures
that the (m/2)th harmonic is null, according to the sampling
assumption on aS(θ) and aR(θ).

Finally, the SFIM proposes an explicit expression for the
matrix C(θr) which makes its numerical implementation very
simple. Moreover, when θr = k∆θ, k ∈ Z, C(θr) is reduced
to a permutation matrix. In this case, the SFIM is nothing but
the LSM.

C. Coupling the motion relation with the FE system

In order to couple the discrete motion equation (18) with
the overdetermined FE system (8), an equation elimination
approach as proposed in the MEM [8] is used.

First, we assume that the unknown vector of (8) is ordered
such as:

(
XR

XS

)
=


XR
D

XR
Σ

XS
D

XS
Σ

 (19)

with XR
D and XS

D the unkown related to the rotor and the
stator respectively, and not on Σ. Then, the different kind of
unknowns can be linked as:

XR
D

XR
Σ

XS
D

XS
Σ

 =


I 0 0
0 I 0
0 0 I

C(θr) 0 0


XR

D

XR
Σ

XS
D

 , (20)

which can also be noted as

X = T (θr)X̄ (21)
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By denoting the FE system (8) with M(X)X = F , the
full system accounting for the motion of the rotor is finally:

T tM(X̄)TX̄ = T tF (22)

This system is sparse and positive definite. It therefore can
be solved with numerical methods such as the Preconditioned
Conjugate Gradient.

IV. APPLICATION

The SFIM is compared to the OFEM on a 2D-FEM model of
a synchronous generator composed of nonlinear ferromagnetic
materials. The mesh presented in figure 1 is composed of 9105
nodes, with m = 192 nodes along the sliding surface Σ. The
inductor located in the rotor is supplied with a direct current i0
while the three phases of the stator are connected to a resistor
R = 10kΩ. The rotor is driven at a constant rotation speed
Ω0, so that it requires exactly nt = 1000 time-steps to perform
a full mechanical period. Since m is not a multiple of nt, the
LSM is not applicable, hence the using of the OFEM and
the SFIM. The setup of the electrical machine is reminded on
figure 3

Fig. 3. Setup of the synchronous generator (à modifier (enlever L!!!))

Figures 4 shows the magnetic fluxes flowing through the
three phases of the stator computed with the two methods.
The curves from the SFIM matches the ones obtained with
the OFEM, validating our approach.
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Fig. 4. magnetic fluxes through the three phases of the stator, computed with
both the OFEM and the SFIM.

Figure 5 presents the electromotive forces associated with
the three statoric phases. Once again, the results obtained from
both models match. Moreover, the SFIM provides smoother
results which makes perfect sense since it relies on a Fourier
series expansion along θ. Indeed in this case, the e.m.f. are
related to dX

dθ .
Finally, the DFT of aR(θ) computed with the OFEM is

presented on figure 6. It shows that our assumption about the
limited bandwidth of aR(θ) is correct.
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Fig. 5. Electromotive Forces computed with both the OFEM and the SFIM.
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Fig. 6. Direct Fourier Transform of aR(θ) computed with the OFEM

V. CONCLUSION

The Spatial Fourier Interpolation Method allows to take into
account the motion of a the rotor by considering the motion
equation in the Fourier domain. Although its presentation is
not trivial, its implementation is straightforward because of its
explicit expression. Thus, the SFIM might appear as a natural
extension of the LSM through an interpolation in the Fourier
space.

Future works will include its application in the 3D nodal
case, and its extension to potentials discretized with edge
elements.
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